1
|
Superhydrophobic behavior of cylinder dual-scale hierarchical nanostructured surfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Liu C, Lei F, Wei Y, Li Z, Zhang C, Peng Q, Man B, Yu J. Preparation of a superhydrophobic AgNP/GF substrate and its SERS application in a complex detection environment. OPTICS EXPRESS 2021; 29:34085-34096. [PMID: 34809206 DOI: 10.1364/oe.441606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely considered to be a fingerprint spectrum that can realize molecular identification, and it continues to receive a lot of attention due to its high sensitivity and powerful qualitative analysis capabilities. In recent years, there has been a lot of work and reports on super-sensitive SERS substrates, but often the enhanced ability of the substrate is also effective for impurities and irrelevant molecules. Therefore, a problem that still remains to be solved is how to perform effective trace detection of specific substances in a complex detection environment. Herein, a superhydrophobic Ag nanoparticle/glass microfibre filter (AgNP/GF) substrate was designed to realize the Raman detection of complex multiphase solutions. The hydrophobic three-dimensional net-like structure provides efficient Raman enhancement, making the substrate have extremely high detection limits for dye molecules and even achieving specific detection of the hexane phase component (thiram molecule) in a multiphase solution.
Collapse
|
3
|
Liu C, Li J, Lei F, Wei Y, Li Z, Zhang C, Peng Q, Yu J, Man B. SERS substrate with wettability difference for molecular self-concentrating detection. NANOTECHNOLOGY 2021; 32:375603. [PMID: 34049298 DOI: 10.1088/1361-6528/ac0665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The surface-enhanced Raman spectroscopy (SERS) has attracted much attention due to the powerful capability of quantificational analysis. Nowadays, most of the enhancement effect by SERS substrate is provided by the 'hot spots' occupying relatively small space. When the amount of analyte is too low, it is difficult to ensure that all the probe molecules can be placed into the 'hot spots', which is a headache in SERS quatification. In order to solve this problem, we have developed a structure of CuO nanowires/Ag nanoparticles with wettability capacity difference, which can aggregate molecules in water and oil simultaneously under two different mechanisms. The limit of detection and enhancement factor of this structure are estimated as 10-15M and 1.55 × 1011respectively (for rhodamine 6G, R6G). In a proof-in-principle experiment of sewage detection, it successfully achieved the aggregation and additional enhancement of both the R6G molecules in aqueous solution and thiuram molecules in toluene, realizing efficient and accurate Raman detection.
Collapse
Affiliation(s)
- Chundong Liu
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jia Li
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yisheng Wei
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Zhen Li
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Chao Zhang
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qianqian Peng
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jing Yu
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Provincial Engineering and Technical Center of Light Manipulation, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
4
|
Lee EY, Kim Y, Koo B, Noh GS, Lee H, Shin Y. A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. SENSORS AND ACTUATORS. B, CHEMICAL 2020. [PMID: 32501366 DOI: 10.1016/j.snb.2020.128357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent advances in nucleic acid based testing using bio-optical sensor approaches have been introduced but most are based on hybridization between the optical sensor and the bio-molecule and not on an amplification mechanism. Direct nucleic acid amplification on an optical sensor has several technical limitations, such as the sensitivity of the temperature sensor, instrument complexity, and high background signal. We here describe a novel nucleic acid amplification method based on a whispering gallery mode active resonator and discuss its potential molecular diagnostic application. By implanting nanoclusters as active compounds, this active resonator operates without tapered fiber coupling and emits a strong photoluminescence signal with low background in the wavelength of low absorption in an aqueous environment that is typical of biosensors. Our method also offers an extremely low detection threshold down to a single copy within 10 min due to the strong light-matter interaction in a nano-gap structure. We envision that this active resonator provides a high refractive index contrast for tight mode confinement with simple alignment as well as the possibility of reducing the device size so that a point-of-care system with low-cost, high-sensitivity and simplicity.
Collapse
Affiliation(s)
- Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yeseul Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Geun Su Noh
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hansuek Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| |
Collapse
|
5
|
Song J, Cheng W, Nie M, He X, Nam W, Cheng J, Zhou W. Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro-/Nanostructures. ACS NANO 2020; 14:9521-9531. [PMID: 32589403 DOI: 10.1021/acsnano.0c04239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conventional methods of creating superhydrophobic surface-enhanced Raman spectroscopy (SERS) devices are by conformally coating a nanolayer of hydrophobic materials on micro-/nanostructured plasmonic substrates. However, the hydrophobic coating may partially block hot spots and therefore compromise Raman signals of analytes. In this paper, we report a partial Leidenfrost evaporation-assisted approach for ultrasensitive SERS detection of low-concentration analytes in water droplets on hierarchical plasmonic micro-/nanostructures, which are fabricated by integrating nanolaminated metal nanoantennas on carbon nanotube (CNT)-decorated Si micropillar arrays. In comparison with natural evaporation, partial Leidenfrost-assisted evaporation on the hierarchical surfaces can provide a levitating force to maintain the water-based analyte droplet in the Cassie-Wenzel hybrid state, i.e., a Janus droplet. By overcoming the diffusion limit in SERS measurements, the continuous shrinking circumferential rim of the droplet, which is in the Cassie state, toward the pinned central region of the droplet, which is in the Wenzel state, results in a fast concentration of dilute analyte molecules on a significantly reduced footprint within several minutes. Here, we demonstrate that a partial Leidenfrost droplet on the hierarchical plasmonic surfaces can reduce the final deposition footprint of analytes by 3-4 orders of magnitude and enable SERS detection of nanomolar analytes (10-9 M) in an aqueous solution. In particular, this type of hierarchical plasmonic surface has densely packed plasmonic hot spots with SERS enhancement factors (EFs) exceeding 107. Partial Leidenfrost evaporation-assisted SERS sensing on hierarchical plasmonic micro-/nanostructures provides a fast and ultrasensitive biochemical detection strategy without the need for additional surface modifications and chemical treatments.
Collapse
Affiliation(s)
- Junyeob Song
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Weifeng Cheng
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Meitong Nie
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xukun He
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Feng H, Yang F, Dong J, Liu Q. Ag@BiOCl super-hydrophobic nanostructure for enhancing SERS detection sensitivity. RSC Adv 2020; 10:11865-11870. [PMID: 35496623 PMCID: PMC9050507 DOI: 10.1039/d0ra01226b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has received widespread attention in the rapid detection of trace substances. The super-hydrophobic surface of structures has a significant impact on improving SERS performance. Usually a low concentration of objective molecules is randomly distributed in a large area on a non-hydrophobic SERS substrate, resulting in the Raman signals of the molecules not being easily detected. As a solution, a super-hydrophobic surface can gather a large number of probe molecules around the plasmon hot spots to effectively improve Raman SERS detection sensitivity. In this work, a chloride super-hydrophobic surface is fabricated, for the first time, by a simple and low-cost method of combining surface hydrophobic structures with surface modification. The dispersed and uniform hierarchical Ag@BiOCl nanosheet (Ag@BiOCl NSs) substrate has a higher surface-to-volume ratio and rich nano-gap. Such a chip with a high static contact angle of 157.4° exhibits a Raman signal detection limit of R6G dyes up to 10−9 M and an enhancement factor up to 107. This SERS chip with a super-hydrophobic surface offers great potential in practical applications owing to its simple fabricating process, low cost, large area, and high sensitivity. This large-area hierarchical Ag@BiOCl NSs SERS chip with a super-hydrophobic surface offers a great advantage in further enhancing SERS detection sensitivity.![]()
Collapse
Affiliation(s)
- Huimin Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Fengyou Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Jianjie Dong
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Qian Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
7
|
Zhao N, Li H, Xie Y, Feng Z, Wang Z, Yang Z, Yan X, Wang W, Tian C, Yu H. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Electrophoresis 2019; 40:3123-3131. [PMID: 31576580 DOI: 10.1002/elps.201900285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 11/06/2022]
Abstract
Plasmonic nanomaterials possessing large-volume, high-density hot spots with high field enhancement are highly desirable for ultrasensitive surface-enhanced Raman scattering (SERS) sensing. However, many as-prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two-step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2 ). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi-periodic cloud-like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large-area accessible dense hot spots. The optimized 3D-structured SERS substrate exhibits high-quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10-9 M. Furthermore, the as-prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10-7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large-area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS-based sensors.
Collapse
Affiliation(s)
- Nan Zhao
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Hefu Li
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Yanru Xie
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zhenbao Feng
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zongliang Wang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Zhenshan Yang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Xunling Yan
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Wenjun Wang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Cunwei Tian
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| | - Huishan Yu
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, P. R. China
| |
Collapse
|
8
|
Affiliation(s)
- Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
9
|
Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement. NANOMATERIALS 2019; 9:nano9020185. [PMID: 30717277 PMCID: PMC6409782 DOI: 10.3390/nano9020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
A seed-mediated electroless deposition (SMED) approach for fabrication of large-area and uniform gold nanoparticle films as efficient and reproducible as surface-enhanced Raman scattering (SERS) substrates was presented. This approach involved a seeding pretreatment procedure and a subsequent growth step. The former referred to activation of polylysine-coated glass slides in gold seed solution, and the latter required a careful control of the reactant concentration and reaction time. With the aid of gold seeds and appropriate reaction conditions, a large-area and uniform nanofilm with evenly distributed gold nanoparticles (Au NPs) was formed on the surface of the substrates after adding a mixed solution containing ascorbic acid and trisodium citrate. The morphology of the Au nanofilm was examined by scanning electron microscopy. The size evolution of Au NPs on the surface of the substrates was analyzed in detail. The nanofilm substrate was prepared by reaction conditions of the seeded activation process: 10 mL ascorbic acid and trisodium citrate mixture and 30 min of soaking time, which exhibited an excellent uniformity and reproducibility of SERS enhancement with relative standard deviation (RSD) values of less than 8% (particularly, a RSD value of 3% can be reached for the optimized measurement). Compared to the common electroless deposition, the seed-mediated electroless deposition possessed inherent advantages in controllability, reproducibility, and economic benefit.
Collapse
|
10
|
Dai Q, Li L, Wang C, Lv C, Su Z, Chai F. Fabrication of a Flowerlike Ag Microsphere Film with Applications in Catalysis and as a SERS Substrate. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qijun Dai
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
- Faculty of Chemistry; Faculty of Chemistry; Harbin Normal University; 150025 Harbin P. R. China
| | - Lu Li
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
| | - Chungang Wang
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
| | - Changli Lv
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
| | - Zhongmin Su
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
| | - Fang Chai
- Institute of Functional Material Chemistry; Faculty of Chemistry; Northeast Normal University; 130024 Changchun P. R. China
- Faculty of Chemistry; Faculty of Chemistry; Harbin Normal University; 150025 Harbin P. R. China
| |
Collapse
|
11
|
Yuan K, Zheng J, Yang D, Jurado Sánchez B, Liu X, Guo X, Liu C, Dina NE, Jian J, Bao Z, Hu Z, Liang Z, Zhou H, Jiang Z. Self-Assembly of Au@Ag Nanoparticles on Mussel Shell To Form Large-Scale 3D Supercrystals as Natural SERS Substrates for the Detection of Pathogenic Bacteria. ACS OMEGA 2018; 3:2855-2864. [PMID: 30221223 PMCID: PMC6130788 DOI: 10.1021/acsomega.8b00023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/27/2018] [Indexed: 05/13/2023]
Abstract
Herein, we developed a natural surface-enhanced Raman scattering (SERS) substrate based on size-tunable Au@Ag nanoparticle-coated mussel shell to form large-scale three-dimensional (3D) supercrystals (up to 10 cm2) that exhibit surface-laminated structures and crossed nanoplates and nanochannels. The high content of CaCO3 in the mussel shell results in superior hydrophobicity for analyte enrichment, and the crossed nanoplates and nanochannels provided rich SERS hot spots, which together lead to high sensitivity. Finite-difference time-domain simulations showed that nanoparticles in the channels exhibit apparently a higher electromagnetic field enhancement than nanoparticles on the platelets. Thus, under optimized conditions (using Au@AgNPs with 5 nm shell thickness), highly sensitive SERS detection with a detection limit as low as 10-9 M for rhodamine 6G was obtained. Moreover, the maximum electromagnetic field enhancement of different types of 3D supercrystals shows no apparent difference, and Au@AgNPs were uniformly distributed such that reproducible SERS measurements with a 6.5% variation (613 cm-1 peak) over 20 spectra were achieved. More importantly, the as-prepared SERS substrates can be utilized for the fast discrimination of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa by discriminant analysis. This novel Au@Ag self-assembled mussel shell template holds considerable promise as low-cost, durable, sensitive, and reproducible substrates for future SERS-based biosensors.
Collapse
Affiliation(s)
- Kaisong Yuan
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Junxia Zheng
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Danting Yang
- Department
of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological
and Physiological Technology, Medical School
of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Beatriz Jurado Sánchez
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Xiangjiang Liu
- College
of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinjie Guo
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chusheng Liu
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Nicoleta Elena Dina
- National
Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Jingyi Jian
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhijun Bao
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziwei Hu
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhihong Liang
- Analysis
and Test Center, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haibo Zhou
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhengjin Jiang
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
12
|
Roy A, Maiti A, Chini TK, Satpati B. Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34405-34415. [PMID: 28901125 DOI: 10.1021/acsami.7b08493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper reports on a simple and cost-effective process of developing a stable surface-enhanced Raman scattering (SERS) substrate based on silver (Ag) nanoparticles deposited on silicon (Si) surface. Durability is an important issue for preparing SERS active substrate as silver nanostructures are prone to rapid surface oxidation when exposed to ambient conditions, which may result in the loss of the enhancement capabilities in a short period of time. Here, we employ the galvanic displacement method to produce Ag nanoparticles on Si(100) substrate prepatterned with arrays of micropyramids by chemical etching, and subsequently, separate pieces of such substrates were annealed in oxygen and nitrogen environments at 550 °C. Interestingly, while nitrogen-annealed Si substrates were featured by spherical-shaped Ag particles, the oxygen annealed Si substrates were dominated by the formation of triangular shape particles attached with the spherical one. Remarkably, the oxygen-annealed substrate thus produced shows very high SERS enhancement compared to the either unannealed or nitrogen annealed substrate. The hitherto unobserved coexistence of triangular morphology with the spherical one and the gap between the two (source of efficient hot-spots) are the origin of enhanced SERS activity for the oxygen-annealed Ag particle-covered Si substrate as probed by the combined finite-difference time domain (FDTD) simulation and cathodoluminesensce (CL) experiment. As the substrate has already been annealed in an oxygen environment, further probability of oxidation is reduced in the present synthesis protocol that paves the way for making a novel long-lived thermally stable SERS substrate.
Collapse
Affiliation(s)
- Abhijit Roy
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics , HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arpan Maiti
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics , HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Tapas Kumar Chini
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics , HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics , HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
13
|
Wang A, Jiang L, Li X, Xie Q, Li B, Wang Z, Du K, Lu Y. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection. J Mater Chem B 2017; 5:777-784. [PMID: 32263846 DOI: 10.1039/c6tb02629j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultratrace molecular detections from a limited amount of highly diluted solutions can offer unprecedented benefits in the biomedical/analytical fields, such as in precancer diagnosis, forensic analysis, and food safety. However, huge difficulties exist in completely concentrating the target molecules within a sensitive area and thereby enhancing the detection sensitivity. Herein, we report the ultratrace molecular detection using a low-adhesive superhydrophobic surface-enhanced Raman spectroscopy (LAS-SERS) substrate fabricated by femtosecond laser ablation. The LAS-SERS substrate has good characteristics, including a contact angle as high as 154°, a contact angle hysteresis below 5°, and a simulated Raman signal enhancement factor of up to 6 × 106. Compared to the previously developed superhydrophobic SERS (S-SERS) methods, the low-adhesive nature of the LAS-SERS method can greatly reduce the final contact area, thus significantly enhancing the detection limit. In our experiments, the final contact area of the LAS-SERS substrate was reduced by 19.5 times, corresponding to an 88.1 times increase in the concentration effect, as compared to the highly adhesive S-SERS substrates fabricated using the same technique. The enhanced condensation effect led to a detection limit as low as 10-14 M, which shows an obvious improvement compared to that of the other non-photolithography methods. The method reported herein offers a facile and efficient approach to the cost-effective fabrication of a high-performance LAS-SERS substrate for ultratrace molecular detection.
Collapse
Affiliation(s)
- Andong Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xia Y, Wu Y, Hang T, Chang J, Li M. Electrodeposition of High Density Silver Nanosheets with Controllable Morphologies Served as Effective and Reproducible SERS Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3385-3392. [PMID: 27003754 DOI: 10.1021/acs.langmuir.6b00101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Silver nanosheets with a nanogap smaller than 10 nm and high reproducibility were constructed through simple and environmentally friendly electrodeposition method on copper plate. The sizes of the nanogaps can be varied from around 7 to 150 nm by adjusting the deposition time and current density. The nanosheets with different nanogaps exhibited varied surface-enhanced Raman scattering (SERS) properties due to electromagnetic mechanism (EM). The optimized high density silver nanosheets with a nanogap smaller than 10 nm showed effective SERS ability with an enhanced factor as high as 2.0 × 10(5). Furthermore, the formation mechanism of the nanosheets during the electrodeposition process has been investigated by discussing the influence of boric acid and current density. This method has proved to be applicable on different metal substrates, which exhibits the potential to be widely used in different fields.
Collapse
Affiliation(s)
- Yiqing Xia
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwen Wu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Hang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Jiaming Chang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Hakonen A, Rindzevicius T, Schmidt MS, Andersson PO, Juhlin L, Svedendahl M, Boisen A, Käll M. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. NANOSCALE 2016; 8:1305-1308. [PMID: 26676552 DOI: 10.1039/c5nr06524k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here we demonstrate that surface-enhanced Raman scattering (SERS) can be used for sensitive detection of femtomol quantities of two nerve gases, VX and Tabun, using a handheld Raman device and SERS substrates consisting of flexible gold-covered Si nanopillars. The substrate surface exhibits high droplet adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field.
Collapse
Affiliation(s)
- Aron Hakonen
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Tomas Rindzevicius
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Michael Stenbæk Schmidt
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Per Ola Andersson
- Swedish Defense Research Agency FOI, Dept CBRN Def & Security, SE-90182 Umeå, Sweden
| | - Lars Juhlin
- Swedish Defense Research Agency FOI, Dept CBRN Def & Security, SE-90182 Umeå, Sweden
| | - Mikael Svedendahl
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anja Boisen
- DTU Nanotech, Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads, Building 345 east, 2800 Kgs. Lyngby, Denmark
| | - Mikael Käll
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
16
|
Yue B, Zhang B, You J, Li Y, Li L, Li J. “Lotus-effect” tape: imparting superhydrophobicity to solid materials with an electrospun Janus composite mat. RSC Adv 2016. [DOI: 10.1039/c5ra24632f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lotus-effect tape: a superhydrophobic surface was easily constructed by thermally taping an electrospun Janus composite mat onto various substrates.
Collapse
Affiliation(s)
- Bingbing Yue
- CAS Center for Excellence on TMSR Energy System
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- People’s Republic of China
| | - Bowu Zhang
- CAS Center for Excellence on TMSR Energy System
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- People’s Republic of China
| | - Jichun You
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- People’s Republic of China
| | - Yongjin Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou
- People’s Republic of China
| | - Linfan Li
- CAS Center for Excellence on TMSR Energy System
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- People’s Republic of China
| | - Jingye Li
- CAS Center for Excellence on TMSR Energy System
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- People’s Republic of China
| |
Collapse
|
17
|
Godeau G, N'na J, Boutet K, Darmanin T, Guittard F. Postfunctionalization of Azido or Alkyne Poly(3,4-ethylenedioxythiophene) Surfaces: Superhydrophobic and Parahydrophobic Surfaces. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guilhem Godeau
- University Nice Sophia Antipolis; CNRS; LPMC; UMR 7336 Nice 06100 France
| | - Jessica N'na
- University Nice Sophia Antipolis; CNRS; LPMC; UMR 7336 Nice 06100 France
| | - Kevin Boutet
- University Nice Sophia Antipolis; CNRS; LPMC; UMR 7336 Nice 06100 France
| | - Thierry Darmanin
- University Nice Sophia Antipolis; CNRS; LPMC; UMR 7336 Nice 06100 France
| | - Frédéric Guittard
- University Nice Sophia Antipolis; CNRS; LPMC; UMR 7336 Nice 06100 France
| |
Collapse
|
18
|
Jia P, Chang J, Wang J, Zhang P, Cao B, Geng Y, Wang X, Pan K. Fabrication and Formation Mechanism of Ag Nanoplate-Decorated Nanofiber Mats and Their Application in SERS. Chem Asian J 2015; 11:86-92. [PMID: 26395245 DOI: 10.1002/asia.201500777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 02/02/2023]
Abstract
We report a new simple method to fabricate a highly active SERS substrate consisting of poly-m-phenylenediamine/polyacrylonitrile (PmPD/PAN) decorated with Ag nanoplates. The formation mechanism of Ag nanoplates is investigated. The synthetic process of the Ag nanoplate-decorated PmPD/PAN (Ag nanoplates@PmPD/PAN) nanofiber mats consists of the assembly of Ag nanoparticles on the surface of PmPD/PAN nanofibers as crystal nuclei followed by in situ growth of Ag nanoparticles exclusively into nanoplates. Both the reducibility of the polymer and the concentration of AgNO3 are found to play important roles in the formation and the density of Ag nanoplates. The optimized Ag nanoplates@PmPD/PAN nanofiber mats exhibit excellent activity and reproducibility in surface-enhanced Raman scattering (SERS) detection of 4-mercaptobenzoic acid (4-MBA) with a detection limit of 10(-10) m, making the Ag nanoplates@PmPD/PAN nanofiber mats a promising substrate for SERS detection of chemical molecules. In addition, this work also provides a design and fabrication process for a 3D SERS substrate made of a reducible polymer with noble metals.
Collapse
Affiliation(s)
- Peng Jia
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Jiao Chang
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Jianqiang Wang
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Pan Zhang
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Bing Cao
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Yuting Geng
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Xiuxing Wang
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Kai Pan
- Key laboratory of carbon fiber and functional polymers, Ministry of Education, Beijing University of Chemical Technology, 15 North 3rd Ring Road East, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
19
|
Mo X, Wu Y, Zhang J, Hang T, Li M. Bioinspired multifunctional Au nanostructures with switchable adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10850-10858. [PMID: 26391725 DOI: 10.1021/acs.langmuir.5b02472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inspired by the self-cleaning of cicada wings, well-aligned Au-coated Ni nanocone arrays (Au@Ni NAs) have been fabricated by a simple and cheap electrodeposition method. After surface modification of n-hexadecanethiol, self-cleaning can be realized on this long-lived superhydrophobic surface with extremely low adhesive force. Switchable adhesion is obtained on its complementary porous surface. The porous Au structure is fabricated by a geometric replica of the nanocone arrays. After the same surface modification, it shows superhydrophobicity with high adhesion. The different adhesive behaviors on the two lock-and-key Au structures are ascribed to their different contact modes with a water droplet. Combining the superhydrophobic properties of the two complementary structures, they can be used to transport precious microdroplets without any loss. The bioinspired periodic Au@Ni NAs can also be potentially employed as surface-enhanced Raman scattering (SERS) substrates due to its electromagnetic enhancement effect, especially at the tips of the nanocones. Thus, superhydrophobic, SERS, long-lived, self-cleaning, microtransportation functions are realized on the basis of the two surfaces.
Collapse
Affiliation(s)
- Xiu Mo
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwen Wu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Junhong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Hang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Kaplan J, Grinstaff M. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications. J Vis Exp 2015:e53117. [PMID: 26383018 DOI: 10.3791/53117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.
Collapse
Affiliation(s)
- Jonah Kaplan
- Department of Biomedical Engineering, Boston University
| | - Mark Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University;
| |
Collapse
|
21
|
Jia P, Cao B, Wang J, Qu J, Liu Y, Pan K. Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate. Analyst 2015; 140:5707-15. [DOI: 10.1039/c5an00716j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AgNCs (AgNPs, AgNTs and AgNDs) decorated-PmPD/PAN nanofiber mats were obtained as highly sensitive 3D SERS substrates.
Collapse
Affiliation(s)
- Peng Jia
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| | - Bing Cao
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| | - Jianqiang Wang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| | - Jin Qu
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yuxuan Liu
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| | - Kai Pan
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
22
|
Xiao CH, Xiao BX, Wang YD, Zhang J, Wang SM, Wang P, Yang TY, Zhao R, Yu H, Li ZF, Zhang MZ. Synthesis of ZnO nanosheets decorated with Au nanoparticles and its application in recyclable 3D surface-enhanced Raman scattering substrates. RSC Adv 2015. [DOI: 10.1039/c4ra15193c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ZnO nanosheets decorated with Au nanoparticles by galvanic reduction method and its application in recyclable 3D surface-enhanced Raman scattering substrates.
Collapse
Affiliation(s)
- Chuan-hai Xiao
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Bing-xin Xiao
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Yu-da Wang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Shuang-ming Wang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Pan Wang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Tian-ye Yang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Rui Zhao
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Hai Yu
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Zhi-fang Li
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| | - Ming-zhe Zhang
- State Key Laboratory of Superhard Materials
- Jilin University
- Changchun
- People's Republic of China
| |
Collapse
|
23
|
Hao R, Lin J, Wang H, Li B, Li F, Guo L. A fast self-cleaning SERS-active substrate based on an inorganic–organic hybrid nanobelt film. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp02286j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag@Ag(DMSO)xCl nanobelts can achieve fast self-cleaning by the photodegradation of probe molecules during the in situ SERS detection process.
Collapse
Affiliation(s)
- Rui Hao
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Jie Lin
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Hua Wang
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Bo Li
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Fengshi Li
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Lin Guo
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|
24
|
Choi S, Kweon S, Kim J. Electrodeposition of Pt nanostructures with reproducible SERS activity and superhydrophobicity. Phys Chem Chem Phys 2015; 17:23547-53. [DOI: 10.1039/c5cp04261e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple one-step electrodeposition of nanostructured Pt structures exhibiting both reproducible SERS activity and superhydrophobicity was demonstrated.
Collapse
Affiliation(s)
- Suhee Choi
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Korea
| | - Suji Kweon
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Korea
| | - Jongwon Kim
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Korea
| |
Collapse
|
25
|
Wang Z, Meng G, Huang Z, Li Z, Zhou Q. Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates. NANOSCALE 2014; 6:15280-15285. [PMID: 25382607 DOI: 10.1039/c4nr03398a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of ZnO-seeds on each fiber of the CFC (denoted as ZnO-seeds@CFC), chemical bath deposition and subsequent pyrolysis for the creation of ZnO-mesoporous-NSs grafted on ZnO-seeds@CFC, and ion-sputtering of Ag-NPs on the ZnO-mesoporous-NSs. As abundant SERS "hot spots" are generated from the electromagnetic coupling of the densely distributed Ag-NPs, and the semiconducting ZnO-mesoporous-NSs also have chemical supporting enhancement and distinct molecule adsorbing abilities, the composite SERS-substrates demonstrate high SERS-sensitivity with good signal reproducibility. As a trial for potential applications, the composite SERS-substrates were used to identify pesticides and highly toxic polychlorinated biphenyls (PCBs), and low concentrations down to 10(-7) M for methyl parathion and 5 × 10(-6) M for PCB-77 were reached, respectively, showing promising potential for the SERS-based rapid detection of toxic organic pollutants in the environment.
Collapse
Affiliation(s)
- Zhiwei Wang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | | | | | | | | |
Collapse
|
26
|
Liu W, Liu X, Fangteng J, Wang S, Fang L, Shen H, Xiang S, Sun H, Yang B. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. NANOSCALE 2014; 6:13845-13853. [PMID: 25303770 DOI: 10.1039/c4nr04471a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.
Collapse
Affiliation(s)
- Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li X, Lee HK, Phang IY, Lee CK, Ling XY. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor. Anal Chem 2014; 86:10437-44. [PMID: 25230236 DOI: 10.1021/ac502955w] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ultratrace detection and quantification of toxins in both water and organic liquids remains a challenge due to the random spreading and dilution of liquids on substrate-based sensors, especially for organic liquids with low surface tension. Herein, we fabricate a superhydrophobic-oleophobic (SHP-OP) 3D Ag nanowire mesh-like surface-enhanced Raman scattering (SERS) platform to overcome the random spreading issue, demonstrating ultratrace toxin sensing in both water and organic liquid. Our SHP-OP SERS platform is able to concentrate analyte solutions in water and toluene to 100-fold and 8-fold smaller areas, respectively, as compared to its omniphilic counterparts. The synergy of analyte-concentrating ability and intense SERS-enhancing properties on our SHP-OP SERS platform enables quantitative and ultratrace detection of melamine and Sudan I down to 0.1 fmol in water and toluene, respectively, using just 1 μL of analyte solution. These detection limits are 10(3)-fold lower than the regulatory limits, clearly indicating our SHP-OP SERS platform as an appealing universal ultratrace toxin sensor. The ultratrace detection of spiked melamine in liquid milk down to 100 fmol also highlights the suitability of our SHP-OP SERS platform for the sensing of food toxins in real samples.
Collapse
Affiliation(s)
- Xing Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 50 Nanyang Avenue, Singapore 637371
| | | | | | | | | |
Collapse
|