1
|
Skalla RX, Montone CM, Pink M, Walters OK, Bloch ED. Role of Solvent Decomposition in the Synthesis and Composition of Porous Zirconium-Based Coordination Cages. Inorg Chem 2025; 64:6452-6459. [PMID: 40146624 DOI: 10.1021/acs.inorgchem.4c04982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Porous zirconium-based coordination cages are promising materials for applications in gas adsorption, catalysis, and molecular separation due to their tunability and stability. However, their synthesis is often complicated by the formation of competing phases, including insoluble or poorly soluble byproducts that impact purity and composition. Moreover, product composition and solubility can vary widely due to factors such as humidity, seasonal fluctuations, and lab-to-lab variations, highlighting the inherent lack of robustness in these syntheses. In this work, we investigate how solvothermal synthesis conditions, particularly temperature and solvent decomposition, influence the formation and composition of these cages. We show that elevated temperatures accelerate solvent breakdown, leading to the incorporation of formate and acetate byproducts that alter the final cage structures and contribute to the formation of insoluble zirconium-based, amorphous solids. By systematically varying the reaction conditions, we optimized the composition of the isolated cage products, achieving improved phase purity. By optimizing synthetic parameters, we achieve control over cage formation and particle morphology while mitigating the effects of solvent decomposition. Our findings provide insights into the balance between ligand coordination and solvent effects, enabling the development of strategies to enhance the purity, porosity, and functionality of these molecular cages.
Collapse
Affiliation(s)
- Rebecca X Skalla
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christine M Montone
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Olivia K Walters
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric D Bloch
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Tickner BJ, Singh K, Zhivonitko VV, Telkki VV. Ultrafast Nuclear Magnetic Resonance as a Tool to Detect Rapid Chemical Change in Solution. ACS PHYSICAL CHEMISTRY AU 2024; 4:453-463. [PMID: 39346603 PMCID: PMC11428446 DOI: 10.1021/acsphyschemau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast nuclear magnetic resonance (NMR) uses spatial encoding to record an entire two-dimensional data set in just a single scan. The approach can be applied to either Fourier-transform or Laplace-transform NMR. In both cases, acquisition times are significantly shorter than traditional 2D/Laplace NMR experiments, which allows them to be used to monitor rapid chemical transformations. This Perspective outlines the principles of ultrafast NMR and focuses on examples of its use to detect fast molecular conversions in situ with high temporal resolution. We discuss how this valuable tool can be applied in the future to study a much wider variety of novel reactivity.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Department
of Chemistry, University of York, Heslington, York YO10
5NY, United Kingdom
| | - Kawarpal Singh
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EZ, United Kingdom
| | | | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, Oulu 90570, Finland
| |
Collapse
|
4
|
Lu Z, Luciani L, Li S, Nesterov VN, Zuccaccia C, Macchioni A, Fripp JL, Zhang W, Omary MA, Galassi R. A Broadened Class of Donor-Acceptor Stacked Macrometallacyclic Adducts of Different Coinage Metals. Chemistry 2024; 30:e202401576. [PMID: 38735852 DOI: 10.1002/chem.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
A yet-outstanding supramolecular chemistry challenge is isolation of novel varieties of stacked complexes with finely-tuned donor-acceptor bonding and optoelectronic properties, as herein reported for binary adducts comprising two different cyclic trinuclear complexes (CTC@CTC'). Most previous attempts focused only on 1-2 factors among metal/ligand/substituent combinations, resulting in heterobimetallic complexes. Instead, here we show that, when all 3 factors are carefully considered, a broadened variety of CTC@CTC' stacked pairs with intuitively-enhanced intertrimer coordinate-covalent bonding strength and ligand-ligand/metal-ligand dispersion are attained (dM-M' 2.868(2) Å; ΔE>50 kcal/mol, an order of magnitude higher than aurophilic/metallophilic interactions). Significantly, CTC@CTC' pairs remain intact/strongly-bound even in solution (Keq 4.67×105 L/mol via NMR/UV-vis titrations), and the gas phase (mass spectrometry revealing molecular peaks for the entire CTC@CTC' units in sublimed samples), rather than simple co-crystal formation. Photo-/electro-luminescence studies unravel metal-centered phosphorescence useful for novel all metal-organic light-emitting diodes (MOLEDs) optoelectronic device concepts. This work manifests systematic design of supramolecular bonding and multi-faceted spectral properties of pure metal-organic macrometallacyclic donor/acceptor (inorganic/inorganic) stacks with remarkably-rich optoelectronic properties akin to well-established organic/organic and organic/inorganic analogues.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Lorenzo Luciani
- School of Science and Technology, Chemistry Division, University of Camerino, ChIP Via Madonna delle Carceri, 10, I-62032, Camerino, Italy
| | - Shan Li
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Cristiano Zuccaccia
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, I-06123, Perugia, Italy
| | - Alceo Macchioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto 8, I-06123, Perugia, Italy
| | - Jacob L Fripp
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Weijie Zhang
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Mohammad A Omary
- Department of Chemistry, University of North Texas, Denton, Texas, 76203, USA
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, ChIP Via Madonna delle Carceri, 10, I-62032, Camerino, Italy
| |
Collapse
|
5
|
Giubertoni G, Rachid MG, Moll C, Hilbers M, Samanipour S, Woutersen S. UV/Visible Diffusion-Ordered Spectroscopy: A Simultaneous Probe of Molecular Size and Electronic Absorption. Anal Chem 2024; 96. [PMID: 39255422 PMCID: PMC11428122 DOI: 10.1021/acs.analchem.4c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
Based on concepts from nuclear magnetic resonance, we have developed UV/vis diffusion-ordered spectroscopy, which simultaneously probes the size and electronic absorption spectrum of molecules and particles. We use simple flow technology to create a step-function concentration profile inside an optical sample cell, and by measuring the time-dependent absorption spectrum in an initially solvent-filled part of the sample volume, we obtain the diffusion coefficients and UV/vis spectra of the species present in the sample solution. From these data, we construct a two-dimensional spectrum with absorption wavelength on one axis and diffusion coefficient (or equivalently, size) on the other, in which the UV/vis spectrum of a mixture with different molecular sizes is separated into the spectra of the different species, sorted by size. We demonstrate this method on mixed solutions of fluorescent dyes, biomolecules, and the UV-absorbing components of coffee, caffeine, and chlorogenic acid, all with concentrations in the μM range.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| | - Marina Gomes Rachid
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| | - Carolyn Moll
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| | - Michiel Hilbers
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| | - Saer Samanipour
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute
for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098XH, The Netherlands
| |
Collapse
|
6
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Zhao J, Lv R, Zhao F, Yang D. Post-Assembly Polymerization of Discrete Anion-Coordinated Triple Helicate. Chempluschem 2024; 89:e202400161. [PMID: 38593244 DOI: 10.1002/cplu.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Hierarchical self-assembly has been recently employed in the construction of anion-coordination-driven gel materials. However, the post-assembly modification strategy, which may be a highly efficient strategy to realize the functionalization of discrete 'aniono' supramolecular architectures, has not been employed yet. Herein we report the first example of anion-coordination-driven gel material cross-linked by well-defined 'aniono' triple helicate through post-assembly polymerization. The obtained gel shows self-healing property and excellent compatibility with various surfaces, including glass, rubber, leaf, PP, and metal. The viscoelastic gel constructed through the post-assembly modification strategy enriches the method to construct the anion-coordination-driven smart materials.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055
| | - Ruying Lv
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| | - Fen Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069
| |
Collapse
|
8
|
Janzen L, Miller RG, Metzler-Nolte N. Synthesis, characterisation and antimicrobial activity of supramolecular cobalt-peptide conjugates. Dalton Trans 2024; 53:10890-10900. [PMID: 38874585 DOI: 10.1039/d4dt00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW)3 motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF4)2·6H2O formed exclusively CoL2 dimers (for peptides with one tpy ligand each) and Co2L4 metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate. The Co-peptide complexes were characterised by mass spectrometry and in solution by NMR spectroscopy, including 2D diffusion ordered NMR spectroscopy (DOSY) which confirmed the proposed stoichiometries. The antimicrobial activity of the novel peptides and their metallo-supramolecular assemblies was investigated by determination of their minimal inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Complexation with cobalt increases the activity of the peptides in almost every case. Most of the new metal-peptide conjugates showed good activity against Gram-positive bacteria, including a multi-resistant S. aureus strain and the opportunistic pathogenic yeast C. albicans (down to 7 μmol l-1 for the most active Co2L4 derivate), a value that is increased five-fold compared to the lysine-derivatized peptide ligand alone. Interestingly, conjugates of the CoL2 type also showed decent activity against Gram-negative bacteria including the WHO-flagged problematic A. baumannii strain (down to 18 μmol l-1 for the most active derivative).
Collapse
Affiliation(s)
- Liudmila Janzen
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Reece G Miller
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
9
|
Cortés-Martínez A, von Baeckmann C, Hernández-López L, Carné-Sánchez A, Maspoch D. Giant oligomeric porous cage-based molecules. Chem Sci 2024; 15:7992-7998. [PMID: 38817590 PMCID: PMC11134396 DOI: 10.1039/d4sc01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Most reported porous materials are either extended networks or monomeric discrete cavities; indeed, porous structures of intermediate size have scarcely been explored. Herein, we present the stepwise linkage of discrete porous metal-organic cages or polyhedra (MOPs) into oligomeric structures with a finite number of MOP units. The synthesis of these new oligomeric porous molecules entails the preparation of 1-connected (1-c) MOPs with only one available azide reactive site on their surface. The azide-terminated 1-c MOP is linked through copper(i)-catalysed azide-alkyne cycloaddition click chemistry with additional alkyne-terminated 1-c MOPs, 4-c clusters, or 24-c MOPs to yield three classes of giant oligomeric molecules: dimeric, tetrameric, or satellite-like, respectively. Importantly, all the giant molecules that we synthesised are soluble in water and permanently porous in the solid state.
Collapse
Affiliation(s)
- Alba Cortés-Martínez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
10
|
Rondelli M, Pasán J, Fernández I, Martín T. Predisposition in Dynamic Covalent Chemistry: The Role of Non-Covalent Interactions in the Assembly of Tetrahedral Boronate Cages. Chemistry 2024; 30:e202400896. [PMID: 38507133 DOI: 10.1002/chem.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Directional bonding strategies guide the design of complex molecular architectures, yet challenges arise due to emergent behavior. Rigid structures face geometric constraints and sensitivity to mismatches, hindering the efficient assembly of molecular organic cages (MOCs). Harnessing intramolecular non-covalent interactions offers a promising solution, broadening geometrical possibilities and enhancing adaptability to boost assembly yields. However, identifying these interactions remains challenging, with their full potential sometimes latent until final assembly. This study explores these challenges by synthesizing boronic acid tripods with varied oxygen positions at the tripodal feet and investigating their role in assembling tetrahedral boronate MOCs. Our results reveal substantial differences in the assembly efficiency among tripods. While the building blocks with oxygen in the benzylic position relative to the central aromatic ring form the MOCs in high yields, those with the oxygen atom directly bound to the central aromatic ring, only yield traces. Through X-ray crystallography and DFT analyses, we elucidate how intramolecular interactions profoundly influence the geometry of the building blocks and cages in a relay-like fashion, highlighting the importance of considering intramolecular interactions in the rational design of (supra)molecular architectures.
Collapse
Affiliation(s)
- Manuel Rondelli
- Molecular Science Department, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientícas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| | - Jorge Pasán
- Departamento de Química, Facultad de Ciencias, Laboratorio de Materiales para Análisis Químico (MAT4LL) Universidad de La Laguna, 38200, Tenerife, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Tomás Martín
- Molecular Science Department, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientícas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
11
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
12
|
Xing H, de Campos LJ, Pereira AJ, Fiora MM, Aguiar-Alves F, Tagliazucchi M, Conda-Sheridan M. Engineering a nanoantibiotic system displaying dual mechanism of action. Proc Natl Acad Sci U S A 2024; 121:e2321498121. [PMID: 38593077 PMCID: PMC11032466 DOI: 10.1073/pnas.2321498121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (Encapsulation) and PA nanostructures + free LJC (Combination). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the Combination broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the Encapsulation provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the Encapsulation strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.
Collapse
Affiliation(s)
- Huihua Xing
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE68198
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE68198
| | - Aramis Jose Pereira
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE68198
| | - Maria Mercedes Fiora
- Instituto Nacional de Tecnología Industrial, Micro y Nanotecnologías, San Martín, Buenos AiresB1650WAB, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos AiresC1428, Argentina
- Universidad de Buenos Aires-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia, Pabellon 2, Ciudad Universitaria, Ciudad Autonoma de Buenos AiresC1428
| | - Fabio Aguiar-Alves
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, FL33401
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos AiresC1428, Argentina
- Universidad de Buenos Aires-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia, Pabellon 2, Ciudad Universitaria, Ciudad Autonoma de Buenos AiresC1428
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE68198
| |
Collapse
|
13
|
Séjourné S, Labrunie A, Dalinot C, Canevet D, Guechaichia R, Bou Zeid J, Benchohra A, Cauchy T, Brosseau A, Allain M, Chamignon C, Viger-Gravel J, Pintacuda G, Carré V, Aubriet F, Vanthuyne N, Sallé M, Goeb S. Chiral Truxene-Based Self-Assembled Cages: Triple Interlocking and Supramolecular Chirogenesis. Angew Chem Int Ed Engl 2024; 63:e202400961. [PMID: 38284742 DOI: 10.1002/anie.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex. The maximum separation between both facing chiral units in the assembly is fixed by the intermetallic distance within the lateral bis-ruthenium complex (8.4 Å). The resulting chiral cavity was shown to encapsulate polyaromatic guest molecules, but also to afford a chiral triply interlocked [2]catenane structure. The formation of the latter occurs at high concentration, while its disassembly could be achieved by the addition of a planar achiral molecule. Interestingly the planar achiral molecule exhibits induced circular dichroism signature when trapped within the chiral cavity, thus demonstrating the ability of the cage to induce supramolecular chirogenesis.
Collapse
Affiliation(s)
- Simon Séjourné
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | | | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Cécile Chamignon
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Jasmine Viger-Gravel
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France
| | | | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, FSCM, Chiropole, F-13397, Marseille, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
14
|
Cheng Q, Hao A, Xing P. Selective chiral dimerization and folding driven by arene-perfluoroarene force. Chem Sci 2024; 15:618-628. [PMID: 38179513 PMCID: PMC10762935 DOI: 10.1039/d3sc05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Oligomerization and folding of chiral compounds afford diversified chiral molecular architectures with interesting chiroptical properties, but their rational and precise control remain poorly understood. In this work, we employed arene-perfluoroarene (AP) interaction to manipulate the folding and dimerization of alanine derivatives bearing pyrene and a perfluoronaphthalene derivative. Based on X-ray crystallography and nuclear magnetic resonance, the compound with a smaller tether and high skeleton rigidity self-assembled into double helical dimers by duplex hydrogen bonding and AP forces in a less polar solvent. Reversible disassociation occurred upon switching to a dipolar solvent or applying heating-cooling cycles. In comparison, the compound with increased skeleton flexibility folds into chiral molecular clamps in a less polar solvent, and is transformed into planar dimers upon switching to a polar solvent. The dynamic geometrical transformation between dimerization and folding was accompanied by chiroptical switching. Beyond the molecular and supramolecular level, we showed hierarchy control in the self-assembled nanoarchitectures and columnar and lamellar arrangements of their molecular packing. This work utilized AP forces to prepare and manipulate the chiral architectures at different hierarchical levels, enriching methodologies in precise chiral synthetic chemistry.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
15
|
Rondelli M, Delgado-Hernández S, Daranas AH, Martín T. Conformational control enables boroxine-to-boronate cage metamorphosis. Chem Sci 2023; 14:12953-12960. [PMID: 38023528 PMCID: PMC10664459 DOI: 10.1039/d3sc02920d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The discovery of molecular organic cages (MOCs) is inhibited by the limited organic-chemical space of the building blocks designed to fulfill strict geometric requirements for efficient assembly. Using intramolecular attractive or repulsive non-covalent interactions to control the conformation of flexible systems can effectively augment the variety of building blocks, ultimately facilitating the exploration of new MOCs. In this study, we introduce a set of boronic acid tripods that were designed using rational design principles. Conformational control was induced by extending the tripod's arms by a 2,3-dimethylbenzene unit, leading to the efficient formation of a tetrapodal nanometer-sized boroxine cage. The new building block's versatility was demonstrated by performing cage metamorphosis upon adding an aromatic tetraol. This led to a quantitative boroxine-to-boronate transformation and a topological shift from tetrahedral to trigonal bipyramidal.
Collapse
Affiliation(s)
- Manuel Rondelli
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Doctoral and Postgraduate School, University of La Laguna (ULL) 38200 La Laguna Tenerife Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL) 38206 La Laguna Tenerife Spain
| | - Antonio H Daranas
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica "Antonio González", ULL Avda. Astrofísico Francisco Sánchez, 2 38206 La Laguna Tenerife Spain
| | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica "Antonio González", ULL Avda. Astrofísico Francisco Sánchez, 2 38206 La Laguna Tenerife Spain
| |
Collapse
|
16
|
Ivanova S, Adamski P, Köster E, Schramm L, Fröhlich R, Beuerle F. Size Determination of Organic Cages by Diffusion NMR Spectroscopy. Chemistry 2023:e202303318. [PMID: 37966964 DOI: 10.1002/chem.202303318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Reliable structure elucidation of covalent organic cage compounds remains challenging as routine analysis might leave ambiguities. Diffusion-ordered NMR spectroscopy (DOSY) allows insight into the molecular size and mass of the species present in solution, but a systematic evaluation of the diffusion behavior for cage assemblies is rarely considered. Here we report the synthesis of four series of covalent organic cages based on tribenzotriquinacenes and diboronic acids with varying geometry and exohedral substituents. We provide a guideline for the consistent measurement of diffusion coefficients from 1 H-DOSY NMR spectroscopy, which was utilized to study the diffusion behavior for the whole set of cages and selected examples from the literature. For structurally similar cages, a linear correlation between the solvodynamic volume and the molecular mass allows precise size determination. For more complex systems, multiple parameters, such as window size or rigid exohedral functionalization. further modulate cage diffusion in solution.
Collapse
Affiliation(s)
- Svetlana Ivanova
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Paul Adamski
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Eva Köster
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Louis Schramm
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Rebecca Fröhlich
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
17
|
An S, Kim D, Han J, Lee H, Jung OS. Crystals of Ni 6L 12 Ellipsoidal Tubes as Single-Crystal-to-Single-Crystal Adsorption Matrix: Penetrative Study of Self-Assembled Crystals vs Guest-Exchanged Crystals. Inorg Chem 2023; 62:17057-17061. [PMID: 37823553 DOI: 10.1021/acs.inorgchem.3c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Informative similarities/differences between self-assembled and single-crystal-to-single-crystal (SCSC) guest-exchanged crystals based on both the molecular structure and adsorption nature are observed. The self-assembly of Ni(ClO4)2 with a dicyclopentyldi(pyridine-3-yl)silane bidentate ligand (L) in a mixture of toluene and acetonitrile gives rise to purple crystals consisting of double-stranded ellipsoidal tubes, [Ni6(ClO4)4(CH3CN)8L12]·8ClO4·4CH3CN·5C7H8. The coordinated acetonitriles as well as the solvates are removed at 170 °C to transform the purple crystals into blue crystals of [Ni(ClO4)2L2]n that return to the original crystals in the mixture of toluene and acetonitrile. Further, the toluene and acetonitrile solvates of the original crystals are replaced by o-, m-, and p-xylene isomers within 5 min in a SCSC manner. In the present study, SCSC xylene-exchanged crystals were compared with crystals obtained from direct self-assembly in a mixture of each xylene isomer and acetonitrile.
Collapse
Affiliation(s)
- Seonghyeon An
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jihun Han
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Haeri Lee
- Department of Chemistry, Hannam University, Daejun 34054, Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Schmidt R, Giubertoni G, Caporaletti F, Kolpakov P, Shahidzadeh N, Ariese F, Woutersen S. Raman Diffusion-Ordered Spectroscopy. J Phys Chem A 2023; 127:7638-7645. [PMID: 37656920 PMCID: PMC10510375 DOI: 10.1021/acs.jpca.3c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The Stokes-Einstein relation, which relates the diffusion coefficient of a molecule to its hydrodynamic radius, is commonly used to determine molecular sizes in chemical analysis methods. Here, we combine the size sensitivity of such diffusion-based methods with the structure sensitivity of Raman spectroscopy by performing Raman diffusion-ordered spectroscopy (Raman-DOSY). The core of the Raman-DOSY setup is a flow cell with a Y-shaped channel containing two inlets: one for the sample solution and one for the pure solvent. The two liquids are injected at the same flow rate, giving rise to two parallel laminar flows in the channel. After the flow stops, the solute molecules diffuse from the solution-filled half of the channel into the solvent-filled half at a rate determined by their hydrodynamic radius. The arrival of the solute molecules in the solvent-filled half of the channel is recorded in a spectrally resolved manner by Raman microspectroscopy. From the time series of Raman spectra, a two-dimensional Raman-DOSY spectrum is obtained, which has the Raman frequency on one axis and the diffusion coefficient (or equivalently, hydrodynamic radius) on the other. In this way, Raman-DOSY spectrally resolves overlapping Raman peaks arising from molecules of different sizes. We demonstrate Raman-DOSY on samples containing up to three compounds and derive the diffusion coefficients of small molecules, proteins, and supramolecules (micelles), illustrating the versatility of Raman-DOSY. Raman-DOSY is label-free and does not require deuterated solvents and can thus be applied to samples and matrices that might be difficult to investigate with other diffusion-based spectroscopy methods.
Collapse
Affiliation(s)
- Robert
W. Schmidt
- Vrije
Universiteit Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands
- University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Giulia Giubertoni
- University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Federico Caporaletti
- University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Université
Libre de Bruxelles, Av.
Franklin Roosevelt 50, 1050 Bruxelles, Belgium
| | - Paul Kolpakov
- University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | | | - Freek Ariese
- Vrije
Universiteit Amsterdam, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands
| | - Sander Woutersen
- University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
19
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
20
|
Gergely LP, Yüceel Ç, İşci Ü, Spadin FS, Schneider L, Spingler B, Frenz M, Dumoulin F, Vermathen M. Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques. Mol Pharm 2023; 20:4165-4183. [PMID: 37493236 PMCID: PMC10410667 DOI: 10.1021/acs.molpharmaceut.3c00306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV-vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host-guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines' properties as efficient photosensitizers.
Collapse
Affiliation(s)
- Lea P. Gergely
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| | - Çiğdem Yüceel
- Department
of Chemical Engineering, Gebze Technical
University, Gebze 41400 Kocaeli, Turkey
| | - Ümit İşci
- Department
of Chemistry, Gebze Technical University, Gebze 41400 Kocaeli, Turkey
- Marmara
University, Faculty of Technology, Department
of Metallurgical & Materials Engineering, Istanbul 34722, Turkey
| | | | - Lukas Schneider
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Bernhard Spingler
- Department
of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Martin Frenz
- Institute
of Applied Physics, University of Bern, Bern 3012, Switzerland
| | - Fabienne Dumoulin
- Faculty
of Engineering and Natural Sciences, Biomedical Engineering Department, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Turkey
| | - Martina Vermathen
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
21
|
Oka Y, Masai H, Terao J. Multistate Structural Switching of [3]Catenanes with Cyclic Porphyrin Dimers by Complexation with Amine Ligands. Angew Chem Int Ed Engl 2023; 62:e202217002. [PMID: 36625214 DOI: 10.1002/anie.202217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized. Owing to the rigidity, the relative positions among the cyclic components of the [3]catenane can be precisely controlled by complexation with various amine ligands. Moreover, ligand-controlled multistate switching affects the optical properties of the [3]catenanes: the emission intensity can be tuned by modulating the sizes and coordination numbers of integrated amine ligands. This work shows the utility of using organic ligands for the structural switching of catenanes, and will contribute to the further development of multistate switchable mechanically interlocked molecules.
Collapse
Affiliation(s)
- Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, 332-0012, Kawaguchi, Saitama, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| |
Collapse
|
22
|
Nitta N, Kihara SI, Haino T. Synthesis of Supramolecular A 8 B n Miktoarm Star Copolymers by Host-Guest Complexation. Angew Chem Int Ed Engl 2023; 62:e202219001. [PMID: 36718880 DOI: 10.1002/anie.202219001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
We report a new synthetic method to construct supramolecular A8 Bn (n=1, 2, 4) miktoarm star copolymers by host-guest complexation between a resorcinarene-based coordination capsule possessing eight polystyrene chains and 4,4-diacetoxybiphenyl guest molecules that retain one, two or four polymethyl acrylate chains. The formation of the supramolecular A8 Bn (n=1, 2, 4) miktoarm star copolymers was confirmed by dynamic light scattering (DLS), size-exclusion chromatography (SEC), and diffusion-ordered NMR spectroscopy (DOSY). Differential scanning calorimetry (DSC) measurements revealed that the miktoarm copolymers were phase-separated in the bulk. The micro-Brownian motion of the A8 B4 structure was markedly enhanced in the bulk due to a weak segregation interaction between the immiscible arms.
Collapse
Affiliation(s)
- Natsumi Nitta
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shin-Ichi Kihara
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
23
|
Han X, Guo C, Xu C, Shi L, Liu B, Zhang Z, Bai Q, Song B, Pan F, Lu S, Zhu X, Wang H, Hao XQ, Song MP, Li X. Water-Soluble Metallo-Supramolecular Nanoreactors for Mediating Visible-Light-Promoted Cross-Dehydrogenative Coupling Reactions. ACS NANO 2023; 17:3723-3736. [PMID: 36757357 DOI: 10.1021/acsnano.2c10856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water-soluble metallo-supramolecular cages with well-defined nanosized cavities have a wide range of functions and applications. Herein, we design and synthesize two series of metallo-supramolecular octahedral cages based on the self-assembly of two congeneric truxene-derived tripyridyl ligands modified with two polyethylene glycol (PEG) chains, i.e., monodispersed tetraethylene glycol (TEG) and polydispersed PEG-1000, with four divalent transition metals (i.e., Pd, Cu, Ni, and Zn). The resulting monodispersed cages C1-C4 are fully characterized by electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) spectroscopy, and single-crystal X-ray diffraction. The polydispersed cages C5-C8 display good water solubilities and can act as nanoreactors to mediate visible-light-promoted C(sp3)-C(sp2) cross-dehydrogenative coupling reactions in an aqueous phase. In particular, the most robust Pd(II)-linked water-soluble polydispersed nanoreactor C5 is characterized by ESI-MS and capable of mediating the reactions with the highest efficiencies. Detailed host-guest binding studies in conjunction with control studies suggest that these cages could encapsulate the substrates simultaneously inside its hydrophobic cavity while interacting with the photosensitizer (i.e., eosin Y).
Collapse
Affiliation(s)
- Xin Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Linlin Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Binghui Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Fangfang Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xinju Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xin-Qi Hao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Giubertoni G, Rombouts G, Caporaletti F, Deblais A, van Diest R, Reek JNH, Bonn D, Woutersen S. Infrared Diffusion-Ordered Spectroscopy Reveals Molecular Size and Structure. Angew Chem Int Ed Engl 2023; 62:e202213424. [PMID: 36259515 PMCID: PMC10107201 DOI: 10.1002/anie.202213424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient and tracking its equilibration in an IR-frequency resolved manner. Analogous to NMR-DOSY, a two-dimensional IR-DOSY spectrum has IR frequency along one axis and diffusion coefficient (or equivalently, size) along the other, so the chemical structure and the size of a compound are characterized simultaneously. In an IR-DOSY spectrum of a mixture, molecules with different sizes are nicely separated into distinct sets of IR peaks. Extending this idea to higher dimensions, we also perform 3D-IR-DOSY, in which we combine the conformation sensitivity of femtosecond multi-dimensional IR spectroscopy with size sensitivity.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Gijs Rombouts
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Federico Caporaletti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.,Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Antoine Deblais
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Rianne van Diest
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Mishra R, Dumez JN. Theoretical analysis of flow effects in spatially encoded diffusion NMR. J Chem Phys 2023; 158:014204. [PMID: 36610961 DOI: 10.1063/5.0130125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The measurement of translational diffusion coefficients by nuclear magnetic resonance (NMR) spectroscopy is essential in a broad range of fields, including organic, inorganic, polymer, and supramolecular chemistry. It is also a powerful method for mixture analysis. Spatially encoded diffusion NMR (SPEN DNMR)" is a time efficient technique to collect diffusion NMR data, which is particularly relevant for the analysis of samples that evolve in time. In many cases, motion other than diffusion is present in NMR samples. This is, for example, the case of flow NMR experiments, such as in online reaction monitoring and in the presence of sample convection. Such motion is deleterious for the accuracy of DNMR experiments in general and for SPEN DNMR in particular. Limited theoretical understanding of flow effects in SPEN DNMR experiments is an obstacle for their broader experimental implementation. Here, we present a detailed theoretical analysis of flow effects in SPEN DNMR and of their compensation, throughout the relevant pulse sequences. This analysis is validated by comparison with numerical simulation performed with the Fokker-Planck formalism. We then consider, through numerical simulation, the specific cases of constant, laminar, and convection flow and the accuracy of SPEN DNMR experiments in these contexts. This analysis will be useful for the design and implementation of fast diffusion NMR experiments and for their applications.
Collapse
Affiliation(s)
- Rituraj Mishra
- CNRS, CEISAM, Nantes Université, UMR 6230, F-4400 Nantes, France
| | | |
Collapse
|
26
|
Mirabella CFM, Aragay G, Ballester P. Influence of the solvent in the self-assembly and binding properties of [1 + 1] tetra-imine bis-calix[4]pyrrole cages. Chem Sci 2022; 14:186-195. [PMID: 36605742 PMCID: PMC9769375 DOI: 10.1039/d2sc05311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
We report the self-assembly of shape-persistent [1 + 1] tetra-imine cages 1 based on two different tetra-α aryl-extended calix[4]pyrrole scaffolds in chlorinated solvents and in a 9 : 1 CDCl3 : CD3CN solvent mixture. We show that the use of a bis-N-oxide 4 (4,4'-dipyridyl-N,N'-dioxide) as template is not mandatory to induce the emergence of the cages but has a positive effect on the reaction yield. We use 1H NMR spectroscopy to investigate and characterize the binding properties (kinetic and thermodynamic) of the self-assembled tetra-imine cages 1 with pyridine N-oxide derivatives. The cages form kinetically and thermodynamically stable inclusion complexes with the N-oxides. For the bis-N-oxide 4, we observe the exclusive formation of 1 : 1 complexes independently of the solvent used. In contrast, the pyridine-N-oxide 5 (mono-topic guest) produces inclusion complexes displaying solvent dependent stoichiometry. The bis-N-oxide 4 is too short to bridge the gap between the two endohedral polar binding sites of 1 by establishing eight ideal hydrogen bonding interactions. Nevertheless, the bimolecular 4⊂1 complex results as energetically favored compared to the 52⊂1 ternary counterpart. The inclusion of the N-oxides, 4 and 5, in the tetra-imine cages 1 is significantly faster in chlorinated solvents (minutes) than in the 9 : 1 CDCl3 : CD3CN solvent mixture (hours). We provide an explanation for the similar energy barriers calculated for the formation of the 4⊂1 complex using the two different ternary counterparts 52⊂1 and (CD3CN)2⊂1 as precursors. We propose a mechanism for the in-out guest exchange processes experienced by the tetra-imine cages 1.
Collapse
Affiliation(s)
- Chiara F. M. Mirabella
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànicac/Marcel·lí Domingo,143007 TarragonaSpain
| | - Gemma Aragay
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST)Avgda. Països Catalans, 1643007 TarragonaSpain,ICREAPasseig Lluís Companys, 2308010 BarcelonaSpain
| |
Collapse
|
27
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
28
|
Shivanyuk A, Lagerna O, Dolgonos GA, Rozhkov V, Shishkina S, Lukin O, Poyarkov A, Fetyukhin V. Two‐ and Three‐Phase Self‐assembly of Molecular Capsules. ChemistrySelect 2022. [DOI: 10.1002/slct.202200666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Shivanyuk
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Oleksandra Lagerna
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Grygoriy A. Dolgonos
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Vladimir Rozhkov
- Institute of Organic Chemistry National Academy of Science of Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Svetlana Shishkina
- SSI Institute for Single Crystals National Academy of Science of Ukraine 60 Nauky ave. Kharkiv 61001 Ukraine
| | - Oleg Lukin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Alexey Poyarkov
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Volodymyr Fetyukhin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| |
Collapse
|
29
|
Taimoory SM, Yu X, Beyeh NK, Nasri S, Trant JF. Divalent Benzimidazolium-Based Axles for Self-Reporting Pseudorotaxanes. J Org Chem 2022; 87:15783-15795. [PMID: 36377941 DOI: 10.1021/acs.joc.2c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mono- and (bis)benzimidazoliums were evaluated both experimentally and computationally for their potential as pseudopolyrotaxane axle building blocks. Their aggregation and photophysical behavior, along with their potential to form a [2]pseudorotaxane with dibenzyl-24-crown-8, was studied through the synergistic application of 1D/2D and diffusion-ordered NMR spectroscopy, mass spectrometry, ultraviolet-visible and fluorescence spectroscopy, and time-dependent density functional theory. Their photophysical behavior was measured and modeled as a function of protonation state, solvent, and concentration. The axles show strong solvochromaticism and a very pronounced concentration-dependent optical profile, including self-quenching when a pseudorotaxane is formed. This axle with multiple recognition sites has the potential to form pseudorotaxanes with tunable optical behavior.
Collapse
Affiliation(s)
- S Maryamdokht Taimoory
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.,Department of Chemistry, University of Michigan, 930 N. University Ave., 2006B, Ann Arbor, Michigan 48109, United States
| | - Xiao Yu
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - Ngong Kodiah Beyeh
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, United States
| | - Sarah Nasri
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| |
Collapse
|
30
|
Yin J, Birman VB. Phenazine-Based Molecular Actuators: The Second Generation. Org Lett 2022; 24:8759-8763. [DOI: 10.1021/acs.orglett.2c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jingwei Yin
- Washington University Department of Chemistry,
Campus Box 1134, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Vladimir B. Birman
- Washington University Department of Chemistry,
Campus Box 1134, One Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
31
|
Horin I, Slovak S, Cohen Y. Diffusion NMR Reveals the Structures of the Molecular Aggregates of Resorcin[4]arenes and Pyrogallol[4]arenes in Aromatic and Chlorinated Solvents. J Phys Chem Lett 2022; 13:10666-10670. [PMID: 36354303 DOI: 10.1021/acs.jpclett.2c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hexameric assemblies of resorcinarenes and pyrogallolarenes are fascinating structures that can serve as nanoreactors in which new chemistry and catalysis occur. Recently, it was suggested based on SANS or SAXS that C11-resorcin[4]arene (1) forms octameric aggregates of a micellar rather than capsular structure in toluene. Here, using NMR spectroscopy, diffusion NMR, and DOSY performed on solutions of C11-resorcin[4]arene (1), C11-pyrogallol[4]arene (2), and mixtures thereof in protonated and deuterated solvents, we found that, in benzene and toluene, 1 primarily formed hexameric capsules accompanied by a minor product with diffusion characteristics consistent with an octameric assembly. In chloroform, 1 formed hexameric capsules. In toluene, 2D NMR revealed two populations of encapsulated toluene molecules in the same capsule of 1. The addition of tetrahexylammonium bromide to the assemblies of 1 in aromatic solvents drove the equilibrium toward the formation of the hexameric capsules. Interestingly, 2 formed only hexameric capsules in all solvents tested.
Collapse
|
32
|
Zhu J, Chen X, Jin X, Wang Q. Light-driven interconversion of Pd2L4 cage and mononuclear PdL2 mediated by the isomerization of azobenzene ligand. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Kaup R, Velders AH. Controlling Trapping, Release, and Exchange Dynamics of Micellar Core Components. ACS NANO 2022; 16:14611-14621. [PMID: 36107137 PMCID: PMC9527800 DOI: 10.1021/acsnano.2c05144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Whereas the formation and overall stability of hierarchically organized self-assembled supramolecular structures have been extensively investigated, the mechanistic aspects of subcomponent dynamics are often poorly understood or controlled. Here we show that the dynamics of polyamidoamine (PAMAM) dendrimer based micelles can be manipulated by changes in dendrimer generation, pH, and stoichiometry, as proven by NMR and FRET. For this, dendrimers were functionalized with either fluorescein (donor) or rhodamine (acceptor) and encapsulated into separate micelles. Upon mixing, exchange of dendrimers is revealed by an increase in FRET. While dendrimicelles based on dendrimer generations 4 and 5 show a clear increase in FRET in time, revealing the dynamic exchange of dendrimers between micellar cores, generation 6 based micelles appear to be kinetically trapped systems. Interestingly, generation 6 based dendrimicelles prepared at a pH of 7.8 rather than 7.0 do show exchange dynamics, which can be attributed to about 25% less charge of the dendrimer, corresponding to the charge of a virtual generation 5.5 dendrimer at neutral pH. Changing the pH of dendrimicelle solutions prepared at a pH of 7.8 to 7.0 shows the activated release of dendrimers. High-resolution NMR spectra of the micellar core are obtained from a 1.2 GHz spectrometer with sub-micromolar sensitivity, with DOSY discriminating released dendrimers from dendrimers still present in the micellar core. This study shows that dendrimer generation, charge density, and stoichiometry are important mechanistic factors for controlling the dynamics of complex coacervate core micelles. This knowledge can be used to tune micelles between kinetically trapped and dynamic systems, with tuning of exchange and/or release speeds, to be tailored for applications in, e.g., material science, sensors, or drug delivery.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Instituto
Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
34
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022; 61:e202209751. [DOI: 10.1002/anie.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xindi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| | - Huayan Yang
- School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060, Guangdong China
| | - Yuxiang Chen
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Ye Yang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Lionel Porcar
- Institut Laue-Langevin BP 156 38042 Grenoble CEDEX 9 France
| | - Aurel Radulescu
- Jülich Center for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum Forschungszentrum Jülich GmbH 85747 Garching Germany
| | - Stefan Guldin
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Francesco Stellacci
- Institute of Materials École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| |
Collapse
|
35
|
Tirukoti ND, Avram L, Mashiach R, Allouche-Arnon H, Bar-Shir A. Self-assembly of an MRI responsive agent under physiological conditions provides an extended time window for in vivo imaging. Chem Commun (Camb) 2022; 58:11410-11413. [PMID: 36129103 DOI: 10.1039/d2cc03126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An MRI-responsive agent that spontaneously self-assembles to a large supramolecular structure under physiological conditions was designed. The obtained assembly provides an extended time window for in vivo studies, as demonstrated for a fluorine-19 probe constructed to sense Zn2+ with 19F-iCEST MRI, in the future.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reut Mashiach
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
36
|
Marchand A, Mishra R, Bernard A, Dumez J. Online Reaction Monitoring with Fast and Flow‐Compatible Diffusion NMR Spectroscopy. Chemistry 2022; 28:e202201175. [DOI: 10.1002/chem.202201175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Rituraj Mishra
- Nantes Université CNRS CEISAM UMR 6230 44000 Nantes France
| | | | | |
Collapse
|
37
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xindi Liu
- Southern University of Science and Technology department of biomedical engineering CHINA
| | - Huayang Yang
- Shenzhen University department of medicine CHINA
| | - Yuxiang Chen
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Ye Yang
- University College London department of chemical engineering UNITED KINGDOM
| | - Lionel Porcar
- Institut Laue-Langevin large scale structure group FRANCE
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science: Forschungszentrum Julich GmbH Julich Centre for Neutron Science Jülich Centre for Neutron Science (JCNS) CHINA
| | - Stefan Guldin
- University College London department of chemical engineering UNITED KINGDOM
| | - Rongchao Jin
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Francesco Stellacci
- EPFL: Ecole Polytechnique Federale de Lausanne Supramolecular NanoMaterials and Interfaces Laboratory SWITZERLAND
| | - Zhi Luo
- SUSTech: Southern University of Science and Technology Biomedical Engineering Xueyuan Avenue 1088HCI J392 Shenzhen CHINA
| |
Collapse
|
38
|
Cai J, Zhao L, Li Y, He C, Wang C, Duan C. Binding of Dual-Function Hybridized Metal -Organic Capsules to Enzymes for Cascade Catalysis. JACS AU 2022; 2:1736-1746. [PMID: 35911460 PMCID: PMC9327082 DOI: 10.1021/jacsau.2c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination of chemo- and biocatalysis for multistep syntheses provides attractive advantages in terms of evolvability, promiscuity, and sustainability striving for desirable catalytic performance. Through the encapsulation of flavin analogues by both NADH and heme mimics codecorated heteroleptic metal-organic capsules, herein, we report a progressive host-guest strategy to imitate cytochrome P450s catalysis for cascade oxidative coupling catalysis. Besides the construction of stable dual-function metal-organic capsules and the modification of cofactor-decorated capsules at the domain of enzymes, this supramolecular strategy involves multistage directional electron flow, affording reactive ferric peroxide species for inducing oxygenation. Under light irradiation, the metal-organic capsule selectively converts stilbene to oxidative coupling products (including 2-oxo-1,2-diphenylethyl formate, 2-alkoxy-1,2-diphenylethanone) in tandem with enzymatic reactions respectively, at the domain of natural enzymes. The ingenious combination of capsules and enzymes with the in situ-regenerated capsule-loaded NADH cofactor promises non-native coupling reactions by forming regional cooperation and division. This abiotic-biotic conjugated host-guest strategy is conducive to the de novo creation of multifunctional components approaching active enzymatic sites for reinforced matter and energy transporting, demonstrating a key role of multicomponent supramolecular catalysts for one-pot integrated catalytic conversions.
Collapse
Affiliation(s)
- Junkai Cai
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People’s Republic
of China
| | - Liang Zhao
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yanan Li
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Cheng He
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Chong Wang
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Chunying Duan
- State
Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, People’s Republic
of China
| |
Collapse
|
39
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203384. [PMID: 35324038 PMCID: PMC9323437 DOI: 10.1002/anie.202203384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Molecular capsules enable the conversion of substrates inside a closed cavity, mimicking to some extent enzymatic catalysis. Chirality transfer from the molecular capsule onto the encapsulated substrate has been only studied in a few cases. Here we demonstrate that chirality transfer is possible inside a rather large molecular container of approximately 1400 Å3 . Specifically, we present 1) the first examples of optically active hexameric resorcin[4]arene capsules, 2) their ability to enantioselectively catalyze tail-to-head terpene cyclizations, and 3) the surprisingly high sensitivity of enantioselectivity on the structural modifications.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - GiovanniMaria Piccini
- Facoltà di Informatica, Istituto EuleroUniversità della Svizzera Italiana (USI)LuganoSwitzerland
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland
| |
Collapse
|
40
|
Raee E, Liu B, Yang Y, Namani T, Cui Y, Sahai N, Li X, Liu T. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal-Organic Cages. NANO LETTERS 2022; 22:4421-4428. [PMID: 35609117 DOI: 10.1021/acs.nanolett.2c00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The self-assembly of chiral Pd12L24 metal-organic cages (MOCs) based on hydrophobic amino acids, including alanine (Ala), valine (Val), and leucine (Leu), into single-layered hollow spherical blackberry-type structures is triggered by nitrates through counterion-mediated attraction. In addition to nitrates, anionic N-(tert-butoxycarbonyl) (Boc)-protected Ala, Val, and Leu were used as chiral counterions during the self-assembly of d-MOCs. Previously, we showed that l-Ala suppresses the self-assembly process of d-Pd12Ala24 but has no effect on l-Pd12Ala24, i.e., chiral discrimination. Here, we indicate when the amino acid used as the chiral counterion has a bulkier side group than the amino acid in the MOC structure, no chiral discrimination exists; otherwise, chiral discrimination exists. For example, Ala can induce chiral discrimination in all chiral MOCs, whereas Leu can induce chiral discrimination only in Pd12Leu24. Moreover, chiral anionic d- and l-alanine-based surfactants have no chiral discrimination, indicating that bulkier chiral counterions with more hydropohobic side groups can erase chiral discrimination.
Collapse
Affiliation(s)
- Ehsan Raee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Trishool Namani
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
41
|
Hirao T, Haino T. Supramolecular Ensembles Formed via Calix[5]arene-Fullerene Host-Guest Interactions. Chem Asian J 2022; 17:e202200344. [PMID: 35647739 DOI: 10.1002/asia.202200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
This minireview introduces the research directions for the synthesis of supramolecular fullerene polymers. First, the discovery of host-guest complexes of pristine fullerenes is briefed. We focus on progress in supramolecular fullerene polymers directed by the use of calix[5]arene-fullerene interactions, which comprise linear, networked, helical arrays of fullerenes in supramolecular ensembles. The unique self-sorting behavior of right-handed and left-handed helical supramolecular fullerene arrays is discussed. Thereafter, an extensive investigation of the calix[5]arene-fullerene interaction for control over the chain structures of covalent polymers is introduced.
Collapse
Affiliation(s)
- Takehiro Hirao
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Department of Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| |
Collapse
|
42
|
Sun Q, Escobar L, Ballester P. A Dinuclear Metallobridged Super Aryl‐Extended Calix[4]pyrrole Cavitand. Angew Chem Int Ed Engl 2022; 61:e202202140. [DOI: 10.1002/anie.202202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu China
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Present address: Department of Chemistry Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5–13 81377 München Germany
| | - Pablo Ballester
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
43
|
Rothschild DA, Kopcha WP, Tran A, Zhang J, Lipke MC. Gram-scale synthesis of a covalent nanocage that preserves the redox properties of encapsulated fullerenes. Chem Sci 2022; 13:5325-5332. [PMID: 35655559 PMCID: PMC9093146 DOI: 10.1039/d2sc00445c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Discrete nanocages provide a way to solubilize, separate, and tune the properties of fullerenes, but these 3D receptors cannot usually be synthesized easily from inexpensive starting materials, limiting their utility. Herein, we describe the first fullerene-binding nanocage (Cage4+) that can be made efficiently on a gram scale. Cage4+ was prepared in up to 57% yield by the formation of pyridinium linkages between complemantary porphyrin components that are themselves readily accessible. Cage4+ binds C60 and C70 with large association constants (>108 M−1), thereby solubilizing these fullerenes in polar solvents. Fullerene association and redox-properties were subsequently investigated across multiple charge states of the host-guest complexes. Remarkably, neutral and singly reduced fullerenes bind with similar strengths, leaving their 0/1− redox couples minimally perturbed and fully reversible, whereas other hosts substantially alter the redox properties of fullerenes. Thus, C60@Cage4+ and C70@Cage4+ may be useful as solubilized fullerene derivatives that preserve the inherent electron-accepting and electron-transfer capabilities of the fullerenes. Fulleride dianions were also found to bind strongly in Cage4+, while further reduction is centered on the host, leading to lowered association of the fulleride guest in the case of C602−. This report describes the first gram-scale synthesis of a nanocage that can host fullerenes (C60 and C70). The redox properties of the fullerenes are preserved in this host, enabling characterization of complexes with fulleride anions and dianions.![]()
Collapse
Affiliation(s)
- Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Aaron Tran
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
44
|
Alkorta I, Benito MT, Elguero J, Doyagüez EG, Patterson MR, Jimeno ML, Dias HVR, Reviriego F. The use of DOSY experiments to determine the solution structures of coinage metal pyrazolates: The case of {[3,5-(CF 3 ) 2 Pz]Ag} 3. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:442-451. [PMID: 34935188 DOI: 10.1002/mrc.5242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
A series of DOSY experiments have been carried out to determine the solution stoichiometry of silver(I) 3,5-bis (trifluoromethyl)pyrazolate species. This compound exists as a trimer in the solid state (n = 3) but in solutions of chlorinated solvents, the DOSY data suggest the presence of a mixture of solvent stabilized monomer (n = 1) and dimer (n = 2) in equilibrium. Different approximations have been used including the Stokes-Einstein and the Stokes-Einstein-Gierer-Wirtz equations. Some methodological problems are discussed.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - María Teresa Benito
- Servicio de Resonancia Magnética Nuclear, Centro de Química Orgánica 'Lora-Tamayo', CSIC, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - Elisa García Doyagüez
- Servicio de Resonancia Magnética Nuclear, Centro de Química Orgánica 'Lora-Tamayo', CSIC, Madrid, Spain
| | - Monika R Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - María Luisa Jimeno
- Servicio de Resonancia Magnética Nuclear, Centro de Química Orgánica 'Lora-Tamayo', CSIC, Madrid, Spain
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Felipe Reviriego
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain
| |
Collapse
|
45
|
McConnell AJ. Metallosupramolecular cages: from design principles and characterisation techniques to applications. Chem Soc Rev 2022; 51:2957-2971. [PMID: 35356956 DOI: 10.1039/d1cs01143j] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although metallosupramolecular cages are self-assembled from seemingly simple building blocks, metal ions and organic ligands, architectures of increasingly large size and complexity are accessible and exploited in applications from catalysis to the stabilisation of reactive species. This Tutorial Review gives an introduction to the principles for designing metallosupramolecular cages and highlights advances in the design of large and lower symmetry cages. The characterisation and identification of cages relies on a number of complementary techniques with NMR spectroscopy, mass spectrometry, X-ray crystallography and computational methods being the focus of this review. Finally, examples of cages are discussed where these design principles and characterisation techniques are put into practice for an application or function of the cage.
Collapse
Affiliation(s)
- Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany.
| |
Collapse
|
46
|
Sun Q, Escobar L, Ballester P. A Dinuclear Metallobridged Super Aryl‐Extended Calix[4]pyrrole Cavitand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu China
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Present address: Department of Chemistry Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5–13 81377 München Germany
| | - Pablo Ballester
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
47
|
Sokolova D, Piccini G, Tiefenbacher K. Enantioselective Tail‐to‐Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daria Sokolova
- University of Basel: Universitat Basel Chemistry SWITZERLAND
| | - GiovanniMaria Piccini
- Università della Svizzera Italiana: Universita della Svizzera Italiana Informatica SWITZERLAND
| | | |
Collapse
|
48
|
Chwastek M, Cmoch P, Szumna A. Anion-Based Self-assembly of Resorcin[4]arenes and Pyrogallol[4]arenes. J Am Chem Soc 2022; 144:5350-5358. [PMID: 35274940 PMCID: PMC8972256 DOI: 10.1021/jacs.1c11793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Spatial sequestration
of molecules is a prerequisite for the complexity
of biological systems, enabling the occurrence of numerous, often
non-compatible chemical reactions and processes in one cell at the
same time. Inspired by this compartmentalization concept, chemists
design and synthesize artificial nanocontainers (capsules and cages)
and use them to mimic the biological complexity and for new applications
in recognition, separation, and catalysis. Here, we report the formation
of large closed-shell species by interactions of well-known polyphenolic
macrocycles with anions. It has been known since many years that C-alkyl
resorcin[4]arenes (R4C) and C-alkyl pyrogallol[4]arenes
(P4C) narcissistically self-assemble in nonpolar solvents
to form hydrogen-bonded capsules. Here, we show a new interaction
model that additionally involves anions as interacting partners and
leads to even larger capsular species. Diffusion-ordered spectroscopy
and titration experiments indicate that the anion-sealed species have
a diameter of >26 Å and suggest stoichiometry (M)6(X–)24 and tight ion pairing
with cations. This self-assembly is effective in a nonpolar environment
(THF and benzene but not in chloroform), however, requires initiation
by mechanochemistry (dry milling) in the case of non-compatible solubility.
Notably, it is common among various polyphenolic macrocycles (M) having diverse geometries and various conformational lability.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
49
|
Karle A, Twum K, Sabbagh N, Haddad A, Taimoory SM, Szczęśniak MM, Trivedi E, Trant JF, Beyeh NK. Naphthalene-functionalized resorcinarene as selective, fluorescent self-quenching sensor for kynurenic acid. Analyst 2022; 147:2264-2271. [DOI: 10.1039/d1an02224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene-functionalized resorcinarene selectively binds kynurenic acid in the presence of excess tryptophan in aqueous media, highlighting the potential of functionalized resorcinarenes as sensory recognition elements for biomolecular analytes.
Collapse
Affiliation(s)
- Anna Karle
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Kwaku Twum
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Noorhan Sabbagh
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - Alise Haddad
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - S. Maryamdokht Taimoory
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
- Department of Chemistry, University of Michigan, 930 N. University Ave, 2811 Ann Arbor, MI 48019, USA
| | | | - Evan Trivedi
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Ngong Kodiah Beyeh
- Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA
| |
Collapse
|
50
|
La Manna P, Talotta C, Gaeta C, Cohen Y, Slovak S, Rescifina A, Sala PD, De Rosa M, Soriente A, Neri P. Supramolecular catalysis in confined space: making the pyrogallol[4]arene capsule catalytically active in non-competitive solvent. Org Chem Front 2022. [DOI: 10.1039/d2qo00172a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The confined space inside the hexameric pyrogallol[4]arene capsule (CP6) has been exploited for the catalysis of the 1,3-dipolar cycloaddition (1,3-DC) between the proline-based iminium derivative I and nitrone 3, in the presence of the non-competitive benzene solvent.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Salerno), Italy
| |
Collapse
|