1
|
Douma C, Bowser MT. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations. Anal Chem 2023; 95:18379-18387. [PMID: 38060457 PMCID: PMC10733905 DOI: 10.1021/acs.analchem.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 12/20/2023]
Abstract
Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements. Adsorption was minimal for three small molecule dyes: positively charged rhodamine 123, negatively charged fluorescein, and neutral rhodamine 110. Temporal peak widths for the three dyes ranged from 3 to 7 s and did not change significantly with increasing transit distance. Moderate adsorption was observed for Chromeo P503-labeled myoglobin and cytochrome c with temporal peak widths around 20 s. Overall, the COC surface adsorption was low compared to traditional glass devices, where peak widths are on the order of minutes. Improvements in durability, long-term performance, and ease of fabrication, combined with low overall adsorption, make the COC μFFE devices a practical choice for applications involving time-resolved continuous detection.
Collapse
Affiliation(s)
- Cecilia
C. Douma
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T. Bowser
- Department of Chemistry, University
of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Mahmud S, Ramproshad S, Deb R, Dutta D. A review of the zone broadening contributions in free-flow electrophoresis. Electrophoresis 2023; 44:1519-1538. [PMID: 37548630 DOI: 10.1002/elps.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The broadening of analyte streams, as they migrate through a free-flow electrophoresis (FFE) channel, often limits the resolving power of FFE separations. Under laminar flow conditions, such zonal spreading occurs due to analyte diffusion perpendicular to the direction of streamflow and variations in the lateral distance electrokinetically migrated by the analyte molecules. Although some of the factors that give rise to these contributions are inherent to the FFE method, others originate from non-idealities in the system, such as Joule heating, pressure-driven crossflows, and a difference between the electrical conductivities of the sample stream and background electrolyte. The injection process can further increase the stream width in FFE separations but normally influencing all analyte zones to an equal extent. Recently, several experimental and theoretical works have been reported that thoroughly investigate the various contributions to stream variance in an FFE device for better understanding, and potentially minimizing their magnitudes. In this review article, we carefully examine the findings from these studies and discuss areas in which more work is needed to advance our comprehension of the zone broadening contributions in FFE assays.
Collapse
Affiliation(s)
- Sakur Mahmud
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Sarker Ramproshad
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Rajesh Deb
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
3
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Luo G, Du L, Wang Y, Wang K. Manipulation and Control of Structure and Size of Inorganic Nanomaterials in Microchemical Systems. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guangsheng Luo
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| | - Le Du
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
- Beijing University of Chemical TechnologyThe State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Membrane Science and Technology 3 Ring Rd East 100029 Beijing China
| | - Yujun Wang
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| | - Kai Wang
- Tsinghua UniversityThe State Key Lab of Chemical EngineeringDepartment of Chemical Engineering 1 Tsinghua Yuan Street 100084 Beijing China
| |
Collapse
|
5
|
Rudisch BM, Pfeiffer SA, Geissler D, Speckmeier E, Robitzki AA, Zeitler K, Belder D. Nonaqueous Micro Free-Flow Electrophoresis for Continuous Separation of Reaction Mixtures in Organic Media. Anal Chem 2019; 91:6689-6694. [DOI: 10.1021/acs.analchem.9b00714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Benjamin M. Rudisch
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Simon A. Pfeiffer
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Elisabeth Speckmeier
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Andrea A. Robitzki
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Kirsten Zeitler
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany
| |
Collapse
|
6
|
Shen Y, Gee MY, Greytak AB. Purification technologies for colloidal nanocrystals. Chem Commun (Camb) 2018; 53:827-841. [PMID: 27942615 DOI: 10.1039/c6cc07998a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Almost all applications of colloidal nanocrystals require some type of purification or surface modification process following nanocrystal growth. Nanocrystal purification - the separation of nanocrystals from undesired solution components - can perturb the surface chemistry and thereby the physical properties of colloidal nanocrystals due to changes in solvent, solute concentrations, and exposure of the nanocrystal surface to oxidation or hydrolysis. For example, nanocrystal quantum dots frequently exhibit decreased photoluminescence brightness after precipitation from the growth solvent and subsequent redissolution. Consequently, purification is an integral part of the synthetic chemistry of colloidal nanocrystals, and the effect of purification methods must be considered in order to accurately compare and predict the behavior of otherwise similar nanocrystal samples. In this Feature Article we examine established and emerging approaches to the purification of colloidal nanoparticles from a nanocrystal surface chemistry viewpoint. Purification is generally achieved by exploiting differences in properties between the impurities and the nanoparticles. Three distinct properties are typically manipulated: polarity (relative solubility), electrophoretic mobility, and size. We discuss precipitation, extraction, electrophoretic methods, and size-based methods including ultracentrifugation, ultrafiltration, diafiltration, and size-exclusion chromatography. The susceptibility of quantum dots to changes in surface chemistry, with changes in photoluminescence decay associated with surface chemical changes, extends even into the case of core/shell structures. Accordingly, the goal of a more complete description of quantum dot surface chemistry has been a driver of innovation in colloidal nanocrystal purification methods. We specifically examine the effect of purification on surface chemistry and photoluminescence in quantum dots as an example of the challenges associated with nanocrystal purification and how improved understanding can result from increasingly precise techniques, and associated surface-sensitive analytical methods.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Megan Y Gee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - A B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. and USC Nanocenter, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Liang X, Baker RW, Wu K, Deng W, Ferdani D, Kubiak PS, Marken F, Torrente-Murciano L, Cameron PJ. Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00098k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskite nanocrystals prepared at room temperature using a simple flow reactor.
Collapse
Affiliation(s)
| | | | - Kejun Wu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Wentao Deng
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Micro free-flow electrophoresis (μFFE) is a continuous separation technique in which analytes are streamed through a perpendicularly applied electric field in a planar separation channel. Analyte streams are deflected laterally based on their electrophoretic mobilities as they flow through the separation channel. A number of μFFE separation modes have been demonstrated, including free zone (FZ), micellar electrokinetic chromatography (MEKC), isoelectric focusing (IEF) and isotachophoresis (ITP). Approximately 60 articles have been published since the first μFFE device was fabricated in 1994. We anticipate that recent advances in device design, detection, and fabrication, will allow μFFE to be applied to a much wider range of applications. Applications particularly well suited for μFFE analysis include continuous, real time monitoring and microscale purifications.
Collapse
Affiliation(s)
- Alexander C Johnson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
9
|
Shen Y, Weeranoppanant N, Xie L, Chen Y, Lusardi MR, Imbrogno J, Bawendi MG, Jensen KF. Multistage extraction platform for highly efficient and fully continuous purification of nanoparticles. NANOSCALE 2017; 9:7703-7707. [PMID: 28561116 DOI: 10.1039/c7nr01826f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents a fully-continuous novel liquid-liquid-extraction (LLE) platform for the purification of nanoparticles. The use of multistage operation enhances the purity of the final stream without the expense of high solvent consumption. Two case studies, purification of CdSe quantum dots in organic solvent and that of gold nanoparticles in water, demonstrate that the LLE platform is versatile, non-destructive, and highly efficient.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lim H, Woo JY, Lee DC, Lee J, Jeong S, Kim D. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel. Sci Rep 2017; 7:43581. [PMID: 28240242 PMCID: PMC5327487 DOI: 10.1038/srep43581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/25/2017] [Indexed: 11/23/2022] Open
Abstract
Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.
Collapse
Affiliation(s)
- Hosub Lim
- Department of Nano Mechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.,School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ju Young Woo
- Department of Nano Mechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.,Department of Chemical and Biomolecular Engineering (BK21+Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering (BK21+Program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sohee Jeong
- Department of Nano Mechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.,University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Duckjong Kim
- Department of Nano Mechanics, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|