1
|
Chen J, Li Z, Yu H, Cui H, Li X. Affecting of Glyphosate Tolerance and Metabolite Content in Transgenic Arabidopsis thaliana Overexpressing EPSPS Gene from Eleusine indica. PLANTS (BASEL, SWITZERLAND) 2024; 14:78. [PMID: 39795338 PMCID: PMC11723125 DOI: 10.3390/plants14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing EPSPS from weeds. We assessed the resistance levels of transgenic Arabidopsis thaliana overexpressing EPSPS from Eleusine indica, and its effects on metabolite content using the method of both quasi-targeted and targeted metabolomics. The results showed that the average resistance index of the transgenic lines was 4.7 and the exogenous E. indica EPSPS expression levels were 265.3- to 532.0-fold higher than those in the wild-type (WT) line. The EPSPS protein ranged from 148.5 to 286.2 μg g-1, which was substantially higher than that in the WT line (9.1 μg g-1). 103 metabolites associated with flavone and flavonol biosynthesis, the metabolism of aromatic amino acids, energy metabolism, and auxin synthesis were significantly higher in the transgenic glyphosate-resistant individuals (R) than in the WT individuals. The results of quantitative analysis show that pyruvate, sedoheptulose 7-phosphate, and gluconic acid amounts in R plants were 1.1-, 1.6- and 1.3-fold higher than those in WT plants, respectively. However, both citric and glyceric acid levels were 0.9-fold lower than those in WT plants. The abundance of other metabolites in the glycolytic and pentose phosphate pathways of central carbon metabolism was similar in the WT and transgenic plants. Glutamic acid was significantly more abundant in the transgenic line than in the WT plants. In contrast, asparagine, glutamine, and lysine were less abundant. However, the concentration of other amino acids did not change significantly. Overexpression of E. indica EPSPS in A. thaliana conferred a moderate level of tolerance to glyphosate. Metabolites associated with flavone and flavonol biosynthesis, the metabolism of aromatic amino acids, and energy metabolism were significantly increased. The results of this study will be useful for evaluating the characterisation and risk assessment of transgenic plants, including identification of unintended effects of the respective transgenic modifications.
Collapse
Affiliation(s)
| | | | | | | | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.C.); (H.Y.); (H.C.)
| |
Collapse
|
2
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Gangola S, Bhatt P, Kumar AJ, Bhandari G, Joshi S, Punetha A, Bhatt K, Rene ER. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. CHEMOSPHERE 2022; 296:133916. [PMID: 35149016 DOI: 10.1016/j.chemosphere.2022.133916] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are widely used in agriculture, households, and industries; however, they have caused severe negative effects on the environment and human health. To clean up pesticide contaminated sites, various technological strategies, i.e. physicochemical and biological, are currently being used throughout the world. Biological approaches have proven to be a viable method for decontaminating pesticide-contaminated soils and water environments. The biological process eliminates contaminants by utilizing microorganisms' catabolic ability. Pesticide degradation rates are influenced by a variety of factors, including the pesticide's structure, concentration, solubility in water, soil type, land use pattern, and microbial activity in the soil. There is currently a knowledge gap in this field of study because researchers are unable to gather collective information on the factors affecting microbial growth, metabolic pathways, optimal conditions for degradation, and genomic, transcriptomic, and proteomic changes caused by pesticide stress on the microbial communities. The use of advanced tools and omics technology in research can bridge the existing gap in our knowledge regarding the bioremediation of pesticides. This review provides new insights on the research gaps and offers potential solutions for pesticide removal from the environment through the use of various microbe-mediated technologies.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Pankaj Bhatt
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China.
| | | | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Arjita Punetha
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, 249404, Uttarakhand, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| |
Collapse
|
4
|
Jiang Y, Zhang M, Zhang Y, Zulewska J, Yang Z. Calcium (Ca 2+)-regulated exopolysaccharide biosynthesis in probiotic Lactobacillus plantarum K25 as analyzed by an omics approach. J Dairy Sci 2021; 104:2693-2708. [PMID: 33455763 DOI: 10.3168/jds.2020-19237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023]
Abstract
Exopolysaccharide (EPS)-producing lactic acid bacteria have been widely used in dairy products, but how calcium, the main metal ion component in milk, regulates the EPS biosynthesis in lactic acid bacteria is not clear. In this study, the effect of Ca2+ on the biosynthesis of EPS in the probiotic Lactobacillus plantarum K25 was studied. The results showed that addition of CaCl2 at 20 mg/L in a semi-defined medium did not affect the growth of strain K25, but it increased the EPS yield and changed the microstructure of the polymer. The presence of Ca2+ also changed the monosaccharide composition of the EPS with decreased high molecular weight components and more content of rhamnose, though the functional groups of the polymer were not altered as revealed by Fourier transform infrared spectral analysis. These were further confirmed by analysis of the mRNA expression of cps genes, 9 of which were upregulated by Ca2+, including cps4F and rfbD associated with EPS biosynthesis with rhamnose. Proteomics analysis showed that Ca2+ upregulated most of the proteins related to carbon transport and metabolism, fatty acid synthesis, amino acid synthesis, ion transport, UMP synthesis. Specially, the increased expression of MelB, PtlIIBC, EIIABC, PtlIIC, PtlIID, Bgl, GH1, MalFGK, DhaK, and FBPase provided substrates for the EPS synthesis. Meanwhile, metabolomics analysis revealed significant change of the small molecular metabolites in tricarboxylic acid cycle, glucose metabolism and propionic acid metabolism. Among them the content of active small molecules such as polygalitol, lyxose, and 5-phosphate ribose increased, facilitating the EPS biosynthesis. Furthermore, Ca2+ activated HipB signaling pathway to inhibit the expression of manipulator repressor such as ArsR, LytR/AlgR, IscR, and RafR, and activated the expression of GntR to regulate the EPS synthesis genes. This study provides a basis for understanding the overall change of metabolic pathways related to the EPS biosynthesis in L. plantarum K25 in response to Ca2+, facilitating exploitation of its EPS-producing potential for application in probiotic dairy products.
Collapse
Affiliation(s)
- Yunyun Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048; Mengniu Gaoke Dairy (Beijing) Co. Ltd., Beijing, P.R. China 101100
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048
| | - Yang Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China 550001
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048.
| |
Collapse
|
5
|
Pöppe J, Bote K, Ramesh A, Murugaiyan J, Kuropka B, Kühl M, Johnston P, Roesler U, Makarova O. Selection for Resistance to a Glyphosate-Containing Herbicide in Salmonella enterica Does Not Result in a Sustained Activation of the Tolerance Response or Increased Cross-Tolerance and Cross-Resistance to Clinically Important Antibiotics. Appl Environ Microbiol 2020; 86:e01204-20. [PMID: 33008821 PMCID: PMC7688225 DOI: 10.1128/aem.01204-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution of bacterial tolerance to antimicrobials precedes evolution of resistance and may result in cross-tolerance, cross-resistance, or collateral sensitivity to other antibiotics. Transient exposure of gut bacteria to glyphosate, the world's most widely used herbicide, has been linked to the activation of the stress response and changes in susceptibility to antibiotics. In this study, we investigated whether chronic exposure to a glyphosate-based herbicide (GBH) results in resistance, a constitutive activation of the tolerance and stress responses, and cross-tolerance or cross-resistance to antibiotics. Of the 10 farm animal-derived clinical isolates of Salmonella enterica subjected to experimental evolution in increasing concentrations of GBH, three isolates showed stable resistance with mutations associated with the glyphosate target gene aroA and no fitness costs. Global quantitative proteomics analysis demonstrated activation of the cellular tolerance and stress response during the transient exposure to GBH but not constitutively in the resistant mutants. Resistant mutants displayed no cross-resistance or cross-tolerance to antibiotics. These results suggest that while transient exposure to GBH triggers cellular tolerance response in Salmonella enterica, this response does not become genetically fixed after selection for resistance to GBH and does not result in increased cross-tolerance or cross-resistance to clinically important antibiotics under our experimental conditions.IMPORTANCE Glyphosate-based herbicides (GBH) are among the world's most popular, with traces commonly found in food, feed, and the environment. Such high ubiquity means that the herbicide may come into contact with various microorganisms, on which it acts as an antimicrobial, and it may select for resistance and cross-resistance to clinically important antibiotics. It is therefore important to estimate whether the widespread use of pesticides may be an underappreciated source of antibiotic-resistant microorganisms that may compromise efficiency of antibiotic treatments in humans and animals.
Collapse
Affiliation(s)
- Judith Pöppe
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Katrin Bote
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Abhinaya Ramesh
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology & Biotechnology, SRM University-AP, Andhra Pradesh, India
| | - Benno Kuropka
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Kühl
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Olga Makarova
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Omics Approaches to Pesticide Biodegradation. Curr Microbiol 2020; 77:545-563. [DOI: 10.1007/s00284-020-01916-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
7
|
Wumbei A, Goeteyn L, Lopez E, Houbraken M, Spanoghe P. Glyphosate in yam from Ghana. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2019; 12:231-235. [PMID: 31046629 DOI: 10.1080/19393210.2019.1609098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/11/2019] [Indexed: 01/16/2023]
Abstract
Glyphosate is used in Ghana on many crops including yam. There is the suspicion that there could be residue problems in the yam crop. Glyphosate as a polar compound is noted for its difficulty to be analysed in biological matrices. In this study, the method for glyphosate analysis based on FMOC-Cl derivatization was modified with a clean-up (CH2Cl2) step and validated to analyse glyphosate in yam by LC-MS/MS. The results showed that the validated method was efficient for the analysis of glyphosate in yam, with recoveries of 34%, linearity of 0.997, RSD of 7%, LOD of 0.04 mg kg-1, and LOQ of 0.12 mg kg-1. Out of 68 samples analysed from a field experiment and from markets, glyphosate was detected in 14 samples, but at levels below the LOQ. It is concluded that the yam contained glyphosate residues at very low levels which may not pose threat to human health.
Collapse
Affiliation(s)
- Abukari Wumbei
- Faculty of Bioscience Engineering, Department of Crop Protection Chemistry, Ghent University, Ghent, Belgium
- Institute for Interdisciplinary Research and Consultancy Services, University for Development Studies, Tamale, Ghana
| | - Liliane Goeteyn
- Faculty of Bioscience Engineering, Department of Crop Protection Chemistry, Ghent University, Ghent, Belgium
| | - Edelbis Lopez
- Faculty of Bioscience Engineering, Department of Crop Protection Chemistry, Ghent University, Ghent, Belgium
- Department of Crop Protection, Sancti Spiritus University, Sancti Spiritus, Cuba
| | - Michael Houbraken
- Faculty of Bioscience Engineering, Department of Crop Protection Chemistry, Ghent University, Ghent, Belgium
| | - Pieter Spanoghe
- Faculty of Bioscience Engineering, Department of Crop Protection Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Castrejón-Godínez ML, Ortiz-Hernández ML, Salazar E, Encarnación S, Mussali-Galante P, Tovar-Sánchez E, Sánchez-Salinas E, Rodríguez A. Transcriptional analysis reveals the metabolic state of Burkholderia zhejiangensis CEIB S4-3 during methyl parathion degradation. PeerJ 2019; 7:e6822. [PMID: 31086743 PMCID: PMC6486813 DOI: 10.7717/peerj.6822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia zhejiangensis CEIB S4-3 has the ability to degrade methyl parathion (MP) and its main hydrolysis byproduct p-nitrophenol (PNP). According to genomic data, several genes related with metabolism of MP and PNP were identified in this strain. However, the metabolic state of the strain during the MP degradation has not been evaluated. In the present study, we analyzed gene expression changes during MP hydrolysis and PNP degradation through a transcriptomic approach. The transcriptional analysis revealed differential changes in the expression of genes involved in important cellular processes, such as energy production and conversion, transcription, amino acid transport and metabolism, translation, ribosomal structure and biogenesis, among others. Transcriptomic data also exhibited the overexpression of both PNP-catabolic gene clusters (pnpABA′E1E2FDC and pnpE1E2FDC) present in the strain. We found and validated by quantitative reverse transcription polymerase chain reaction the expression of the methyl parathion degrading gene, as well as the genes responsible for PNP degradation contained in two clusters. This proves the MP degradation pathway by the strain tested in this work. The exposure to PNP activates, in the first instance, the expression of the transcriptional regulators multiple antibiotic resistance regulator and Isocitrate Lyase Regulator (IclR), which are important in the regulation of genes from aromatic compound catabolism, as well as the expression of genes that encode transporters, permeases, efflux pumps, and porins related to the resistance to multidrugs and other xenobiotics. In the presence of the pesticide, 997 differentially expressed genes grouped in 104 metabolic pathways were observed. This report is the first to describe the transcriptomic analysis of a strain of B. zhejiangensis during the biodegradation of PNP.
Collapse
Affiliation(s)
| | - Ma Laura Ortiz-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Emmanuel Salazar
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Kendall H, Kaptan G, Stewart G, Grainger M, Kuznesof S, Naughton P, Clark B, Hubbard C, Raley M, Marvin HJ, Frewer LJ. Drivers of existing and emerging food safety risks: Expert opinion regarding multiple impacts. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG. Environmental and health effects of the herbicide glyphosate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:255-268. [PMID: 29117584 DOI: 10.1016/j.scitotenv.2017.10.309] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 05/28/2023]
Abstract
The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account.
Collapse
Affiliation(s)
- A H C Van Bruggen
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32610, USA.
| | - M M He
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Life and Environment Science, Hangzhou Normal University, Zhejiang 310036, China
| | - K Shin
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32610, USA
| | - V Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - K C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - M R Finckh
- Faculty of Organic Agricultural Sciences, Ecological Plant Protection, University of Kassel, 37213 Witzenhausen, Germany
| | - J G Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|