1
|
Han YH, Li YX, Chen X, Zhang H, Zhang Y, Li W, Liu CJ, Chen Y, Ma LQ. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171922. [PMID: 38522532 DOI: 10.1016/j.scitotenv.2024.171922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Fedenko VS, Landi M, Shemet SA. Metallophenolomics: A Novel Integrated Approach to Study Complexation of Plant Phenolics with Metal/Metalloid Ions. Int J Mol Sci 2022; 23:ijms231911370. [PMID: 36232672 PMCID: PMC9570091 DOI: 10.3390/ijms231911370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Plant adaptive strategies have been shaped during evolutionary development in the constant interaction with a plethora of environmental factors, including the presence of metals/metalloids in the environment. Among adaptive reactions against either the excess of trace elements or toxic doses of non-essential elements, their complexation with molecular endogenous ligands, including phenolics, has received increasing attention. Currently, the complexation of phenolics with metal(loid)s is a topic of intensive studies in different scientific fields. In spite of the numerous studies on their chelating capacity, the systemic analysis of phenolics as plant ligands has not been performed yet. Such a systematizing can be performed based on the modern approach of metallomics as an integral biometal science, which in turn has been differentiated into subgroups according to the nature of the bioligands. In this regard, the present review summarizes phenolics–metal(loid)s’ interactions using the metallomic approach. Experimental results on the chelating activity of representative compounds from different phenolic subgroups in vitro and in vivo are systematized. General properties of phenolic ligands and specific properties of anthocyanins are revealed. The novel concept of metallophenolomics is proposed, as a ligand-oriented subgroup of metallomics, which is an integrated approach to study phenolics–metal(loid)s’ complexations. The research subjects of metallophenolomics are outlined according to the methodology of metallomic studies, including mission-oriented biometal sciences (environmental sciences, food sciences and nutrition, medicine, cosmetology, coloration technologies, chemical sciences, material sciences, solar cell sciences). Metallophenolomics opens new prospects to unite multidisciplinary investigations of phenolic–metal(loid) interactions.
Collapse
Affiliation(s)
- Volodymyr S. Fedenko
- Research Institute of Biology, Oles Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80I-56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216620
| | - Sergiy A. Shemet
- Ukrainian Association for Haemophilia and Haemostasis “Factor D”, Topola-3, 20/2/81, 49041 Dnipro, Ukraine
| |
Collapse
|
3
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
4
|
Shah RM, Stephenson S, Crosswell J, Gorman D, Hillyer KE, Palombo EA, Jones OAH, Cook S, Bodrossy L, van de Kamp J, Walsh TK, Bissett A, Steven ADL, Beale DJ. Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151175. [PMID: 34699819 DOI: 10.1016/j.scitotenv.2021.151175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Vertical zonation within estuarine ecosystems can strongly influence microbial diversity and function by regulating competition, predation, and environmental stability. The degree to which microbial communities exhibit horizontal patterns through an estuary has received comparatively less attention. Here, we take a multi-omics ecosurveillance approach to study environmental gradients created by the transition between dominant vegetation types along a near pristine tropical river system (Wenlock River, Far North Queensland, Australia). The study sites included intertidal mudflats fringed by saltmarsh, mangrove or mixed soft substrata habitats. Collected sediments were analyzed for eukaryotes and prokaryotes using small sub-unit (SSU) rRNA gene amplicons to profile the relative taxonomic composition. Central carbon metabolism metabolites and other associated organic polar metabolites were analyzed using established metabolomics-based approaches, coupled with total heavy metals analysis. Eukaryotic taxonomic information was found to be more informative of habitat type. Bacterial taxonomy and community composition also showed habitat-specificity, with phyla Proteobacteria and Cyanobacteria strongly linked to mangroves and saltmarshes, respectively. In contrast, metabolite profiling was critical for understanding the biochemical pathways and expressed functional outputs in these systems that were tied to predicted microbial gene function (16S rRNA). A high degree of metabolic redundancy was observed in the bacterial communities, with the metabolomics data suggesting varying degrees of metabolic criticality based on habitat type. The predicted functions of the bacterial taxa combined with annotated metabolites accounted for the conservative perspective of microbial community redundancy against the putative metabolic pathway impacts in the metabolomics data. Coupling these data demonstrates that habitat-mediated estuarine gradients drive patterns of community diversity and metabolic function and highlights the real redundancy potential of habitat microbiomes. This information is useful as a point of comparison for these sensitive ecosystems and provides a framework for identifying potentially vulnerable or at-risk systems before they are significantly degraded.
Collapse
Affiliation(s)
- Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sarah Stephenson
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Lucas Heights, NSW 2234, Australia
| | - Joseph Crosswell
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Daniel Gorman
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Stephen Cook
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Berrimah, NT 0828, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Thomas K Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew D L Steven
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
5
|
Shah RM, Hillyer KE, Stephenson S, Crosswell J, Karpe AV, Palombo EA, Jones OAH, Gorman D, Bodrossy L, van de Kamp J, Bissett A, Whiteley AS, Steven ADL, Beale DJ. Functional analysis of pristine estuarine marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146526. [PMID: 33798899 DOI: 10.1016/j.scitotenv.2021.146526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Traditional environmental monitoring techniques are well suited to resolving acute exposure effects but lack resolution in determining subtle shifts in ecosystem functions resulting from chronic exposure(s). Surveillance with sensitive omics-based technologies could bridge this gap but, to date, most omics-based environmental studies have focused on previously degraded environments, identifying key metabolic differences resulting from anthropogenic perturbations. Here, we apply omics-based approaches to pristine environments to establish blueprints of microbial functionality within healthy estuarine sediment communities. We collected surface sediments (n = 50) from four pristine estuaries along the Western Cape York Peninsula of Far North Queensland, Australia. Sediment microbiomes were analyzed for 16S rRNA amplicon sequences, central carbon metabolism metabolites and associated secondary metabolites via targeted and untargeted metabolic profiling methods. Multivariate statistical analyses indicated heterogeneity among all the sampled estuaries, however, taxa-function relationships could be established that predicted community metabolism potential. Twenty-four correlated gene-metabolite pathways were identified and used to establish sediment microbial blueprints of essential carbon metabolism and amino acid biosynthesis that were positively correlated with community metabolic function outputs (2-oxisocapraote, tryptophan, histidine citrulline and succinic acid). In addition, an increase in the 125 KEGG genes related to metal homeostasis and metal resistance was observed, although, none of the detected metabolites related to these specific genes upon integration. However, there was a correlation between metal abundance and functional genes related to Fe and Zn metabolism. Our results establish a baseline microbial blueprint for the pristine sediment microbiome, one that drives important ecosystem services and to which future ecosurveillance monitoring can be compared.
Collapse
Affiliation(s)
- Rohan M Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Sarah Stephenson
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Lucas Heights, NSW 2234, Australia
| | - Joseph Crosswell
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Daniel Gorman
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Indian Ocean Marine Research Centre, Crawley, WA 6009, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew S Whiteley
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA 6014, Australia
| | - Andy D L Steven
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
6
|
Microorganisms employed in the removal of contaminants from wastewater of iron and steel industries. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00982-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Sardans J, Gargallo-Garriga A, Urban O, Klem K, Walker TW, Holub P, Janssens IA, Peñuelas J. Ecometabolomics for a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change. Metabolites 2020; 10:E239. [PMID: 32527044 PMCID: PMC7345909 DOI: 10.3390/metabo10060239] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
The number of ecometabolomic studies, which use metabolomic analyses to disentangle organisms' metabolic responses and acclimation to a changing environment, has grown exponentially in recent years. Here, we review the results and conclusions of ecometabolomic studies on the impacts of four main drivers of global change (increasing frequencies of drought episodes, heat stress, increasing atmospheric carbon dioxide (CO2) concentrations and increasing nitrogen (N) loads) on plant metabolism. Ecometabolomic studies of drought effects confirmed findings of previous target studies, in which most changes in metabolism are characterized by increased concentrations of soluble sugars and carbohydrate derivatives and frequently also by elevated concentrations of free amino acids. Secondary metabolites, especially flavonoids and terpenes, also commonly exhibited increased concentrations when drought intensified. Under heat and increasing N loads, soluble amino acids derived from glutamate and glutamine were the most responsive metabolites. Foliar metabolic responses to elevated atmospheric CO2 concentrations were dominated by greater production of monosaccharides and associated synthesis of secondary metabolites, such as terpenes, rather than secondary metabolites synthesized along longer sugar pathways involving N-rich precursor molecules, such as those formed from cyclic amino acids and along the shikimate pathway. We suggest that breeding for crop genotypes tolerant to drought and heat stress should be based on their capacity to increase the concentrations of C-rich compounds more than the concentrations of smaller N-rich molecules, such as amino acids. This could facilitate rapid and efficient stress response by reducing protein catabolism without compromising enzymatic capacity or increasing the requirement for re-transcription and de novo biosynthesis of proteins.
Collapse
Affiliation(s)
- Jordi Sardans
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Albert Gargallo-Garriga
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Tom W.N. Walker
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland;
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| | - Ivan A. Janssens
- Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Josep Peñuelas
- Spain National Research Council (CSIC), Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Spain; (A.G.-G.); (J.P.)
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Institute, 08193 Cerdanyola del vallès, Spain
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, CZ-60300 Brno, Czech Republic; (O.U.); (K.K.); (P.H.)
| |
Collapse
|
8
|
Boonchaisri S, Stevenson T, Dias DA. Utilization of GC-MS untargeted metabolomics to assess the delayed response of glufosinate treatment of transgenic herbicide resistant (HR) buffalo grasses (Stenotaphrum secundatum L.). Metabolomics 2020; 16:22. [PMID: 31989303 DOI: 10.1007/s11306-020-1644-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Herbicide resistant (HR) buffalo grasses were genetically engineered to resist the non-selective herbicide, glufosinate in order to facilitate a modern, 'weeding program' which is highly effective in terms of minimizing costs and labor. The resistant trait was conferred by an insertion of the pat gene to allow for the production of the enzyme phosphinothricin acetyltransferase (PAT) to detoxify the glufosinate inhibitive effect. To date, there are only a few reports using metabolomics as well as molecular characterizations published for glufosinate-resistant crops with no reports on HR turfgrass. Therefore, for the first time, this study examines the metabolome of glufosinate-resistant buffalo grasses which not only will be useful to future growers but also the scientific community. OBJECTIVE A major aim of this present work is to characterize and evaluate the metabolic alterations which may arise from a genetic transformation of HR buffalo grasses by comprehensively using gas chromatography-mass spectrometry (GC-MS) based untargeted metabolomics. METHODS Eight-week old plants of 4 HR buffalo grasses, (93-1A, 93-2B, 93-3C and 93-5A) and 3 wild type varieties (WT 8-4A, WT 9-1B and WT 9-1B) were selected for physiological, molecular and metabolomics experiments. Plants were either sprayed with 1, 5, 10 and 15% v/v of glufosinate to evaluate the visual injuries or submerged in 5% v/v of glufosinate 3 days prior to a GC-MS based untargeted metabolomics analysis. In contrast, the control group was treated with distilled water. Leaves were extracted in 1:1 methanol:water and then analysed, using an in-house GC-MS untargeted workflow. RESULTS Results identified 199 metabolites with only 6 of them (cis-aconitic acid, allantoin, cellobiose, glyceric acid, maltose and octadecanoic acid) found to be statistically significant (p < 0.05) between the HR and wild type buffalo grass varieties compared to the control experiment. Among these metabolites, unusual accumulation of allantoin was prominent and was an unanticipated effect of the pat gene insertion. As expected, glufosinate treatment caused significant metabolic alterations in the sensitive wild type, with the up-regulation of several amino acids (e.g. phenylalanine and isoleucine) which was likely due to glufosinate-induced senescence. The aminoacyl-tRNA biosynthetic pathway was identified as the most significant enriched pathway as a result of glufosinate effects because a number of its intermediates were amino acids. CONCLUSION HR buffalo grasses were very similar to its wild type comparator based on a comprehensive GC-MS based untargeted metabolomics and therefore, should guarantee the safe use of these HR buffalo grasses. The current metabolomics analyses not only confirmed the effects of glufosinate to up-regulate free amino acid pools in the sensitive wild type but also several alterations in sugar, sugar phosphate and organic acid metabolism have been reported.
Collapse
Affiliation(s)
| | - Trevor Stevenson
- School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
9
|
Odoh CK, Zabbey N, Sam K, Eze CN. Status, progress and challenges of phytoremediation - An African scenario. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:365-378. [PMID: 30818239 DOI: 10.1016/j.jenvman.2019.02.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
Environmental pollution occasioned by artisanal activities and technical failures at exploration sites has affected mostly oil producing and other mineral resources mining regions in developed and developing nations. As conventional techniques of remediation seem to be progressively unreliable and inefficient, contaminated land management experts have adopted a plant-based technology described as 'phytoremediation' for effective detoxification and removal of contaminants in substrate environmental media (soil and sediment). This technique, has gained public acceptance because of its aesthetic, eco-friendly, solar energy driven and low cost attributes. With complexity of environmental pollution in Africa, identification of appropriate remediation approach that deliver net environmental benefit and economic profit to the society is vital, while also focusing on the exploitation of plants genetic tools for more clarity on phyto tolerance, uptake and translocation of pollutants. In this article, we reviewed the status, progress and challenges of phytoremediation in selected African countries (South Africa, Nigeria, Tanzania, Zambia, Egypt and Ghana), the ecological impact of the pollutants, phytoremediation strategies and the possible plants of choice. Besides highlighting the support roles played by soil fauna and flora, the fate of harvested biomass/dieback and its future prospects are also discussed. We further explored the factors challenging phytoremediation progress in Africa, amidst its promising potentials and applicability for sustainable ecosystem management paradigm.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB, 5323, East-West Road, Choba, Rivers State, Nigeria; Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| | - Kabari Sam
- Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria; Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Warri, Delta State, Nigeria.
| | - Chibuzor Nwadibe Eze
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
10
|
Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Metabolomics reveals defensive mechanisms adapted by maize on exposure to high molecular weight polycyclic aromatic hydrocarbons. CHEMOSPHERE 2019; 214:771-780. [PMID: 30296765 DOI: 10.1016/j.chemosphere.2018.09.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/22/2018] [Accepted: 09/29/2018] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbons are an important group of persistent organic pollutants. Using plants to remediate PAHs has been recognized as a cost-effective and environmentally friendly technique. However, the overall impact of PAHs on the regulation of plant metabolism has not yet been explored. In this study, we analyzed the alteration in the maize (Zea mays L.) metabolome on exposure to high molecular weight PAHs such as benzo[a]pyrene (BaP) and pyrene (PYR) in a hydroponic medium, individually and as a mixture (BaP + PYR) using GC-MS. The differences in the metabolites were analyzed using XCMS (an acronym for various forms (X) of chromatography-mass spectrometry), an online-based data analysis tool. A significant variation in metabolites was observed between treatment groups and the unspiked control group. The univariate, multivariate and pathway impact analysis showed there were more significant alterations in metabolic profiles between individual PAHs and the mixture of BaP and PYR. The marked changes in the metabolites of galactose metabolism and aminoacyl tRNA biosynthesis in PAHs treated maize leaves exhibit the adaptive defensive mechanisms for individual and PAHs mixture. Therefore, the metabolomics approach is essential for an understanding of the complex biochemical responses of plants to PAHs contaminants. This knowledge will shed new light in the field of phytoremediation, bio-monitoring, and environmental risk assessment.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh Ramraj Subashchandrabose
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
E. T. Moore R, Rehkämper M, Kreissig K, Strekopytov S, Larner F. Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation. RSC Adv 2018; 8:38022-38035. [PMID: 35558613 PMCID: PMC9089848 DOI: 10.1039/c8ra06794e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/06/2018] [Indexed: 11/23/2022] Open
Abstract
Sixty five urine samples obtained during one or two non-consecutive days from 10 healthy individuals were analysed for major (Na, Mg, K, Ca) and trace (Co, Cu, Zn, As, Rb, Sr, Mo and Pb) element concentrations. Following microwave digestion, the analyses were carried out using ICP-QMS (inductively coupled plasma quadrupole mass spectrometry) incorporating a collision/reaction cell. Repeat analyses of quality control samples show that the procedure produces unbiased results and is well suited for routine urinalysis of the investigated elements. Concentrations were normalised using specific gravity (SG) and the resultant decrease in variability supports previous conclusions that SG-normalisation appropriately corrects for differences in urine dilution. The elemental concentrations of the individual urine samples show large differences in dispersion. Most variable are As, Co and Zn, with CVs (coefficients of variation) of >75%. The major elements as well as Rb, Sr and Mo display intermediate variability, whilst Cu and Pb have the least elemental dispersion with CV values of about 30%. A detailed assessment shows that the overall elemental variability is governed both by differences between individuals and variations for a single individual over time. Spot urine samples exhibit elemental concentrations that, on average, resemble the daily mean values to within about 30% for all elements except K and Rb. Diet-related changes in urinary element concentration are most prominent for Mg, K, Co, Rb and Pb. The concentrations of Co, As and Rb appear to vary systematically with gender but this may primarily reflect co-variance with specific diets. Urinary element concentrations were quantified by ICP-QMS and variations over time, between individuals and with gender and diet were assessed.![]()
Collapse
Affiliation(s)
- Rebekah E. T. Moore
- Department of Earth Science and Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | - Katharina Kreissig
- Department of Earth Science and Engineering
- Imperial College London
- London SW7 2AZ
- UK
| | | | - Fiona Larner
- Department of Earth Sciences
- University of Oxford
- Oxford OX1 3AN
- UK
| |
Collapse
|
12
|
Gonzalez Ibarra AA, Wrobel K, Yanez Barrientos E, Corrales Escobosa AR, Gutierrez Corona JF, Enciso Donis I, Wrobel K. Changes of Metabolomic Profile in Helianthus annuus under Exposure to Chromium(VI) Studied by capHPLC-ESI-QTOF-MS and MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3568621. [PMID: 29359067 PMCID: PMC5735654 DOI: 10.1155/2017/3568621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 06/01/2023]
Abstract
The application of capHPLC-ESI-QTOF-MS and MS/MS to study the impact of Cr(VI) on metabolites profile in Helianthus annuus is reported. Germinated seeds were grown hydroponically in the presence of Cr(VI) (25 mgCr/L) and root extracts of the exposed and control plants were analyzed by untargeted metabolomic approach. The main goal was to detect which metabolite groups were mostly affected by Cr(VI) stress; two data analysis tools (ProfileAnalysis, Bruker, and online XCMS) were used under criteria of intensity threshold 5 · 104 cps, fold change ≥ 5, and p ≤ 0.01, yielding precursor ions. Molecular formulas were assigned based on data processing with two computational tools (SIRIUS and MS-Finder); annotation of candidate structures was performed by database search using CSI:FingerID and MS-Finder. Even though ultimate identification has not been achieved, it was demonstrated that secondary metabolism became activated under Cr(VI) stress. Among 42 candidate compounds returned from database search for seven molecular formulas, ten structures corresponded to isocoumarin derivatives and eleven were sesquiterpenes or sesquiterpene lactones; three benzofurans and four glycoside or pyrane derivatives of phenolic compounds were also suggested. To gain further insight on the effect of Cr(VI) in sunflower, isocoumarins and sesquiterpenes were selected as the target compounds for future study.
Collapse
Affiliation(s)
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, GTO, Mexico
| | - Eunice Yanez Barrientos
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, GTO, Mexico
| | | | | | - Israel Enciso Donis
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, GTO, Mexico
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, GTO, Mexico
| |
Collapse
|
13
|
Wu Z, Xu Y, Cai M, Cheng SY, Chen H, Huang D, Chen K, Lin Y, Li T, Liu M, Deng H, Ni M, Ke H. Metals in Fishes from Yongshu Island, Southern South China Sea: Human Health Risk Assessment. J Toxicol 2017; 2017:2458293. [PMID: 29201049 PMCID: PMC5672128 DOI: 10.1155/2017/2458293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
In order to assess the bioaccumulation of metals associated with gender, tissues, and their potential ecological risk, four species of fish were collected from the Yongshu Island in the Southern South China Sea. Metals and stable Pb isotopes in their tissues (muscle, gill, liver, intestine, and ovary) were determined. The concentrations of metals (mg/kg, dry weight) in these species were ND-21.60 (Cd), 1.21-4.87 (Cr), 0.42-22.4 (Cu), 1.01-51.8 (Mn), 0.30-3.28 (Ni), 6.04-1.29 × 103 (Zn), 14.89-1.40 × 103 (Fe), and 0.22-3.36 (Pb). In general, the liver and intestine absorbed more metals than the other tissues. Metals accumulation can be influenced by gender and feeding behavior and in fact, female fish and dietary exposure are more prone to accumulate metals. In addition, Pb isotopic ratios indicated that all species had significant biological fractionation, which may not make them good tracers for source identification. The metal concentrations of most samples were lower than the national standard values of the FAO (USA), which suggested that human consumption of these species may not cause health risks. However, since the surrounding areas are developing rapidly, the potential environmental risk of metals will intensify and should receive more attention.
Collapse
Affiliation(s)
- Zhai Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Ye Xu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minggang Cai
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Sha-Yen Cheng
- College of Ocean Science and Resource, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Huorong Chen
- The Monitoring Center of Marine Environment and Fishery Resources, Fujian Provincial Department of Ocean and Fisheries, Fuzhou 350003, China
| | - Dongren Huang
- The Monitoring Center of Marine Environment and Fishery Resources, Fujian Provincial Department of Ocean and Fisheries, Fuzhou 350003, China
| | - Kai Chen
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Yan Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Tianyao Li
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Mengyang Liu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Hengxiang Deng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Minjie Ni
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Hongwei Ke
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Devagi G, Shanmugam G, Mohankumar A, Sundararaj P, Dallemer F, Kalaivani P, Prabhakaran R. Caenorhabditis elegans as a model for exploring the efficacy of synthesized organoruthenium complexes for aging and Alzheimer's disease a neurodegenerative disorder: A systematic approach. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
16
|
Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. FRONTIERS IN PLANT SCIENCE 2016; 7:303. [PMID: 27014323 PMCID: PMC4791364 DOI: 10.3389/fpls.2016.00303] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Global mechanization, urbanization, and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizoremediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.
Collapse
Affiliation(s)
- Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of SharjahSharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar UniversityCairo, Egypt
- *Correspondence: Kareem A. Mosa,
| | - Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of SharjahSharjah, UAE
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa CampusGoa, India
| | - Mohamed Helmy
- The Donnelly Centre for Cellular and Biomedical Research, University of Toronto, TorontoON, Canada
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MassachusettsAmherst, MA, USA
| |
Collapse
|
17
|
Golasik M, Jawień W, Przybyłowicz A, Szyfter W, Herman M, Golusiński W, Florek E, Piekoszewski W. Classification models based on the level of metals in hair and nails of laryngeal cancer patients: diagnosis support or rather speculation? Metallomics 2015; 7:455-65. [DOI: 10.1039/c4mt00285g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several larynx cancer prediction models were built and each was weighted according to their performance.
Collapse
Affiliation(s)
- Magdalena Golasik
- Department of Analytical Chemistry
- Faculty of Chemistry
- Jagiellonian University in R. Kraków
- 30-060 Kraków, Poland
| | - Wojciech Jawień
- Department of Pharmacokinetics and Physical Pharmacy
- Jagiellonian University School of Medicine
- 30-688 Kraków, Poland
| | - Agnieszka Przybyłowicz
- Department of Analytical Chemistry
- Faculty of Chemistry
- Jagiellonian University in R. Kraków
- 30-060 Kraków, Poland
| | - Witold Szyfter
- Department of Otolaryngology and Laryngological Oncology
- University of Medical Sciences
- Przybyszewskiego 4960-355 Poznań, Poland
- Clinic of Phoniatrics and Audiology
- University of Medical Sciences
| | - Małgorzata Herman
- Department of Analytical Chemistry
- Faculty of Chemistry
- Jagiellonian University in R. Kraków
- 30-060 Kraków, Poland
| | - Wojciech Golusiński
- Department of Otolaryngology and Laryngological Oncology
- University of Medical Sciences
- Przybyszewskiego 4960-355 Poznań, Poland
- Greater Poland Cancer Center
- 61-866 Poznań, Poland
| | - Ewa Florek
- Laboratory of Environmental Research
- Department of Toxicology
- University of Medical Sciences
- 60-631 Poznań, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry
- Faculty of Chemistry
- Jagiellonian University in R. Kraków
- 30-060 Kraków, Poland
| |
Collapse
|