1
|
Li MQ, Lu XY, Yao JY, Zou GJ, Zeng ZH, Zhang LX, Zhou SF, Chen ZR, Zhao TS, Guo ZR, Cui YH, Li F, Li CQ. LASP1 in the nucleus accumbens modulates methamphetamine-induced conditioned place preference in mice. Neurochem Int 2024; 180:105884. [PMID: 39419179 DOI: 10.1016/j.neuint.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.
Collapse
Affiliation(s)
- Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410013, China.
| |
Collapse
|
2
|
Santa C, Rodrigues JE, Martinho A, Mendes VM, Madeira N, Coroa M, Santos V, Morais S, Bajouco M, Costa H, Anjo SI, Baldeiras I, Macedo A, Manadas B. Proteomic analysis of peripheral blood mononuclear cells in first episode psychosis - Protein and peptide-centered approaches to elucidate potential diagnostic biomarkers. J Proteomics 2024; 309:105296. [PMID: 39218299 DOI: 10.1016/j.jprot.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Diagnosing patients suffering from psychotic disorders is far from being achieved with molecular support, despite all the efforts to study these disorders from different perspectives. Characterizing the proteome of easily obtainable blood specimens, such as the peripheral blood mononuclear cells (PBMCs), has particular interest in biomarker discovery and generating pathophysiological knowledge. This approach has been explored in psychiatry, and while generating valuable information, it has not translated into meaningful biomarker discovery. In this project, we report the proof-of-concept of a methodology that aims to explore further information obtained with classical proteomics approaches that is easily overlooked. PBMC samples from first-episode psychosis and control subjects were subjected to a SWATH-MS approach, and the classical protein relative quantification was performed, where 389 proteins were found to be important to distinguish the two groups. Individual analysis of the quantified peptides was also performed, highlighting peptides of unchanged proteins that were significantly altered. With the combination of protein- and peptide-centered proteomics approaches, it is possible to highlight that information about proteoforms, namely regulation at the peptide level possibly due to post-translational modifications, is routinely overlooked and that its diagnostic potential should be further explored. SIGNIFICANCE: Our exploratory findings highlight the potential of MS-based proteomics strategies, combining protein- and peptide-centered approaches, to aid clinical decision-making in first-episode psychosis, helping to establish early biomarkers for schizophrenia and other psychotic disorders. Particularly, the less popular peptide-centered approach allows the identification/measurement of overlooked modulated peptides that may have potential biomarker characteristics. The application in parallel of protein- and peptide-centered strategies is transversal to research of other diseases, potentially allowing a more comprehensive characterization of the metabolic/pathophysiological alterations related to a specific disease.
Collapse
Affiliation(s)
- Catia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - João E Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Martinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Manuel Coroa
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Vítor Santos
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Miguel Bajouco
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Hélder Costa
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal
| | - Antonio Macedo
- Faculty of Medicine of the University of Coimbra, University of Coimbra, Portugal; Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal.
| |
Collapse
|
3
|
Xu R, Jin Y, Tang S, Wang W, Sun YE, Liu Y, Zhang W, Hou B, Huang Y, Ma Z. Association between single nucleotide variants and severe chronic pain in older adult patients after lower extremity arthroplasty. J Orthop Surg Res 2023; 18:184. [PMID: 36895017 PMCID: PMC9999576 DOI: 10.1186/s13018-023-03683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Hip or knee osteoarthritis (OA) is one of the main causes of disability worldwide and occurs mostly in the older adults. Total hip or knee arthroplasty is the most effective method to treat OA. However, severe postsurgical pain leading to a poor prognosis. So, investigating the population genetics and genes related to severe chronic pain in older adult patients after lower extremity arthroplasty is helpful to improve the quality of treatment. METHODS We collected blood samples from elderly patients who underwent lower extremity arthroplasty from September 2020 to February 2021 at the Drum Tower Hospital Affiliated to Nanjing University Medical School. The enrolled patients provided measures of pain intensity using the numerical rating scale on the 90th day after surgery. Patients were divided into the case group (Group A) and the control group (Group B) including 10 patients respectively by the numerical rating scale. DNA was isolated from the blood samples of the two groups for whole-exome sequencing. RESULTS In total, 661 variants were identified in the 507 gene regions that were significantly different between both groups (P < 0.05), including CASP5, RASGEF1A, CYP4B1, etc. These genes are mainly involved in biological processes, including cell-cell adhesion, ECM-receptor interaction, metabolism, secretion of bioactive substances, ion binding and transport, regulation of DNA methylation, and chromatin assembly. CONCLUSIONS The current study shows some variants within genes are significantly associated with severe postsurgical chronic pain in older adult patients after lower extremity arthroplasty, indicating a genetic predisposition for chronic postsurgical pain. The study was registered according to ICMJE guidelines. The trial registration number is ChiCTR2000031655 and registration date is April 6th, 2020.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yinan Jin
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Suhong Tang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wenwen Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Rodrigues JE, Martinho A, Santos V, Santa C, Madeira N, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis on MS-Based Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Bipolar Disorder. Int J Mol Sci 2022; 23:5460. [PMID: 35628270 PMCID: PMC9141521 DOI: 10.3390/ijms23105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is a clinically heterogeneous condition, presenting a complex underlying etiopathogenesis that is not sufficiently characterized. Without molecular biomarkers being used in the clinical environment, several large screen proteomics studies have been conducted to provide valuable molecular information. Mass spectrometry (MS)-based techniques can be a powerful tool for the identification of disease biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids to assess BD biomarkers and identify relevant networks of biological pathways. Following PRISMA guidelines, we searched for studies using MS proteomics to identify proteomic differences between BD patients and healthy controls (PROSPERO database: CRD42021264955). Fourteen articles fulfilled the inclusion criteria, allowing the identification of 266 differentially expressed proteins. Gene ontology analysis identified complement and coagulation cascades, lipid and cholesterol metabolism, and focal adhesion as the main enriched biological pathways. A meta-analysis was performed for apolipoproteins (A-I, C-III, and E); however, no significant differences were found. Although the proven ability of MS proteomics to characterize BD, there are several confounding factors contributing to the heterogeneity of the findings. In the future, we encourage the scientific community to use broader samples and validation cohorts, integrating omics with bioinformatics tools towards providing a comprehensive understanding of proteome alterations, seeking biomarkers of BD, and contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- Joao E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Medical Services, University of Coimbra Medical Services, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| |
Collapse
|
5
|
de Lima-Souza RA, Scarini JF, Lavareze L, Emerick C, dos Santos ES, Leme AFP, Egal ESA, Altemani A, Mariano FV. Protein markers of primary Salivary Gland Tumors: A systematic review of proteomic profiling studies. Arch Oral Biol 2022; 136:105373. [DOI: 10.1016/j.archoralbio.2022.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
|
6
|
Ciobanu AM, Geza L, David IG, Popa DE, Buleandra M, Ciucu AA, Dehelean L. Actualities in immunological markers and electrochemical sensors for determination of dopamine and its metabolites in psychotic disorders (Review). Exp Ther Med 2021; 22:888. [PMID: 34194566 PMCID: PMC8237259 DOI: 10.3892/etm.2021.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 12/03/2022] Open
Abstract
Psychotic disorders represent a serious health concern. At this moment, anamnestic data, international criteria for diagnosis/classification from the Diagnostic and Statistical Manual of Mental Disorders-5 and the International Classification of Diseases-10 and diagnostic scales are used to establish a diagnosis. The most commonly used biomarkers in psychotic illnesses are those regarding the neuroimmune system, metabolic abnormalities, neurotrophins and neurotransmitter systems and proteomics. A current issue faced by clinicians is the lack of biomarkers to help develop a more accurate diagnosis, with the possibility of initiating the most effective treatment. The detection of biological markers for psychosis has the potential to contribute to improvements in its diagnosis, prognosis and treatment effectiveness. The mixture of multiple biomarkers may improve the ability to differentiate and classify these patients. In this sense, the aim of this study was to analyze the literature concerning the potential biomarkers that could be used in medical practice and to review the newest developments in electrochemical sensors used for dopamine detection, one of the most important exploited biomarkers.
Collapse
Affiliation(s)
- Adela Magdalena Ciobanu
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Psychiatric Hospital, 041914 Bucharest, Romania.,Discipline of Psychiatry, Neurosciences Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luana Geza
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Psychiatric Hospital, 041914 Bucharest, Romania.,Discipline of Psychiatry, Neurosciences Department, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Liana Dehelean
- Department of Neurosciences-Psychiatry, Centre for Cognitive Research in Neuropsychiatric Pathology, 'Victor Babes' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Cui YH, Fu A, Wang XQ, Tu BX, Chen KZ, Wang YK, Hu QG, Wang LF, Hu ZL, Pan PH, Li F, Bi FF, Li CQ. Hippocampal LASP1 ameliorates chronic stress-mediated behavioral responses in a mouse model of unpredictable chronic mild stress. Neuropharmacology 2020; 184:108410. [PMID: 33242526 DOI: 10.1016/j.neuropharm.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Substantial evidence has revealed that abnormalities in synaptic plasticity play important roles during the process of depression. LASP1 (LIM and SH3 domain protein 1), a member of actin-binding proteins, has been shown to be associated with the regulation of synaptic plasticity. However, the role of LASP1 in the regulation of mood is still unclear. Here, using an unpredictable chronic mild stress (UCMS) paradigm, we found that the mRNA and protein levels of LASP1 were decreased in the hippocampus of stressed mice and that UCMS-induced down-regulation of LASP1 was abolished by chronic administration of fluoxetine. Adenosine-associated virus-mediated hippocampal LASP1 overexpression alleviated the UCMS-induced behavioral results of forced swimming test and sucrose preference test in stressed mice. It also restored the dendritic spine density, elevated the levels of AKT (a serine/threonine protein kinase), phosphorylated-AKT, insulin-like growth factor 2, and postsynaptic density protein 95. These findings suggest that LASP1 alleviates UCMS-provoked behavioral defects, which may be mediated by an enhanced dendritic spine density and more activated AKT-dependent LASP1 signaling, pointing to the antidepressant role of LASP1.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China; Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ao Fu
- Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xue-Qin Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Kang-Zhi Chen
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yi-Kai Wang
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qiong-Gui Hu
- Clinic Medicine of 8-year Program, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Lai-Fa Wang
- Center for Neuroscience and behavior, Changsha Medical University, Changsha, 410219, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Pin-Hua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Fang-Fang Bi
- Department of Neurology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
The Nebulin Family LIM and SH3 Proteins Regulate Postsynaptic Development and Function. J Neurosci 2019; 40:526-541. [PMID: 31754010 PMCID: PMC6961999 DOI: 10.1523/jneurosci.0334-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Neuronal dendrites have specialized actin-rich structures called dendritic spines that receive and integrate most excitatory synaptic inputs. The stabilization of dendrites and spines during neuronal maturation is essential for proper neural circuit formation. Changes in dendritic morphology and stability are largely mediated by regulation of the actin cytoskeleton; however, the underlying mechanisms remain to be fully elucidated. Here, we present evidence that the nebulin family members LASP1 and LASP2 play an important role in the postsynaptic development of rat hippocampal neurons from both sexes. We find that both LASP1 and LASP2 are enriched in dendritic spines, and their knockdown impairs spine development and synapse formation. Furthermore, LASP2 exerts a distinct role in dendritic arbor and dendritic spine stabilization. Importantly, the actin-binding N-terminal LIM domain and nebulin repeats of LASP2 are required for spine stability and dendritic arbor complexity. These findings identify LASP1 and LASP2 as novel regulators of neuronal circuitry.SIGNIFICANCE STATEMENT Proper regulation of the actin cytoskeleton is essential for the structural stability of dendrites and dendritic spines. Consequently, the malformation of dendritic structures accompanies numerous neurologic disorders, such as schizophrenia and autism. Nebulin family members are best known for their role in regulating the stabilization and function of actin thin filaments in muscle. The two smallest family members, LASP1 and LASP2, are more structurally diverse and are expressed in a broader array of tissues. While both LASP1 and LASP2 are highly expressed in the brain, little is currently known about their function in the nervous system. In this study, we demonstrate the first evidence that LASP1 and LASP2 are involved in the formation and long-term maintenance of dendrites and dendritic spines.
Collapse
|
9
|
Seccia V, Navari E, Donadio E, Boldrini C, Ciregia F, Ronci M, Aceto A, Dallan I, Lucacchini A, Casani AP, Mazzoni MR, Giusti L. Proteomic Investigation of Malignant Major Salivary Gland Tumors. Head Neck Pathol 2019; 14:362-373. [PMID: 31098787 PMCID: PMC7235111 DOI: 10.1007/s12105-019-01040-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to define the proteome profile of fine needle aspiration (FNA) samples of malignant major salivary gland tumors (MSGT) compared to benign counterparts, and to evaluate potential clinical correlations and future applications. Patients affected by MSGT (n = 20), pleomorphic adenoma (PA) (n = 37) and Warthin's tumor (WT) (n = 14) were enrolled. Demographic, clinical and histopathological data were registered for all patients. FNA samples were processed to obtain the protein extracts. Protein separation was obtained by two-dimensional electrophoresis (2-DE) and proteins were identified by mass spectrometry. Western blot analysis was performed to validate the 2-DE results. Statistical differences between groups were calculated by the Mann-Whitney U test for non-normal data. Spearman's rank correlation coefficient was calculated to evaluate correlations among suggested protein biomarkers and clinical parameters. Twelve and 27 differentially expressed spots were found for MSGT versus PA and MSGT versus WT, respectively. Among these, annexin-5, cofilin-1, peptidyl-prolyl-cis-trans-isomerase-A and F-actin-capping-alpha-1 were able to differentiate MSGT from PA, WT, and healthy samples. Moreover, STRING analysis suggested cofilin-1 as a key node of protein interactions. Some of the overexpressed proteins are related to some clinical factors of our cohort, such as survival and outcome. Our results suggest potential protein biomarkers of MSGT, which could allow for more appropriate treatment plans, as well as shedding light on the molecular pathways involved.
Collapse
Affiliation(s)
- Veronica Seccia
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, ENT Section, University of Pisa, Pisa, Italy
| | - Elena Navari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, ENT Section, University of Pisa, Pisa, Italy
| | - Elena Donadio
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Federica Ciregia
- Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Liège, Belgium
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Iacopo Dallan
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, ENT Section, University of Pisa, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Augusto Pietro Casani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, ENT Section, University of Pisa, Pisa, Italy
| | | | - Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy ,School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
10
|
The identification of biomarkers predicting acute and maintenance lithium treatment response in bipolar disorder: A plea for further research attention. Psychiatry Res 2018; 269:658-672. [PMID: 30216918 DOI: 10.1016/j.psychres.2018.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
The prediction of acute and maintenance lithium treatment response carries major clinical and neurobiological implications, warranting systematic review. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) compliant review searched major electronic databases from inception until December 2017 for studies documenting a clinical diagnosis of bipolar disorder (BD) made according to the mainstream diagnostic manuals and confirmed by a structured interview. Eligible studies allowed a quantitative comparison of endpoint vs baseline mean values of a given biomarker, regardless of the mood phase of patients with BD, and the disorder was assessed for severity using validated rating tool(s). Owing to the purposely applied stringent selection criteria, 16 acute and 12 maintenance studies could be included. The anticipated publication bias limited the chances of reportable generalizable findings, hindering a side-by-side comparison of different records across varying biomarkers and subsequent meta-analyses. The PRISMA approach was nonetheless preferred; it aimed at enhancing the homogeneity of the included results and minimizing the chances of "apples and oranges" with respect to the present research theme. The present critical review confirms the need for future research to specifically assess either pretreatment and/or posttreatment putative biomarkers of patients with BD and treated with lithium.
Collapse
|
11
|
de Jesus JR, Galazzi RM, de Lima TB, Banzato CEM, de Almeida Lima E Silva LF, de Rosalmeida Dantas C, Gozzo FC, Arruda MAZ. Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions. Clin Biochem 2017; 50:1118-1125. [PMID: 28662995 DOI: 10.1016/j.clinbiochem.2017.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE An exploratory analysis using proteomic strategies in blood serum of patients with bipolar disorder (BD), and with other psychiatric conditions such as Schizophrenia (SCZ), can provide a better understanding of this disorder, as well as their discrimination based on their proteomic profile. METHODS The proteomic profile of blood serum samples obtained from patients with BD using lithium or other drugs (N=14), healthy controls, including non-family (HCNF; N=3) and family (HCF; N=9), patients with schizophrenia (SCZ; N=23), and patients using lithium for other psychiatric conditions (OD; N=4) were compared. Four methods for simplifying the serum samples proteome were evaluated for both removing the most abundant proteins and for enriching those of lower-abundance: protein depletion with acetonitrile (ACN), dithiothreitol (DTT), sequential depletion using DTT and ACN, and protein equalization using commercial ProteoMiner® kit (PM). For proteomic evaluation, 2-D DIGE and nanoLC-MS/MS analysis were employed. RESULTS PM method was the best strategy for removing proteins of high abundance. Through 2-D DIGE gel image comparison, 37 protein spots were found differentially abundant (p<0.05, Student's t-test), which exhibited ≥2.0-fold change of the average value of normalized spot intensities in the serum of SCZ, BD and OD patients compared to subject controls (HCF and HCNF). From these spots detected, 13 different proteins were identified: ApoA1, ApoE, ApoC3, ApoA4, Samp, SerpinA1, TTR, IgK, Alb, VTN, TR, C4A and C4B. CONCLUSIONS Proteomic analysis allowed the discrimination of patients with BD from patients with other mental disorders, such as SCZ. The findings in this exploratory study may also contribute for better understanding the pathophysiology of these disorders and finding potential serum biomarkers for these conditions.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Rodrigo Moretto Galazzi
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Tatiani Brenelli de Lima
- Dalton Mass Spectrometry Group, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | | | | | | | - Fábio Cézar Gozzo
- Dalton Mass Spectrometry Group, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil.
| |
Collapse
|
12
|
Ciregia F, Giusti L, Molinaro A, Niccolai F, Mazzoni MR, Rago T, Tonacchera M, Vitti P, Giannaccini G, Lucacchini A. Proteomic analysis of fine-needle aspiration in differential diagnosis of thyroid nodules. Transl Res 2016; 176:81-94. [PMID: 27172385 DOI: 10.1016/j.trsl.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
Abstract
Thyroid nodules are common in the general population and vary widely in their propensity to harbor thyroid malignancies. The category of follicular lesion of undetermined significance, for instance, carries only a 15% risk of malignancy. The overarching aim of this work was the proteomic study of thyroid cancer because more effort needs to be placed on differentiating malignant thyroid nodules to avoid unnecessary thyroidectomy. We used 2-dimensional electrophoresis coupled to nano-liquid chromatography electrospray ionization tandem mass spectrometry, to examine fine-needle aspiration (FNA), which was easily attainable from the wash of the syringe used for classical FNA biopsy. Overall, we found 25 different proteins able to discriminate benign from malignant samples. The different expression of moesin; annexin A1 (ANXA1); cornulin (CRNN); lactate dehydrogenase; enolase; protein DJ-1; and superoxide dismutase was confirmed in FNA by enzyme-linked immunosorbent assay or Western blot. Receiver operating characteristic curves were calculated to investigate the discriminative power of our marker. The best performance in diagnosis was obtained by combining ANXA1, enolase, protein DJ-1, superoxide dismutase, and CRNN. In addition, the most highly ranked proteins, from the perspective of follicular lesion of undetermined significance, were ANXA1 and CRNN. The research of these candidate biomarkers has then been widened to other biological fluids, such as serum and whole saliva. In conclusion, we believe that when a decision by a thyroid nodule biopsy cannot be distinctly made, the combination of our biomarkers may be one of the criteria to be taken into account for the final decision, together with the identification of ANXA1 in serum and saliva.
Collapse
Affiliation(s)
| | - Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Angelo Molinaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Niccolai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Teresa Rago
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Vitti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
13
|
Giusti L, Ciregia F, Mazzoni MR, Lucacchini A. Proteomics insight into psychiatric disorders: an update on biological fluid biomarkers. Expert Rev Proteomics 2016; 13:941-950. [DOI: 10.1080/14789450.2016.1230499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
14
|
Bottom-up proteomics suggests an association between differential expression of mitochondrial proteins and chronic fatigue syndrome. Transl Psychiatry 2016; 6:e904. [PMID: 27676445 PMCID: PMC5048217 DOI: 10.1038/tp.2016.184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/15/2016] [Accepted: 07/31/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterized by unexplained fatigue not improved by rest. An area of investigation is the likely connection of CFS with defective mitochondrial function. In a previous work, we investigated the proteomic salivary profile in a couple of monozygotic twins discordant for CFS. Following this work, we analyzed mitochondrial proteins in the same couple of twins. Nano-liquid chromatography electrospray ionization mass spectrometry (nano-LC-MS) was used to study the mitochondria extracted from platelets of the twins. Subsequently, we selected three proteins that were validated using western blot analysis in a big cohort of subjects (n=45 CFS; n=45 healthy), using whole saliva (WS). The selected proteins were as follows: aconitate hydratase (ACON), ATP synthase subunit beta (ATPB) and malate dehydrogenase (MDHM). Results for ATPB and ACON confirmed their upregulation in CFS. However, the MDHM alteration was not confirmed. Thereafter, seeing the great variability of clinical features of CFS patients, we decided to analyze the expression of our proteins after splitting patients according to clinical parameters. For each marker, the values were actually higher in the group of patients who had clinical features similar to the ill twin. In conclusion, these results suggest that our potential markers could be one of the criteria to be taken into account for helping in diagnosis. Furthermore, the identification of biomarkers present in particular subgroups of CFS patients may help in shedding light upon the complex entity of CFS. Moreover, it could help in developing tailored treatments.
Collapse
|
15
|
Machado AK, Pan AY, da Silva TM, Duong A, Andreazza AC. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:446-56. [PMID: 27310240 PMCID: PMC4959649 DOI: 10.1177/0706743716648297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics.
Collapse
Affiliation(s)
- Alencar Kolinski Machado
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Federal University of Santa Maria, Santa Maria, RS, Brazil Both authors contributed equally to this article
| | - Alexander Yongshuai Pan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Both authors contributed equally to this article
| | - Tatiane Morgana da Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Federal University of Pelotas, Pelotas, RS, Brazil
| | - Angela Duong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Department of Psychiatry, University of Toronto, Toronto, Ontario Centre for Addiction and Mental Health, Toronto, Ontario
| |
Collapse
|
16
|
de Jesus JR, Pessôa GDS, Sussulini A, Martínez JLC, Arruda MAZ. Proteomics strategies for bipolar disorder evaluation: From sample preparation to validation. J Proteomics 2016; 145:187-196. [PMID: 27113133 DOI: 10.1016/j.jprot.2016.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
Bipolar disorder (BD) is a complex and costly psychiatric disorder, which affects one hundred million people worldwide. Due to its heterogeneity, correct BD diagnosis is still a challenge. In order to overcome this issue, different bioanalytical strategies have been proposed in the literature recently. Among these strategies, proteomic approaches have arisen as some of the most promising in the area. Thus, recent applications suggest protein profiles to further refine the proteome of BD as well as the discovery of novel protein biomarkers to facilitate diagnostics. In this review, the state-of-art of proteomic research in BD is summarized. Furthermore, important aspects of proteomics for understanding of BD, such as sample type and size, sampling, sample preparation, gel-based and gel-free proteomics, proteomic quantitative and protein validation are overviewed.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil; UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gustavo de Souza Pessôa
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandra Sussulini
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil
| | - José Luis Capelo Martínez
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal; ProteoMass Scientific Society, MadanPark, Rua dos Inventores s/n, Monte de Caparica, Caparica, Portugal
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
17
|
Giusti L, Ciregia F, Bonotti A, Da Valle Y, Donadio E, Boldrini C, Foddis R, Giannaccini G, Mazzoni MR, Canessa PA, Cristaudo A, Lucacchini A. Comparative proteomic analysis of malignant pleural mesothelioma: Focusing on the biphasic subtype. EUPA OPEN PROTEOMICS 2016; 10:42-49. [PMID: 29900099 PMCID: PMC5988614 DOI: 10.1016/j.euprot.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer originated from pleural mesothelial cells. MPM has been associated with long-term exposure to asbestos. In this work we performed a comparative proteomic analysis of biphasic pleural mesothelioma (B-PM). Tissue biopsies were obtained from 61 patients who were subjected to a diagnostic thoracoscopy. 2D/MS based approach was used for proteomic analysis. The 22 proteins found differentially expressed in B-PM, with respect to benign, were analyzed by Ingenuity Pathways Analysis and compared with those obtained for epitheliod pleural mesothelioma (E-PM). A different activation of transcription factors, proteins and cytokines were observed between two subtypes.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Alessandra Bonotti
- Preventive and Occupational Medicine, University Hospital of Pisa, Pisa, Italy
| | | | - Elena Donadio
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Rudy Foddis
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Pier Aldo Canessa
- Dipartimento Ospedaliero Medico 2 dell ASL5 Spezzino, La Spezia, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | |
Collapse
|
18
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
19
|
Zheng X, Zhang X, Wang G, Hao H. Treat the brain and treat the periphery: toward a holistic approach to major depressive disorder. Drug Discov Today 2015; 20:562-8. [PMID: 25849660 DOI: 10.1016/j.drudis.2015.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/07/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022]
Abstract
The limited medication for major depressive disorder (MDD) against an ever-rising disease burden presents an urgent need for therapeutic innovations. During recent years, studies looking at the systems regulation of mental health and disease have shown a remarkably powerful control of MDD by systemic signals. Meanwhile, the identification of a host of targets outside the brain opens the way to treat MDD by targeting systemic signals. We examine these emerging findings and consider the implications for current thinking regarding MDD pathogenesis and treatment. We highlight the opportunities and challenges of a periphery-targeting strategy and propose its incorporation into a holistic approach.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Pharmacy, Nanjing University of Chinese Medicine Affiliated Hospital, Nanjing 210029, China.
| | - Xueli Zhang
- Department of Pharmacy, Southeast University Affiliated Zhong Da Hospital, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Carboni L. The contribution of proteomic studies in humans, animal models, and after antidepressant treatments to investigate the molecular neurobiology of major depression. Proteomics Clin Appl 2015; 9:889-98. [PMID: 25488430 DOI: 10.1002/prca.201400139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
The neurobiological basis of major depressive disorder (MDD) is only partially understood. The proposed hypotheses postulate dysregulations of monoaminergic and other neurotransmitter pathways, impaired stress responses, insufficient neurogenetic and neurotrophic processes generating maladaptive neuroplasticity, inappropriate inflammatory and metabolic responses. Proteomic approaches can provide useful contributions to the investigation of the molecular neurobiology of MDD due to their open-ended nature. Studies performed in brain regions of MDD patients which had received antidepressant (AD) treatment showed that affected proteins mainly belonged to energy pathways, transport of molecules, signaling, and synaptic transmission. Studies performed in animal models offer the advantage of more controlled experimental conditions at the expense of potential loss in relevance. The design of proteomic investigations included experiments carried out in MDD models, in naive animals treated with ADs, and in animal models subjected to AD treatments. A comparison of results suggested an overlap of several modulated pathways between MDD patients and animal models. Examples include the regulation of energy metabolism, especially oxidative phosphorylation and glycolysis, signal transduction pathways, including calcium-calmodulin kinase II, synaptic proteins, and cytoskeletal proteins. Nevertheless, the paucity of studies performed in human brains requires additional studies to confirm the correspondence.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Uddin M. Blood-Based Biomarkers in Depression: Emerging Themes in Clinical Research. Mol Diagn Ther 2014; 18:469-82. [DOI: 10.1007/s40291-014-0108-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|