1
|
Li T, Wan Z, Wang Q, Qiao F, Pan G, Zhao C, Zhu Y, Zhou H, Tan Y, Zhou Z, Zhang D. Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406144. [PMID: 39822158 DOI: 10.1002/smll.202406144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/25/2024] [Indexed: 01/19/2025]
Abstract
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter. This design allows the sensor to detect minimal forces as low as l µN. This sensor is successfully applied to monitor human-induced pluripotent stem cell-derived human-engineered heart tissue (hEHT) models that can self-assemble and contact optical fiber-based strings. The sensor detects micro newton contraction forces in real-time by measuring the wavelength drift resulting from hEHT contractions. In addition, the sensor is precise and durable, exhibiting a fatigue resistance of up to 800 000 cycles, making it suitable for long-term monitoring. The device effectively measured the contractile force of the hEHTs under various physiological conditions, including natural contraction, electrical stimulation, and stretching. Moreover, multichannel detection enables the study and demonstration of short- and long-term effectiveness of multiple drugs. This breakthrough sensor addresses the critical need for high-precision real-time monitoring in drug evaluation and provides a solid foundation for screening drugs to treat cardiomyopathy.
Collapse
Affiliation(s)
- Tianliang Li
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhongjun Wan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
| | - Qian'ao Wang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Feng Qiao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ganlin Pan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
| | - Chen Zhao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yongwen Zhu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Haotian Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yuegang Tan
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zude Zhou
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China
- Cardiovascular Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
2
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. ARXIV 2024:arXiv:2405.11096v2. [PMID: 39184538 PMCID: PMC11343223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001231. [PMID: 39114859 PMCID: PMC11304080 DOI: 10.17912/micropub.biology.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King's College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Kobeissi H, Jilberto J, Karakan MÇ, Gao X, DePalma SJ, Das SL, Quach L, Urquia J, Baker BM, Chen CS, Nordsletten D, Lejeune E. MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles. PLoS One 2024; 19:e0298863. [PMID: 38530829 PMCID: PMC10965069 DOI: 10.1371/journal.pone.0298863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 03/28/2024] Open
Abstract
Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - M. Çağatay Karakan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Photonics Center, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lani Quach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Urquia
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, United States of America
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, King’s Health Partners, London, United Kingdom
| | - Emma Lejeune
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States of America
| |
Collapse
|
5
|
Morales IA, Boghdady CM, Campbell BE, Moraes C. Integrating mechanical sensor readouts into organ-on-a-chip platforms. Front Bioeng Biotechnol 2022; 10:1060895. [PMID: 36588933 PMCID: PMC9800895 DOI: 10.3389/fbioe.2022.1060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Organs-on-a-chip have emerged as next-generation tissue engineered models to accurately capture realistic human tissue behaviour, thereby addressing many of the challenges associated with using animal models in research. Mechanical features of the culture environment have emerged as being critically important in designing organs-on-a-chip, as they play important roles in both stimulating realistic tissue formation and function, as well as capturing integrative elements of homeostasis, tissue function, and tissue degeneration in response to external insult and injury. Despite the demonstrated impact of incorporating mechanical cues in these models, strategies to measure these mechanical tissue features in microfluidically-compatible formats directly on-chip are relatively limited. In this review, we first describe general microfluidically-compatible Organs-on-a-chip sensing strategies, and categorize these advances based on the specific advantages of incorporating them on-chip. We then consider foundational and recent advances in mechanical analysis techniques spanning cellular to tissue length scales; and discuss their integration into Organs-on-a-chips for more effective drug screening, disease modeling, and characterization of biological dynamics.
Collapse
Affiliation(s)
| | | | | | - Christopher Moraes
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada,Department of Chemical Engineering, McGill University, Montreal, QC, Canada,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada,*Correspondence: Christopher Moraes,
| |
Collapse
|
6
|
Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C. Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol 2022; 101:151253. [PMID: 35785635 DOI: 10.1016/j.ejcb.2022.151253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell-ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell-ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
7
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
8
|
Swiatlowska P, Iskratsch T. Tools for studying and modulating (cardiac muscle) cell mechanics and mechanosensing across the scales. Biophys Rev 2021; 13:611-623. [PMID: 34765044 PMCID: PMC8553672 DOI: 10.1007/s12551-021-00837-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocytes generate force for the contraction of the heart to pump blood into the lungs and body. At the same time, they are exquisitely tuned to the mechanical environment and react to e.g. changes in cell and extracellular matrix stiffness or altered stretching due to reduced ejection fraction in heart disease, by adapting their cytoskeleton, force generation and cell mechanics. Both mechanical sensing and cell mechanical adaptations are multiscale processes. Receptor interactions with the extracellular matrix at the nanoscale will lead to clustering of receptors and modification of the cytoskeleton. This in turn alters mechanosensing, force generation, cell and nuclear stiffness and viscoelasticity at the microscale. Further, this affects cell shape, orientation, maturation and tissue integration at the microscale to macroscale. A variety of tools have been developed and adapted to measure cardiomyocyte receptor-ligand interactions and forces or mechanics at the different ranges, resulting in a wealth of new information about cardiomyocyte mechanobiology. Here, we take stock at the different tools for exploring cardiomyocyte mechanosensing and cell mechanics at the different scales from the nanoscale to microscale and macroscale.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Richardson WJ, Rogers JD, Spinale FG. Does the Heart Want What It Wants? A Case for Self-Adapting, Mechano-Sensitive Therapies After Infarction. Front Cardiovasc Med 2021; 8:705100. [PMID: 34568449 PMCID: PMC8460777 DOI: 10.3389/fcvm.2021.705100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
There is a critical need for interventions to control the development and remodeling of scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy is presented by the complex spatial needs of the infarcted ventricle, namely that collagenous buildup is beneficial in the ischemic zone but detrimental in the border and remote zones. As a new, alternative approach, we present a case to develop self-adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental mechanics to modulate a therapy's pharmacologic effect. Such approaches could provide self-tuning control to either promote fibrosis or reduce fibrosis only when and where it is beneficial to do so.
Collapse
Affiliation(s)
| | - Jesse D Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, SC, United States
| |
Collapse
|
10
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Walker M, Godin M, Harden JL, Pelling AE. Time dependent stress relaxation and recovery in mechanically strained 3D microtissues. APL Bioeng 2020; 4:036107. [PMID: 32984751 PMCID: PMC7500532 DOI: 10.1063/5.0002898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Characterizing the time-dependent mechanical properties of cells is not only necessary to determine how they deform but also to understand how external forces trigger biochemical-signaling cascades to govern their behavior. At present, mechanical properties are largely assessed by applying local shear or compressive forces on single cells grown in isolation on non-physiological 2D surfaces. In comparison, we developed the microfabricated vacuum actuated stretcher to measure tensile loading of 3D multicellular "microtissue" cultures. Using this approach, we here assessed the time-dependent stress relaxation and recovery responses of microtissues and quantified the spatial viscoelastic deformation following step length changes. Unlike previous results, stress relaxation and recovery in microtissues measured over a range of step amplitudes and pharmacological treatments followed an augmented stretched exponential behavior describing a broad distribution of inter-related timescales. Furthermore, despite the variety of experimental conditions, all responses led to a single linear relationship between the residual elastic stress and the degree of stress relaxation, suggesting that these mechanical properties are coupled through interactions between structural elements and the association of cells with their matrix. Finally, although stress relaxation could be quantitatively and spatially linked to recovery, they differed greatly in their dynamics; while stress recovery acted as a linear process, relaxation time constants changed with an inverse power law with the step size. This assessment of microtissues offers insights into how the collective behavior of cells in a 3D collagen matrix generates the dynamic mechanical properties of tissues, which is necessary to understand how cells deform and sense mechanical forces in vivo.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, Ontario K1N5N5, Canada
| | | | | | - Andrew E. Pelling
- Author to whom correspondence should be addressed:. Tel.: +1 613 562 5800 ext. 6965. Fax: +1 613 562 5190. URL:http://www.pellinglab.net
| |
Collapse
|
12
|
Walker M, Rizzuto P, Godin M, Pelling AE. Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Sci Rep 2020; 10:7696. [PMID: 32376876 PMCID: PMC7203149 DOI: 10.1038/s41598-020-64725-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/21/2020] [Indexed: 01/04/2023] Open
Abstract
When stretched, cells cultured on 2D substrates share a universal softening and fluidization response that arises from poorly understood remodeling of well-conserved cytoskeletal elements. It is known, however, that the structure and distribution of the cytoskeleton is profoundly influenced by the dimensionality of a cell's environment. Therefore, in this study we aimed to determine whether cells cultured in a 3D matrix share this softening behavior and to link it to cytoskeletal remodeling. To achieve this, we developed a high-throughput approach to measure the dynamic mechanical properties of cells and allow for sub-cellular imaging within physiologically relevant 3D microtissues. We found that fibroblast, smooth muscle and skeletal muscle microtissues strain softened but did not fluidize, and upon loading cessation, they regained their initial mechanical properties. Furthermore, microtissue prestress decreased with the strain amplitude to maintain a constant mean tension. This adaptation under an auxotonic condition resulted in lengthening. A filamentous actin cytoskeleton was required, and responses were mirrored by changes to actin remodeling rates and visual evidence of stretch-induced actin depolymerization. Our new approach for assessing cell mechanics has linked behaviors seen in 2D cultures to a 3D matrix, and connected remodeling of the cytoskeleton to homeostatic mechanical regulation of tissues.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada
| | - Pauline Rizzuto
- Université Côte d'Azur, 28 Avenue de Valrose, Nice, 06108, France
| | - Michel Godin
- Department of Physics, STEM Complex, 150 Louis Pasteur Pvt., University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mechanical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N6N5, Canada
- Ottawa-Carleton Institute for Biomedical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| | - Andrew E Pelling
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada.
- Department of Physics, STEM Complex, 150 Louis Pasteur Pvt., University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.
- SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
13
|
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2019; 138:1-11. [PMID: 31655038 DOI: 10.1016/j.yjmcc.2019.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in the understanding and use of pluripotent stem cells have produced major changes in approaches to the diagnosis and treatment of human disease. An obstacle to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for regenerative medicine, disease modeling and drug discovery is their immature state relative to adult myocardium. We show the effects of a combination of biochemical factors, thyroid hormone, dexamethasone, and insulin-like growth factor-1 (TDI) on the maturation of hiPSC-CMs in 3D cardiac microtissues (CMTs) that recapitulate aspects of the native myocardium. Based on a comparison of the gene expression profiles and the structural, ultrastructural, and electrophysiological properties of hiPSC-CMs in monolayers and CMTs, and measurements of the mechanical and pharmacological properties of CMTs, we find that TDI treatment in a 3D tissue context yields a higher fidelity adult cardiac phenotype, including sarcoplasmic reticulum function and contractile properties consistent with promotion of the maturation of hiPSC derived cardiomyocytes.
Collapse
|
14
|
Chen Z, Zhao R. Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomater Sci Eng 2019; 5:3688-3702. [DOI: 10.1021/acsbiomaterials.8b01195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
15
|
Rodriguez ML, Beussman KM, Chun KS, Walzer MS, Yang X, Murry CE, Sniadecki NJ. Substrate Stiffness, Cell Anisotropy, and Cell-Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomater Sci Eng 2019; 5:3876-3888. [PMID: 33438427 DOI: 10.1021/acsbiomaterials.8b01256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can be utilized to understand the mechanisms underlying the development and progression of heart disease, as well as to develop better interventions and treatments for this disease. However, these cells are structurally and functionally immature, which undermines some of their adequacy in modeling adult heart tissue. Previous studies with immature cardiomyocytes have shown that altering substrate stiffness, cell anisotropy, and/or cell-cell contact can enhance the contractile and structural maturation of hPSC-CMs. In this study, the structural and calcium handling properties of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were enhanced by exposure to a downselected combination of these three maturation stimuli. First, hESC-CMs were seeded onto substrates composed of two commercial formulations of polydimethylsiloxane (PDMS), Sylgard 184 and Sylgard 527, whose stiffness ranged from 5 kPa to 101 kPa. Upon analyzing the morphological and calcium transient properties of these cells, it was concluded that a 21 kPa substrate yielded cells with the highest degree of maturation. Next, these PDMS substrates were microcontact-printed with laminin to force the cultured cells into rod-shaped geometries using line patterns that were 12, 18, or 24 μm in width. We found that cells on the 18 and 24 μm pattern widths had structural and functional properties that were superior to those on the 12 μm pattern. The hESC-CMs were then seeded onto these line-stamped surfaces at a density of 500 000 cells per 25-mm-diameter substrate, to enable the formation of cell-cell contacts at their distal ends. We discovered that this combination of culture conditions resulted in cells that were more structurally and functionally mature than those that were only exposed to one or two stimuli. Our results suggest that downselecting a combination of mechanobiological stimuli could prove to be an effective means of maturing hPSC-CMs in vitro.
Collapse
Affiliation(s)
- Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Katherine S Chun
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Melissa S Walzer
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Xiulan Yang
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.,Department of Medicine/Cardiology, University of Washington, Seattle, Washington 98195, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, Washington 98109, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Bose P, Eyckmans J, Nguyen TD, Chen CS, Reich DH. Effects of Geometry on the Mechanics and Alignment of Three-Dimensional Engineered Microtissues. ACS Biomater Sci Eng 2018; 5:3843-3855. [DOI: 10.1021/acsbiomaterials.8b01183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Daniel H. Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
17
|
Monticelli M, Jokhun DS, Petti D, Shivashankar GV, Bertacco R. Localized mechanical stimulation of single cells with engineered spatio-temporal profile. LAB ON A CHIP 2018; 18:2955-2965. [PMID: 30129955 DOI: 10.1039/c8lc00393a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo, cells are frequently exposed to multiple mechanical stimuli arising from the extracellular microenvironment, with a deep impact on many biological functions. On the other hand, current methods for mechanobiology do not allow one to easily replicate in vitro the complex spatio-temporal profile of such mechanical signals. Here we introduce a new platform for studying the mechanical coupling between single cells and a dynamic extracellular environment, based on active substrates for cell culture made of Fe-coated polymeric micropillars. Under the action of quasi-static external magnetic fields, each group of pillars produces synchronous mechanical stimuli at different points of the cell membrane, thanks to the highly controllable pillars' deflection. This method allows one to apply complex stress fields, resulting in the parallel application of localized forces with tunable intensity and temporal profile. The platform has been validated by studying the cellular response to periodic stimuli in NIH3T3 fibroblasts. We find that low-frequency mechanical stimulation affects the actin cytoskeleton, nuclear morphology, and H2B core-histone dynamics and induces MKL transcription-cofactor translocation from nucleus to cytoplasm. The unique capability of the proposed platform to apply stimuli with a tunable temporal profile and high parallelism on a cell culture holds great potential for the investigation of mechanotransduction mechanisms in cells and tissues.
Collapse
Affiliation(s)
- M Monticelli
- Department of Physics, Politecnico di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
18
|
A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomed Microdevices 2018; 20:43. [PMID: 29808253 DOI: 10.1007/s10544-018-0286-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Although our understanding of cellular behavior in response to extracellular biological and mechanical stimuli has greatly advanced using conventional 2D cell culture methods, these techniques lack physiological relevance. To a cell, the extracellular environment of a 2D plastic petri dish is artificially flat, extremely rigid, static and void of matrix protein. In contrast, we developed the microtissue vacuum-actuated stretcher (MVAS) to probe cellular behavior within a 3D multicellular environment composed of innate matrix protein, and in response to continuous uniaxial stretch. An array format, compatibility with live imaging and high-throughput fabrication techniques make the MVAS highly suited for biomedical research and pharmaceutical discovery. We validated our approach by characterizing the bulk microtissue strain, the microtissue strain field and single cell strain, and by assessing F-actin expression in response to chronic cyclic strain of 10%. The MVAS was shown to be capable of delivering reproducible dynamic bulk strain amplitudes up to 13%. The strain at the single cell level was found to be 10.4% less than the microtissue axial strain due to cellular rotation. Chronic cyclic strain produced a 35% increase in F-actin expression consistent with cytoskeletal reinforcement previously observed in 2D cell culture. The MVAS may further our understanding of the reciprocity shared between cells and their environment, which is critical to meaningful biomedical research and successful therapeutic approaches.
Collapse
|
19
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
20
|
Song C, Wang A, Lin F, Asmani M, Zhao R, Jin Z, Xiao J, Xu W. Tempo-Spatial Compressed Sensing of Organ-on-a-Chip for Pervasive Health. IEEE J Biomed Health Inform 2018; 22:325-334. [PMID: 29505400 DOI: 10.1109/jbhi.2017.2775559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a micro-engineered biomimetic system to replicate key functions of living organs, organ-on-a-chip (OC) technology provides a high-throughput model for investigating complex cell interactions with both high temporal and spatial resolutions in biological studies. Typically, microscopy and high-speed video cameras are used for data acquisition, which are expensive and bulky. Recently, compressed sensing (CS) has increasingly attracted attentions due to its extremely low-complexity structure and low sampling rate. However, there is no CS solution tailored for tempo-spatial information acquisition. In this paper, we propose tempo-spatial CS (TS-CS), a unified CS architecture for OC stream, which achieves significant cost reduction and truly combines sensing with compression along the temporal and spatial domains. We point out that TS-CS can consistently achieve better performance by exploiting tempo-spatial compressibility in OC data. To this end, we comprehensively evaluate the system performance by employing four different bases for CS. With comparison to the traditional way, we show that TS-CS always obtains better recovery result with a throughput bound and can achieve around throughput improvement under a reconstruction demand by applying discrete cosine transform matrix as the basis.
Collapse
|
21
|
Bose P, Huang CY, Eyckmans J, Chen CS, Reich DH. Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell-Matrix Interactions. Methods Mol Biol 2018; 1722:303-328. [PMID: 29264812 DOI: 10.1007/978-1-4939-7553-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell interactions with the extracellular matrix (ECM) are critical to cell and tissue functions involving adhesion, communication, and differentiation. Three-dimensional (3D) in vitro culture systems are an important approach to mimic in vivo cell-matrix interactions for mechanobiology studies and tissue engineering applications. This chapter describes the use of engineered microtissues as 3D constructs in combination with a magnetic tissue gauge (μTUG) system to analyze tissue mechanical properties. The μTUG system is composed of poly(dimethylsiloxane) (PDMS) microwells with vertical pillars in the wells. Self-assembled microtissues containing cells and ECM gel can form between the pillars, and generate mechanical forces that deform the pillars, which provides a readout of those forces. Herein, detailed procedures for microfabrication of the PDMS μTUG system, seeding and growth of cells with ECM gels in the microwells, and measurements of the mechanical properties of the resulting microtissues via magnetic actuation of magnetic sphere-tagged μTUGs are described.
Collapse
Affiliation(s)
- Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Chen Yu Huang
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel H Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Sinha R, Verdonschot N, Koopman B, Rouwkema J. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:494-504. [DOI: 10.1089/ten.teb.2016.0500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ravi Sinha
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
23
|
Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci Rep 2016; 6:33919. [PMID: 27671239 PMCID: PMC5037370 DOI: 10.1038/srep33919] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.
Collapse
|
24
|
Kilinc D, Dennis CL, Lee GU. Bio-Nano-Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5672-80. [PMID: 26780501 PMCID: PMC5536250 DOI: 10.1002/adma.201504845] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles are promising new tools for therapeutic applications, such as magnetic nanoparticle hyperthermia therapy and targeted drug delivery. Recent in vitro studies have demonstrated that a force application with magnetic tweezers can also affect cell fate, suggesting a therapeutic potential for magnetically modulated mechanical stimulation. The magnetic properties of nanoparticles that induce physical responses and the subtle responses that result from mechanically induced membrane damage and/or intracellular signaling are evaluated. Magnetic particles with various physical, geometric, and magnetic properties and specific functionalization can now be used to apply mechanical force to specific regions of cells, which permit the modulation of cellular behavior through the use of spatially and time controlled magnetic fields. On one hand, mechanochemical stimulation has been used to direct the outgrowth on neuronal growth cones, indicating a therapeutic potential for neural repair. On the other hand, it has been used to kill cancer cells that preferentially express specific receptors. Advances made in the synthesis and characterization of magnetic nanomaterials and a better understanding of cellular mechanotransduction mechanisms may support the translation of mechanochemical stimulation into the clinic as an emerging therapeutic approach.
Collapse
Affiliation(s)
- Devrim Kilinc
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - Cindi L. Dennis
- Material Measurement Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Gaithersburg, MD 20899–8552, USA
| | - Gil U. Lee
- Bionanosciences Lab, School of Chemistry and Chemical Biology, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| |
Collapse
|
25
|
Evans EE, Ronecker JC, Han DT, Glass DR, Train TL, Deatsch AE. High-permeability functionalized silicone magnetic microspheres with low autofluorescence for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:860-869. [PMID: 26952493 PMCID: PMC5588664 DOI: 10.1016/j.msec.2016.01.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/30/2016] [Indexed: 12/13/2022]
Abstract
Functionalized magnetic microspheres are widely used for cell separations, isolation of proteins and other biomolecules, in vitro diagnostics, tissue engineering, and microscale force spectroscopy. We present here the synthesis and characterization of a silicone magnetic microsphere which can be produced in diameters ranging from 0.5 to 50 μm via emulsion polymerization of a silicone ferrofluid precursor. This bottom-up approach to synthesis ensures a uniform magnetic concentration across all sizes, leading to significant advances in magnetic force generation. We demonstrate that in a size range of 5-20 μm, these spheres supply a full order of magnitude greater magnetic force than leading commercial products. In addition, the unique silicone matrix exhibits autofluorescence two orders of magnitude lower than polystyrene microspheres. Finally, we demonstrate the ability to chemically functionalize our silicone microspheres using a standard EDC reaction, and show that our folate-functionalized silicone microspheres specifically bind to targeted HeLa and Jurkat cells. These spheres show tremendous potential for replacing magnetic polystyrene spheres in applications which require either large magnetic forces or minimal autofluorescence, since they represent order-of-magnitude improvements in each. In addition, the unique silicone matrix and proven biocompatibility suggest that they may be useful for encapsulation and targeted delivery of lipophilic pharmaceuticals.
Collapse
Affiliation(s)
| | | | - David T. Han
- Elon University, 100 Campus Drive, Elon, NC 27244, USA
| | | | | | | |
Collapse
|