1
|
Vasanth A, Ashok A, Do TN, Phan HP. Advancements in flexible porous Nanoarchitectonic materials for biosensing applications. Adv Colloid Interface Sci 2025; 339:103439. [PMID: 39978155 DOI: 10.1016/j.cis.2025.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The development of nanoporous materials has gained significant attention due to their unique structural properties and multimodalities, which are highly relevant for advanced sensing technologies. The capability to directly grow nanoporous materials on flexible substrates or indirectly integrate them into soft templates through mixing and dispersion opens exciting opportunities for a new class of flexible and stretchable electronics for personalized healthcare applications. This review paper provides a snapshot of recent advancements in flexible nanoporous materials and their applications, emphasizing biological and biomedical sensors. The review highlights the material of choice for flexible and stretchable substrates and effective approaches to synthesize and integrate nanoporous architectures onto soft polymers. Applications from wearable sweat sensors, mechanical sensors for electronic skins, implantable bioelectronics, and gas sensing are also presented. The paper concludes with current challenges and future perspectives within this highly active research paradigm.
Collapse
Affiliation(s)
- Arya Vasanth
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
2
|
Chitolina-Rodrigues G, Chandran D, R R, Silva-Neto HA. Recent advances in screen-printed carbon electrodes for food additive analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40270469 DOI: 10.1039/d5ay00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Screen-printed carbon electrodes (SPCEs) are regarded as the actual and future sensing option for additive analysis in food samples; nonetheless, the sample preparation, selectivity, and detectability are key challenges to overcome for its technological development and wide application. In the present review, we inform, discuss, and compare some pivotal aspects associated with the fabrication of SPCEs, the presence of additives in foods, sample preparation, and voltammetric measurements of additives in food samples. Also, the proposed study has indicated that it is possible to develop suitable options for electroanalytical methodologies by using bare or modified SPCEs, which present affordable results in terms of selectivity, linear concentration range, and limit of detection for different classes of additives. Lastly, the review introduces challenging points that can be carefully evaluated for the next generation of SPCEs dedicated to additive analysis.
Collapse
Affiliation(s)
| | - Devu Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Rejithamol R
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, India.
| | - Habdias A Silva-Neto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
3
|
Karnwal A, Kumar Sachan RS, Devgon I, Devgon J, Pant G, Panchpuri M, Ahmad A, Alshammari MB, Hossain K, Kumar G. Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS OMEGA 2024; 9:29966-29982. [PMID: 39035946 PMCID: PMC11256298 DOI: 10.1021/acsomega.3c10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Nanobiotechnology has ushered in a new era of scientific discovery where the unique properties of nanomaterials, such as gold nanoparticles, have been harnessed for a wide array of applications. This review explores gold nanoparticles' synthesis, properties, and multidisciplinary applications, focusing on their role as biosensors. Gold nanoparticles possess exceptional physicochemical attributes, including size-dependent optical properties, biocompatibility, and ease of functionalization, making them promising candidates for the development of biosensing platforms. The review begins by providing a comprehensive overview of gold nanoparticle synthesis techniques, highlighting the advantages and disadvantages of various approaches. It then delves into the remarkable properties that underpin their success in biosensing, such as localized surface plasmon resonance and enhanced surface area. The discussion also includes the functionalization strategies that enable specific binding to biomolecules, enhancing the sensitivity and selectivity of gold-nanoparticle-based biosensors. Furthermore, this review surveys the diverse applications of gold nanoparticles in biosensing, encompassing diagnostics, environmental monitoring, and drug delivery. The multidisciplinary nature of these applications underscores the versatility and potential of gold nanoparticles in addressing complex challenges in healthcare and environmental science. The review emphasizes the pressing need for further exploration and research in the field of nanobiotechnology, particularly regarding the synthesis, properties, and biosensing applications of gold nanoparticles. With their exceptional physicochemical attributes and versatile functionalities, gold nanoparticles present a promising avenue for addressing complex challenges in healthcare and environmental science, making it imperative to advance our understanding of their synthesis, properties, and applications for enhanced biosensing capabilities and broader scientific innovation.
Collapse
Affiliation(s)
- Arun Karnwal
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Rohan Samir Kumar Sachan
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Jyotsna Devgon
- Centre
for Interdisciplinary Biomedical Research, Adesh University, Bathinda 151101, Punjab, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun 248009, Uttarakhand, India
| | - Mitali Panchpuri
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College,
University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Gaurav Kumar
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
4
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Yu Z, Wu H, Xu Z, Yang Z, Lv J, Kong C. Wearable Noninvasive Glucose Sensor Based on Cu xO NFs/Cu NPs Nanocomposites. SENSORS (BASEL, SWITZERLAND) 2023; 23:695. [PMID: 36679492 PMCID: PMC9865846 DOI: 10.3390/s23020695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 05/09/2023]
Abstract
Designing highly active material to fabricate a high-performance noninvasive wearable glucose sensor was of great importance for diabetes monitoring. In this work, we developed CuxO nanoflakes (NFs)/Cu nanoparticles (NPs) nanocomposites to serve as the sensing materials for noninvasive sweat-based wearable glucose sensors. We involve CuCl2 to enhance the oxidation of Cu NPs to generate Cu2O/CuO NFs on the surface. Due to more active sites endowed by the CuxO NFs, the as-prepared sample exhibited high sensitivity (779 μA mM-1 cm-2) for noninvasive wearable sweat sensing. Combined with a low detection limit (79.1 nM), high selectivity and the durability of bending and twisting, the CuxO NFs/Cu NPs-based sensor can detect the glucose level change of sweat in daily life. Such a high-performance wearable sensor fabricated by a convenient method provides a facile way to design copper oxide nanomaterials for noninvasive wearable glucose sensors.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuncai Kong
- Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
GhavamiNejad P, GhavamiNejad A, Zheng H, Dhingra K, Samarikhalaj M, Poudineh M. A Conductive Hydrogel Microneedle-Based Assay Integrating PEDOT:PSS and Ag-Pt Nanoparticles for Real-Time, Enzyme-Less, and Electrochemical Sensing of Glucose. Adv Healthc Mater 2023; 12:e2202362. [PMID: 36183355 DOI: 10.1002/adhm.202202362] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/12/1912] [Indexed: 02/03/2023]
Abstract
Continuous glucose meters (CGMs) have tremendously boosted diabetes care by emancipating millions of diabetic patients' need for repeated self-testing by pricking their fingers every few hours. However, CGMs still suffer from major deficiencies regarding accuracy, precision, and stability. This is mainly due to their dependency on an enzymatic detection mechanism. Here a low-cost hydrogel microneedle (HMN)-CGM assay fabricated using swellable dopamine (DA)-hyaluronic acid (HA) hydrogel for glucose interrogation in dermal interstitial fluid (ISF) is introduced. Platinum and silver nanoparticles are synthesized within the 3D porous hydrogel scaffolds for nonenzymatic electrochemical sensing of the glucose. Incorporation of a highly water dispersible conductive polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) enhances the electrical properties of HMN array, making the patch suitable as the working electrode of the sensor. The in vitro and ex vivo characterization of this newly developed HMN patch is fully studied. The performance of the HMN-CGM for real-time measurement of glucose is also shown using a rat model of type 1 diabetes. The device introduces the first HMN-based assay for tracking important disease biomarkers and expect to pave the way for next generation of polymeric-based sensors.
Collapse
Affiliation(s)
- Peyman GhavamiNejad
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amin GhavamiNejad
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Hanjia Zheng
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Karan Dhingra
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Melisa Samarikhalaj
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
7
|
Farahmandpour M, Haghshenas H, Kordrostami Z. Blood glucose sensing by back gated transistor strips sensitized by CuO hollow spheres and rGO. Sci Rep 2022; 12:21872. [PMID: 36536057 PMCID: PMC9763381 DOI: 10.1038/s41598-022-26287-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a highly sensitive flexible glucose sensor based on a field effect transistor (FET) has been fabricated. It is shown that the proposed flexible transistor can be used as new non-enzymatic blood glucose test strips. CuO hollow-spheres decorated with reduced graphene oxide have been synthesized using the hydrothermal method. The shells of the hollow micro-spheres are formed by nanostructures. The synthesized nanostructured hollow micro-spheres (rGO/CuO-NHS) are deposited on a flexible PET substrate between interdigitated electrodes as the channel of a back gate transistor. The channel concentration and the FET bias are optimized so that the sensor exhibits extremely low limit of detection and high sensitivity. The combination of selective porous CuO hollow spheres and the high surface to volume ratio of their nanostructured shells with the high mobility and high conductivity rGO led to faster and higher charge-transfer capability and superior electro-catalyst activity for glucose oxidation. The glucose-dependent electrical responses of the sensor is measured in both resistive and transistor action modes. The amplification of the current by the induced electric field of the gate in the proposed FET-based biosensor provides advantages such as higher sensitivity and lower limit of detection compared to the resistive sensor. The flexible glucose sensor has a sensitivity of 600 μA μM-1 and a limit of detection of 1 nM with high reproducibility, good stability, and highly selectivity. The high accuracy response of the biosensor towards the real blood serum samples showed that it can be used as a test strip for glucose detection in real blood samples.
Collapse
Affiliation(s)
- Milad Farahmandpour
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Hassan Haghshenas
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Zoheir Kordrostami
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
8
|
Zhao C, Tang X, Zhao J, Cao J, Jiang Z, Qin J. MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose. J Nanobiotechnology 2022; 20:507. [PMID: 36456946 PMCID: PMC9714170 DOI: 10.1186/s12951-022-01715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Introducing oxygen-vacancy into the surface of the non-enzymatic sensor is supposed to be an effective way to improve inherently low catalytic activity and specificity of non-enzymatic sensors. In this work, CuO/C was synthesized at different temperatures using metal-organic frameworks as sacrificial templates to receive additional content of oxygen-vacancy. The product with the highest oxygen vacancy was found at 400 °C (named CuO/C-400 °C), which increased catalytically active sites and enhanced the charge-transfer efficiency. The sensing performance was afterward explored by amperometry under an optimal applied potential at 0.5 V (vs. SCE), presenting a broad detection range from 5.0 µM to 25.325 mM (R2 = 0.9998) with a sensitivity of 244.71 µA mM- 1 cm- 2, and a detection limit of 1 µM. Furthermore, the reliability and selectivity of CuO/C-400 °C sensors were extensively explored in the presence of artificial serum/saliva samples with gradient glucose concentrations. The human blood samples were also detected with high recoveries compared with the clinical Hexokinase method. Hence, the prepared CuO/C-400 °C sensor with a broad detection range and high selectivity can be applied for the diabetes diagnosis ex vivo without further dilution for real-time analysis in practical applications.
Collapse
Affiliation(s)
- Chen Zhao
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092 China ,grid.43555.320000 0000 8841 6246School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Xiaoying Tang
- grid.43555.320000 0000 8841 6246School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Jinge Zhao
- grid.43555.320000 0000 8841 6246Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Jie Cao
- grid.43555.320000 0000 8841 6246Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Zhenqi Jiang
- grid.43555.320000 0000 8841 6246School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Jieling Qin
- grid.24516.340000000123704535Shanghai Tenth People’s Hospital, School of Medicine, Tongji University Cancer Center, Tongji University, Shanghai, 200092 China
| |
Collapse
|
9
|
Gopal TS, Alzahrani KE, Assaifan AK, Albrithen H, Alodhayb A, Muthuramamoorthy M, Pandiaraj S, Grace AN. Reduced graphene oxide supported MXene based metal oxide ternary composite electrodes for non-enzymatic glucose sensor applications. Sci Rep 2022; 12:20583. [PMID: 36446882 PMCID: PMC9708649 DOI: 10.1038/s41598-022-24700-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Diagnosis and monitoring of glucose level in human blood has become a prime necessity to avoid health risk and to cater this, a sensor's performance with wide linearity range and high sensitivity is required. This work reports the use of ternary composite viz. MG-Cu2O (rGO supported MXene sheet with Cu2O) for non-enzymatic sensing of glucose. It has been prepared by co-precipitation method and characterized with X-ray powder diffraction, Ultraviolet-visible absorption spectroscopy (UV-Vis), Raman spectroscopy, Field emission scanning electron microscopy, High resolution transmission electron microscopy and Selected area diffraction. These analyses show a cubic structure with spherical shaped Cu2O grown on the MG sheet. Further, the electrocatalytic activity was carried out with MG-Cu2O sensing element by cyclic voltammetry and chronoamperometry technique and compared with M-Cu2O (MXene with Cu2O) composite without graphene oxide. Of these, MG-Cu2O composite was having the high defect density with lower crystalline size of Cu2O, which might enhance the conductivity thereby increasing the electrocatalytic activity towards the oxidation of glucose as compared to M-Cu2O. The prepared MG-Cu2O composite shows a sensitivity of 126.6 µAmM-1 cm-2 with a wide linear range of 0.01to 30 mM, good selectivity, good stability over 30 days and shows a low Relative Standard Deviation (RSD) of 1.7% value towards the sensing of glucose level in human serum. Thus, the aforementioned finding indicates that the prepared sensing electrode is a well suitable candidate for the sensing of glucose level for real time applications.
Collapse
Affiliation(s)
- Tamil Selvi Gopal
- grid.412813.d0000 0001 0687 4946Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Khalid E. Alzahrani
- grid.56302.320000 0004 1773 5396Present Address: Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia ,grid.56302.320000 0004 1773 5396Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Abdulaziz K. Assaifan
- grid.56302.320000 0004 1773 5396Present Address: Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Hamad Albrithen
- grid.56302.320000 0004 1773 5396Present Address: Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia ,grid.56302.320000 0004 1773 5396Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Abdullah Alodhayb
- grid.56302.320000 0004 1773 5396Present Address: Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia ,grid.56302.320000 0004 1773 5396Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Muthumareeswaran Muthuramamoorthy
- grid.56302.320000 0004 1773 5396Present Address: Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Saravanan Pandiaraj
- grid.56302.320000 0004 1773 5396Department of Self-Development Skills, CFY Deanship, King Saud University, Riyadh, Saudi Arabia
| | - Andrews Nirmala Grace
- grid.412813.d0000 0001 0687 4946Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
10
|
Ao Y, Ao J, Zhao L, Hu L, Qu F, Guo B, Liu X. Hierarchical Structures Composed of Cu(OH) 2 Nanograss within Directional Microporous Cu for Glucose Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13659-13667. [PMID: 36318699 DOI: 10.1021/acs.langmuir.2c01300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cu(OH)2 nanomaterials are widely investigated for non-enzymatic glucose sensors due to their low-cost and excellent performance. Cu(OH)2 nanomaterials usually grow on substrates to form sensor electrodes. Reported works mainly focus on structure adjusting of the Cu(OH)2 nanostructures, while the optimization of substrates is still lacking. In the present work, directional porous Cu (DPC) was applied as the substrate for the growth of Cu(OH)2 nanograss (NG), and hierarchical structures of Cu(OH)2@DPC were prepared by alkaline oxidation. The morphology and microstructure evolution of the prepared hierarchical structures was investigated, and the non-enzymatic glucose sensing performance was evaluated. Cu(OH)2@DPC exhibits enhanced comprehensive non-enzymatic glucose sensing performance compared to the reported ones, which may benefit from both the effective adsorption of the Cu(OH)2 NG with a relatively high surface area and the high solute exchange of the DPC by a channel effect. This work provides new insights into the further improvement of the non-enzymatic glucose sensing performance of Cu(OH)2 nanostructures by optimizing the substrate structure.
Collapse
Affiliation(s)
- Yibo Ao
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, China
- School of Materials Science and Engineering, Xihua University, Chengdu610039, China
- West China Hospital of Stomatology, Sichuan University, Chengdu610065, China
| | - Jinqing Ao
- School of Materials Science and Engineering, Xihua University, Chengdu610039, China
| | - Ling Zhao
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, China
| | - Liwei Hu
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, China
| | - Fengsheng Qu
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, China
| | - Biao Guo
- School of Materials Science and Engineering, Xihua University, Chengdu610039, China
| | - Xue Liu
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, China
| |
Collapse
|
11
|
Room-temperature fabrication of a heterostructure Cu2O@CuO nanosheet electrocatalyst for non-enzymatic detection of glucose and H2O2. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Lete C, Spinciu AM, Alexandru MG, Calderon Moreno J, Leau SA, Marin M, Visinescu D. Copper(II) Oxide Nanoparticles Embedded within a PEDOT Matrix for Hydrogen Peroxide Electrochemical Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22218252. [PMID: 36365951 PMCID: PMC9658751 DOI: 10.3390/s22218252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 05/19/2023]
Abstract
The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method. The XRD pattern of the CuONPs reveals the formation of the monoclinic tenorite phase, CuO, with average crystallite sizes of 8.7 nm, while the estimated band gap from UV-vis spectroscopy is of 1.2 eV. The SEM, STEM, and BET analyses show the formation of quasi-prismatic microaggregates of nanoparticles, with dimensions ranging from 1 µm up to ca. 200 µm, with a mesoporous structure. The developed electrochemical sensor exhibited a linear response toward H2O2 in the concentration range from 0.04 to 10 mM, with a low detection limit of 8.5 μM of H2O2. Furthermore, the obtained sensor possessed an excellent anti-interference capability in H2O2 determination in the presence of interfering compounds such as KNO3 and KNO2.
Collapse
Affiliation(s)
- Cecilia Lete
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (C.L.); (D.V.)
| | - Adela-Maria Spinciu
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Jose Calderon Moreno
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Sorina-Alexandra Leau
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Mariana Marin
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Diana Visinescu
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (C.L.); (D.V.)
| |
Collapse
|
13
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
14
|
Jafari M, Botte GG. Electrochemical valorization of waste activated sludge for short-chain fatty acids production. Front Chem 2022; 10:974223. [PMID: 36110143 PMCID: PMC9469876 DOI: 10.3389/fchem.2022.974223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
A tremendous amount of waste activated sludge (WAS) ends up in landfilling even after a substantial retention time during anaerobic digestion. This leftover activated sludge is an organic-rich material with the high potential to produce value-added chemicals such as short chain fatty acids (SCFAs). In the present study, a novel electrochemical conversion of activated sludge (E-WAS) was carried out on the surface of non-precious electrodes (nickel, stainless-steel and copper) in alkaline media at low applied potential and temperature. Cyclic voltammetry showed that Cu (II)/Cu (III) and Ni (II)/Ni(III) redox couple catalyzed the WAS oxidation reaction to produce SCFAs and hydrogen. The results revealed that Cu(II)/Cu(III) has higher catalytic oxidation capability towards SCFAs. Yields of 48.7, 21.4, and 14.6 mg SCFAs per g of volatile solids were achieved by using copper, nickel and stainless-steel as working electrodes, respectively. Post analysis characterization techniques indicate that copper oxide films lead to WAS oxidation. Total volatile solid removal of 30% was obtained at 35°C and 1.65 V in 0.2 M NaOH after 2 h of operation in an electrochemical digestor with copper electrodes which is more efficient than a conventional alkaline treatment (24 h, 55%, 1M NaOH). Ammonia was produced as the by-product of E-WAS oxidation. The highest amount of ammonia (250 mg L−1) was obtained by using nickel as the working electrode after 2 h operation at 35°C and 1.35 V applied potential. The change in WAS morphology revealed that the copper oxide film is an effective electrocatalyst for WAS disinfection.
Collapse
|
15
|
Figiela M, Wysokowski M, Stanisz E, Hao D, Ni BJ, Stepniak I. Highly sensitive, fast response and selective glucose detection based on CuO/nitrogen‐doped carbon non‐enzymatic sensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Derek Hao
- University of Technology Sydney AUSTRALIA
| | | | | |
Collapse
|
16
|
Liu J, Zeng H, Zhang G, Li W, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Kanai M, Yanagida T. Edge-Topological Regulation for in Situ Fabrication of Bridging Nanosensors. NANO LETTERS 2022; 22:2569-2577. [PMID: 35226506 DOI: 10.1021/acs.nanolett.1c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ fabrication of well-defined bridging nanostructures is an interesting and unique approach to three-dimensionally design nanosensor structures, which are hardly attainable by other methods. Here, we demonstrate the significant effect of edge-topological regulation on in situ fabrication of ZnO bridging nanosensors. When employing seed layers with a sharp edge, which is a well-defined structure in conventional lithography, the bridging angles and electrical resistances between two opposing electrodes were randomly distributed. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variation of structural and electrical properties. We propose an edgeless seed layer structure using a two-layers resist method to solve the above uncontrollability of bridging nanosensors. Such bridging nanosensors not only substantially improved the uniformity of structural and electrical properties between two opposing electrodes but also significantly enhanced the sensing responses for NO2 with the smaller variance and the lower limit of detection via in situ controlled electrical contacts.
Collapse
Affiliation(s)
- Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wenjun Li
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
17
|
Nakajima T, Fujio Y, Sugahara T, Tsuchiya T. Flexible Ceramic Film Sensors for Free-Form Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:1996. [PMID: 35271141 PMCID: PMC8914772 DOI: 10.3390/s22051996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Recent technological innovations, such as material printing techniques and surface functionalization, have significantly accelerated the development of new free-form sensors for next-generation flexible, wearable, and three-dimensional electronic devices. Ceramic film sensors, in particular, are in high demand for the production of reliable flexible devices. Various ceramic films can now be formed on plastic substrates through the development of low temperature fabrication processes for ceramic films, such as photocrystallization and transferring methods. Among flexible sensors, strain sensors for precise motion detection and photodetectors for biomonitoring have seen the most research development, but other fundamental sensors for temperature and humidity have also begun to grow. Recently, flexible gas and electrochemical sensors have attracted a lot of attention from a new real-time monitoring application that uses human breath and perspiration to accurately diagnose presymptomatic states. The development of a low-temperature fabrication process of ceramic film sensors and related components will complete the chemically stable and reliable free-form sensing devices by satisfying the demands that can only be addressed by flexible metal and organic components.
Collapse
Affiliation(s)
- Tomohiko Nakajima
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan;
| | - Yuki Fujio
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Saga 841-0052, Japan;
| | - Tohru Sugahara
- Department of Energy and Environmental Materials, SANKEN, Osaka University, Osaka 567-0047, Japan;
| | - Tetsuo Tsuchiya
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan;
| |
Collapse
|
18
|
Sharma KP, Shin M, Awasthi GP, Poudel MB, Kim HJ, Yu C. Chitosan polymer matrix-derived nanocomposite (CuS/NSC) for non-enzymatic electrochemical glucose sensor. Int J Biol Macromol 2022; 206:708-717. [PMID: 35231535 DOI: 10.1016/j.ijbiomac.2022.02.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
In this study, N and S co-doped chitosan polymer matrix-derived composite (CuS/NSC) was synthesized via a one-step hydrothermal technique using a low-cost copper complex of chitosan polymer. Cyclic voltammetry and chronoamperometry revealed excellent electrocatalytic performance. The glucose sensor exhibited a linear range of 160 μM to 11.76 mM, a low detection limit 2.72 μM and a sensitivity of 13.62 mA mM-1 cm-2 with an excellent linear response. Furthermore, the sensor also displayed selectivity for glucose over potential interfering agents and exhibited a satisfactory recovery percentage using real sample in human serum. The results demonstrate that, CuS/NSC is an efficient nanocomposite material for non-enzymatic glucose sensors and is applicable for glucose detection in biological fluids.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Milan Babu Poudel
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Han Joo Kim
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
19
|
Liu XX, Chen C, He Q, Kong Q, Blackwood DJ, Li NW, Yu L, Chen JS. Self-Supported Transition Metal-Based Nanoarrays for Efficient Energy Storage. CHEM REC 2022; 22:e202100294. [PMID: 35138030 DOI: 10.1002/tcr.202100294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Indexed: 01/11/2023]
Abstract
Rechargeable batteries and supercapacitors are currently considered as promising electrochemical energy storage (EES) systems to address the energy and environment issues. Self-supported transition metal (Ni, Co, Mn, Mo, Cu, V)-based materials are promising electrodes for EES devices, which offer highly efficient charge transfer kinetics. This review summarizes the latest development of transition metal-based materials with self-supported structures for EES systems. Special focus has been taken on the synthetic methods, the selection of substrates, architectures and chemical compositions of different self-supported nanoarrays in energy storage systems. Finally, the challenges and opportunities of these materials for future development in this field are briefly discussed. We believe that the advancement in self-supported electrode materials would pave the way towards next-generation EES.
Collapse
Affiliation(s)
- Xiong Xiong Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chong Chen
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Daniel John Blackwood
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Nian Wu Li
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Le Yu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
20
|
Lin WJ, Lin YS, Chang HT, Unnikrishnan B, Huang CC. Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes. Biosens Bioelectron 2021; 194:113610. [PMID: 34500227 DOI: 10.1016/j.bios.2021.113610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Highly electrocatalytic cuprous halide/copper oxide nanoparticles (CuX@CunO NPs; X = Cl, Br or I; n = 1 or 2) have been fabricated on copper foils for sensitive detection of glucose. Formation of CuX@CunO NPs involves two steps- in situ electrochemical deposition of CuX on the foil and then conversion of CuX to CunO. The deposited CuX converts to CunO, leading to the generation of abundant oxygen vacancies in the CuO lattice, enhancing the number of catalytically active sites, and improving the charge transfer efficiency. Among the as-prepared electrodes, CuBr@CuO NP ones provide the highest electrocatalytic activity toward the oxidation of glucose. The electrode provides electrocatalytic activity toward the oxidation of glucose at a low overpotential of 0.25 V (vs. SCE), which is lower than that (0.40 V) of unmodified copper electrodes. The generated anodic current is proportional to glucose concentration in an alkaline medium, with a good linear range from 5.0 μM to 3.51 mM (R2 = 0.995). Its reliability has been validated by detecting the glucose concentration in saliva samples at different time intervals after a meal. The results are in good correlation with the blood glucose level determined by using a commercial blood glucose meter. Our CuBr@CuO NP electrode possesses great potential for monitoring salivary glucose to achieve the purpose of noninvasive glucose monitoring for patients with diabetes in the future.
Collapse
Affiliation(s)
- Wei-Jan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
21
|
Golsanamlou Z, Mahmoudpour M, Soleymani J, Jouyban A. Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device. Crit Rev Anal Chem 2021; 53:1116-1131. [PMID: 34894901 DOI: 10.1080/10408347.2021.2008227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Diabetes mellitus (DM) is a global health problem leading to many complications and disabilities in life adjusting activities and even dead. Monitoring glucose levels is a key factor in diagnosis and management of DM. Conventional glucose sensors consisted of immobilized enzymes, are so susceptible to environmental conditions. In this way, nonenzymatic biosensors have attracted extensive attentions in many clinical diagnostics applications. To date, the finger pricking test is a common enzyme-based glucometer that is an invasive and inconvenient and may lead to infections in the injection sites. So, working on the possibility of cutaneous or subcutaneous insertion of devices as a noninvasive or minimally-invasive systems for continuous glucose controlling approaches through human biofluids (blood, perspiration, tears, saliva, etc.) have stimulated growing interest. This review summarizes recent nonenzymatic and noninvasive biofluids glucose monitoring systems which are highly resilience and stretchable to continuously adapt to body movements during common physical activity. Sensors are based on their constituent materials including carbon-based, metal nanoparticles, polymer, and hydrogel systems are classified for electrochemical, and optical glucose detection. Finally, we address the drawbacks and challenges of enzyme-free sensors which are aroused sustaining research passion to be used in point-of-care medical diagnostics applications.
Collapse
Affiliation(s)
- Zahra Golsanamlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Nicosia, Turkey
| |
Collapse
|
22
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
23
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
24
|
Enhanced Fenton-like catalytic performance of freestanding CuO nanowires by coating with g-C3N4 nanosheets. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Peng S, Lai T, Kong Y, Ran Y, Su L, Ma D, Xiao X, Wang Y. A novel non-enzymatic glucose electrochemical sensor with high sensitivity and selectivity based on CdIn 2O 4nanoparticles on 3D Ni foam substrate. NANOTECHNOLOGY 2021; 32:405502. [PMID: 34186527 DOI: 10.1088/1361-6528/ac0fa2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Due to the poor conductivity of Fe based, Cu based and Co based electrode materials commonly used in the electrochemical detection of glucose, and the uneven stirring and poor conductivity of the traditional preparation method based on glassy carbon electrode. In order to solve the above problems, in this work, CdIn2O4with high electrical conductivity was directly grown on three-dimensional (3D) Ni foam to prepare electrode materials for non-enzymatic glucose sensors. CdIn2O4nanoparticles is prepared from cadmium acetate and indium nitrate hydrate in benzyl alcohol by non-aqueous sol-gel method. The electrocatalytic oxidation performances of CdIn2O4electrode material for non-enzymatic glucose are studied. The results show that the proposed CdIn2O4electrode material has good electrochemical properties and sensing performance for glucose detection. The electrochemical response of CdIn2O4electrode material to glucose is recorded that calibration plot for glucose concentrations ranging from 1.0μM to 1.0 mM (R2 = 0.99), a limit detection of 0.08μM, an excellent sensitivity of 3.2925 mA.mM-1.cm-2, a rapid response time of 1.58 s, a good selectivity and a good long-term stability. These demonstrate the significant potential of CdIn2O4electrode material based on 3D Ni foam as non-enzymatic glucose sensors, which makes it possible to use it as a practical glucose detector. This work could introduce a new concept of nanoparticles modified electrode material grown directly on 3D Ni foam, thus a simple and reliable electrochemical glucose sensor platform is realized. This study was completed in 2019 in the school of materials and energy, Yunnan University.
Collapse
Affiliation(s)
- Sijia Peng
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Tingrun Lai
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Yulin Kong
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Yan Ran
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Linfeng Su
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Dian Ma
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
27
|
Zhang R, Chen C, Yu H, Cai S, Xu Y, Yang Y, Chang H. All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Qu L, Zhao L, Chen T, Li J, Nie X, Li R, Sun C. Two novel coordination polymers and their hybrid materials with Ag nanoparticles for non-enzymatic detection of glucose. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Zhu Y, Zhang Z, Song X, Bu Y. A facile strategy for synthesis of porous Cu 2O nanospheres and application as nanozymes in colorimetric biosensing. J Mater Chem B 2021; 9:3533-3543. [PMID: 33909751 DOI: 10.1039/d0tb03005h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the unique advantages, developing a rapid, simple and economical synthetic strategy for porous nanomaterials is of great interest. In this work, for the first time, using sodium hypochlorite as a green oxidant, urea was oxidized to CO2 as a carbon source to prepare the fine-particle crosslinked Cu-precursors, which could be further reduced by sodium ascorbate into pure Cu2O nanospheres (NPs) with a porous morphology at room temperature. Interestingly, our study reveals that introduction of an appropriate amount of MgCl2 into the raw materials can tune the pore sizes and surface area, but has no influence on the phase purity of the resulting Cu2O NPs. Significantly, all the synthesized Cu2O NPs exhibited intrinsic peroxidase-like activity with higher affinity towards both 3,3,5,5-tetramethylbenzidine (TMB) and H2O2 than horseradish peroxidase (HRP) due to the highly porous morphology and the electrostatic attraction towards TMB. The colorimetric detection of glucose based on the resulting porous Cu2O NPs presented a limit of detection (LOD) of 2.19 μM with a broad linear range from 1-1000 μM, much better than many recently reported composite-based nanozymes. Meanwhile, this nanozyme system was utilized to detect l-cysteine, exhibiting a LOD value as low as 0.81 μM within a linear range from 0 to 10 μM. More interesting, this sensing system shows high sensitivity and excellent selectivity in determining glucose and l-cysteine, which is suitable for detecting serum samples with reliable results. Therefore, the present study not only develops a simple strategy to prepare Cu2O NPs with controllable porous structure, but also indicates its promising applications in bioscience and disease diagnosis.
Collapse
Affiliation(s)
- Ying Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Zhilu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Xinyu Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
30
|
Liu S, Zeng W, Guo Q, Li Y. Facile synthesis of CuCo 2O 4@NiCo 2O 4 hybrid nanowire arrays on carbon cloth for a multicomponent non-enzymatic glucose sensor. NANOTECHNOLOGY 2020; 31:495708. [PMID: 32717727 DOI: 10.1088/1361-6528/aba97a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of hierarchical heterogeneous structures with rational components is considered as a promising method to enhance the properties of electrocatalyst. Binary metal oxides, with high electrochemical activity, have attracted considerable interest in glucose determination. In this work, we synthesized the CuCo2O4@NiCo2O4 hybrid structure on conductive carbon cloth (CC) via a simple two-step hydrothermal process and investigated its catalytic ability toward glucose. The two individual components that make up this hybrid electrode have good electrical conductivity and excellent catalytic properties for glucose, so the smart combination of these two active materials can provide more catalytic sites and sufficient redox couples for the glucose oxidation. As a result, the CuCo2O4@NiCo2O4 modified CC presented superior glucose sensing properties, including ultrahigh sensitivity, fast response time, wide linear range and acceptable detection limit. Besides, the sample also exhibited good selectivity for substances in human blood that interfere with glucose detection, such as UA, AA, fructose, sucrose and KCl. The potential of the CuCo2O4@NiCo2O4/CC electrode for practical application was investigated by measuring the glucose concentration in real serum samples. These results prove that the construction of hierarchical ordered structure is conducive to the improvement of glucose sensor.
Collapse
Affiliation(s)
- Shilin Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Qi Guo
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yanqiong Li
- School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 400030, People's Republic of China
| |
Collapse
|
31
|
Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105522] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ngamaroonchote A, Sanguansap Y, Wutikhun T, Karn-Orachai K. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Mikrochim Acta 2020; 187:559. [PMID: 32915302 DOI: 10.1007/s00604-020-04542-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
The development of highly sensitive and highly selective sensors for non-enzymatic glucose and hydrogen peroxide (H2O2) detection using gold-copper alloy nanoparticles (AuCu alloy NPs) is reported. The AuCu NPs are nanostructures with branches and can be used as an electrochemical catalyst. Series of AuCu alloy NPs with various metal ratios are synthesized through a coreduction reaction. The morphology of AuCu alloy NPs is altered from highly branched structures (nanourchin, nanobramble, nanostar, nanocrystal) to a spherical shape by increasing Au content in the synthesis reaction. Cu-rich AuCu nanobramble and Au-rich AuCu nanostar exhibit selective electrocatalysis behaviors toward electro-oxidation of glucose and electroreduction of H2O2, respectively. The AuCu nanobramble-based sensor holds great potential in glucose detection with a linear working range of 0.25 to 10 mM. The sensor possesses a sensitivity of 339.35 μA mM-1 cm-2, a limit of detection (LOD) of 16.62 μM, which is an acceptable selectivity and good stability. In addition, the AuCu nanostar-based sensor shows excellent electrochemical responses toward H2O2 reduction with good selectivity, reproducibility, and a short response time of about 2-3 s. The linear range for H2O2 determination is 0.05 to 10 mM, with LOD and sensitivity of 10.93 μM and 133.74 μA mM-1 cm-2, respectively. The good sensing performance is a result of the synergistic surface structure and atomic composition effects, which leads AuCu alloys to be a promising nanocatalyst for sensing both glucose and H2O2. Graphical abstract Schematic illustration presents the construction of gold-copper alloy nanoparticles (AuCu alloy NPs) on the surface of screen-printed carbon electrode (SPCE). The highly branched nanostructures of AuCu alloys with different surface structure and metal ratios give selective electrocatalysis behaviors. Cu-rich AuCu nanobramble-based sensor reveals prominent electrocatalytic activity for glucose detection. Au-rich AuCu nanostar-based sensor provides good electrochemical response for H2O2 detection.
Collapse
Affiliation(s)
- Aroonsri Ngamaroonchote
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanisa Sanguansap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tuksadon Wutikhun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kullavadee Karn-Orachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
33
|
He S, Yuan Y, Nag A, Feng S, Afsarimanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5220. [PMID: 32698330 PMCID: PMC7400391 DOI: 10.3390/ijerph17145220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023]
Abstract
This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.
Collapse
Affiliation(s)
- Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nasrin Afsarimanesh
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | | | - Dominic Rowan Organ
- Department of Social Sciences, Heriot-Watt University, Edinburgh SC000278, UK;
| |
Collapse
|
34
|
Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 2020; 165:112331. [PMID: 32729477 DOI: 10.1016/j.bios.2020.112331] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
Abstract
Diabetes is a pathological condition that requires the continuous monitoring of glucose level in the blood. Its control has been tremendously improved by the application of point-of-care devices. Conventional enzyme-based sensors with electrochemical and optical transduction systems can successfully measure the glucose concentration in human blood, but they suffer from the low stability of the enzyme. Non-enzymatic wearable electrochemical and optical sensors, with low-cost, high stability, point-of-care testing and online monitoring of glucose levels in biological fluids, have recently been developed and can help to manage and control diabetes worldwide. Advances in nanoscience and nanotechnology have enabled the development of novel nanomaterials that can be implemented for the use in enzyme-free systems to detect glucose. This review summarizes recent developments of enzyme-free electrochemical and optical glucose sensors, as well as their respective wearable and commercially available devices, capable of detecting glucose at physiological pH conditions without the need to pretreat the biological fluids. Additionally, the evolution of electrochemical glucose sensor technology and a couple of widely used optical detection systems along with the glucose detection mechanism is also discussed. Finally, this review addresses limitations and challenges of current non-enzymatic electrochemical, optical, and wearable glucose sensor technologies and highlights opportunities for future research directions.
Collapse
|
35
|
Wei C, Kang C, Liu Q. Ag nanosheets grown on Cu nanowire-based flexible films for sensitive non-enzymatic glucose sensors. NANOTECHNOLOGY 2020; 31:115501. [PMID: 31751969 DOI: 10.1088/1361-6528/ab59ea] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cu nanowire (Cu NW) and Ag nanosheet (Ag NS) bimetallic nanocomposites were fabricated on a flexible polyethylene terephthalate (PET) slice for non-enzymatic glucose sensing via a facile two-step approach, vacuum filtration, and galvanic displacement. Low-cost Cu NW-based conductive films were employed as the conductive substrates to substitute the traditional glassy carbon electrodes or indium tin oxide electrodes. The highly stable Ag NSs grow directly on the surface of Cu NWs without additional binders. The AgNO3 concentration and displacement time were adjusted to control the consumption of Cu NWs and the growth of Ag nanostructures. With the large load of Ag and the great connection of Cu NWs, a high sensitivity of 2033 μA mM-1cm-2, a fast amperometric response of 2 s, a wide linear range of 0.0015-4.02 mM, and a satisfactory result in human serum analysis were obtained by this novel Ag NS/Cu NW/PET sensor. Especially the sensitivity of the sensor was over four-fold higher than that of pure Cu NWs/PET, benefiting from the synergistic effect of bimetals. Furthermore, the Ag NS/Cu NW/PET sensor demonstrated a stable amperometric signal against mechanical bending. The material holds promise to use to fabricate flexible electrochemical devices.
Collapse
Affiliation(s)
- Chenhuinan Wei
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
36
|
A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Zhou Z, Zhu Z, Cui F, Shao J, Zhou HS. CuO/Cu composite nanospheres on a TiO2 nanotube array for amperometric sensing of glucose. Mikrochim Acta 2020; 187:123. [DOI: 10.1007/s00604-019-4099-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/26/2019] [Indexed: 01/31/2023]
|
38
|
Ultrathin CuxO nanoflakes anchored Cu2O nanoarray for high-performance non-enzymatic glucose sensor. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-019-04472-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Deng L, Li W, Li H, Cai W, Wang J, Zhang H, Jia H, Wang X, Cheng S. A Hierarchical Copper Oxide-Germanium Hybrid Film for High Areal Capacity Lithium Ion Batteries. Front Chem 2020; 7:869. [PMID: 31970147 PMCID: PMC6960130 DOI: 10.3389/fchem.2019.00869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Self-supported electrodes represent a novel architecture for better performing lithium ion batteries. However, lower areal capacity restricts their commercial application. Here, we explore a facial strategy to increase the areal capacity without sacrificing the lithium storage performance. A hierarchical CuO–Ge hybrid film electrode will not only provide high areal capacity but also outstanding lithium storage performance for lithium ion battery anode. Benefiting from the favorable structural advance as well as the synergic effect of the Ge film and CuO NWs array, the hybrid electrode exhibits a high areal capacity up to 3.81 mA h cm−2, good cycling stability (a capacity retention of 90.5% after 150 cycles), and superior rate performance (77.4% capacity remains even when the current density increased to 10 times higher).
Collapse
Affiliation(s)
- Liying Deng
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China
| | - Wangyang Li
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China
| | - Hongnan Li
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China
| | - Weifan Cai
- NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jingyuan Wang
- NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hong Zhang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China
| | - Hongjie Jia
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China
| | - Xinghui Wang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China.,Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou, China
| | - Shuying Cheng
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, China.,Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou, China
| |
Collapse
|
40
|
Hou C, Zhang X, Wang L, Zhang F, Huang X, Wang Z. A buckypaper decorated with CoP/Co for nonenzymatic amperometric sensing of glucose. Mikrochim Acta 2020; 187:101. [PMID: 31912240 DOI: 10.1007/s00604-019-4076-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022]
Abstract
A freestanding and flexible buckypaper modfied with CoP/Co (CoP/Co-BP) is described. It has a sponge-like nanostructure and is shown to enable improved nonenzymatic sensing of glucose. The CoP/Co-BP was prepared by first depositing a uniform layer of ZIF- 67 crystals on BP, followed by two steps of pyrolysis treatment and phosphidation under an argon atmosphere. The morphology and structure of the material were characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical properties were investigated by cyclic voltammetry and amperometric response. The amperometric sensor, best operated at 0.45 V (vs. SCE) at pH 13 has a linear range that extends from 0.5 μM to 1.8 mM of glucose, a 0.2 μM detection limit (at S/N = 3), and a sensitivity of 6427 μA mM-1 cm-2 in alkaline solution. This is mainly attributed to the synergistic effect between the highly active CoP nanostructure and BP which results in excellent conductivity. The uniformly distributed CoP nanoparticles in the network of BP prevent the formation of close-packed structure and facilitate electron transfer. The sensor has good selectivity and excellent long-term stability. It was applied to the determination of glucose in spiked human serum, and satisfactory results were obtained. Graphical abstractSchematic presentation of a freestanding and flexible buckypaper modfied with CoP/Co. It has a sponge-like nanostructure and exhibits improved catalytic activity toward glucose oxidation. This material was used for high-performance electrochemical glucose sensing.
Collapse
Affiliation(s)
- Chuantao Hou
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Xueli Zhang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China
| | - Lei Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China
| | - Fan Zhang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolian Huang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
41
|
Xiao X, Zhang X, Zhang Z, You J, Liu S, Wang Y. Macro-/meso-porous NiCo 2O 4 synthesized by template-free solution combustion to enhance the performance of a nonenzymatic amperometric glucose sensor. Mikrochim Acta 2019; 187:64. [PMID: 31853725 DOI: 10.1007/s00604-019-4063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
Abstract
A sensitive nonenzymatic amperometric glucose sensor is described that relies on a glassy carbon electrode modified with a macro-/meso-porous NiCo2O4. NiCo2O4 with spinel structure has been prepared via a one-step solution combustion method. The material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen absorption/desorption. An electrode was coated with the porous material and then displayed excellent electrocatalytic activity towards the direct oxidation of glucose in 0.15 M NaOH solution by cyclic voltammetry. Amperometric I-t curve demonstrated a sensitivity of 2100 μA·mM-1·cm-2 at an applied potential of 0.45 V (vs Hg/HgCl). The sensor has a linear response in the 0.001 to 1.0 mΜ glucose concentration range, a fast response time (3.9 s) and a low detection limit (0.38 μΜ). Graphical abstract.
Collapse
Affiliation(s)
- Xuechun Xiao
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Xuanming Zhang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Zhanyu Zhang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Junda You
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Sirui Liu
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China. .,Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091, Kunming, People's Republic of China.
| |
Collapse
|
42
|
Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X. Rational Construction of 3D-Networked Carbon Nanowalls/Diamond Supporting CuO Architecture for High-Performance Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901527. [PMID: 31074930 DOI: 10.1002/smll.201901527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Indexed: 05/27/2023]
Abstract
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D-networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10-6 -4 × 10-3 m), high sensitivity (1650 µA cm-2 mm-1 ), and low detection limit (0.5 × 10-6 m), together with high selectivity, great long-term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high-electrocatalytic-activity CuO nanoparticles and 3D-networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass- and charge-transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long-term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D-networked conductive C/D transducer for various high-performance nonenzymatic electrochemical biosensors.
Collapse
Affiliation(s)
- Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, No.72 Wenhua Road, Shenyang, 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| | - Bing Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| |
Collapse
|
43
|
Fu Y, Jin W. Facile synthesis of core-shell CuS-Cu 2S based nanocomposite for the high-performance glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110120. [PMID: 31546467 DOI: 10.1016/j.msec.2019.110120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Glucose detection is of great importance for the medical diagnosis, food biotechnology and pharmaceutical analysis. In this study, we synthesized a core-shell CuS-Cu2S decorated carbon nanotube-graphene nanocomposite via a facile hydrothermal method. It exhibits great sensing performance towards glucose with wide linear range ranging from 0.001 to 2 mM, ultra-sensitivity of 1923 μA·cm-2·mM-1 and 0.33 μM detection limit in alkaline solutions. The excellent electrocatalytic activity originates from the synergistic effect between heterogeneous copper sulfides structures and carbon nanomaterials. Besides, the fabricate sensor also has great durability, selectivity and great potential for practical applications.
Collapse
Affiliation(s)
- Yanqiu Fu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
44
|
Cheng S, Gao X, DelaCruz S, Chen C, Tang Z, Shi T, Carraro C, Maboudian R. In situ formation of metal-organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. J Mater Chem B 2019; 7:4990-4996. [PMID: 31411623 DOI: 10.1016/j.snb.2019.126860] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metal-organic frameworks (MOFs) are considered promising templates for the fabrication of nanostructured materials with high porosities and high surface areas, which are important parameters for enhanced performance in sensing applications. Here, a facile in situ synthetic strategy to construct MOF-derived porous CuO polyhedrons on carbon cloth (CC) is reported. Uniform Cu(OH)2 nanorods are first synthesized on carbon cloth, followed by the conversion of Cu(OH)2 nanorods into porous CuO polyhedrons via a copper-based MOF, Cu-BTC, as the intermediate species. When evaluated as a glucose sensing electrode, the as-fabricated CuO polyhedrons/CC composite exhibits a high sensitivity of 13 575 μA mM-1 cm-2 with a fast response time (t90) of 2.3 s and a low detection limit of 0.46 μM. This work exemplifies the rational fabrication of porous nanostructures on conductive substrates for enhanced performance in glucose detection.
Collapse
Affiliation(s)
- Siyi Cheng
- Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, USA. and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA and State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Gao
- Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, USA. and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Steven DelaCruz
- Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, USA. and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Chen Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zirong Tang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Carlo Carraro
- Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, USA. and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| | - Roya Maboudian
- Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, USA. and Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Lu W, Jian M, Wang Q, Xia K, Zhang M, Wang H, He W, Lu H, Zhang Y. Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. NANOSCALE 2019; 11:11856-11863. [PMID: 31184686 DOI: 10.1039/c9nr01791g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flexible enzymatic glucose sensors have been investigated extensively for health monitoring systems. However, enzymatic glucose sensors have some problems, such as poor stability and complicated immobilization procedures. Rational and controllable design of nanomaterials with a unique structure, high activity and good electrochemical performance for nonenzymatic glucose sensors is desired critically. In this paper, we synthesize cuprous oxide nanoparticles embedded in carbon spheres directly on carbonized silk fabrics (Cu2O NPs@CSs/CSF), which is further used for the fabrication of a flexible and self-supported non-enzymatic glucose sensor. The Cu2O NPs@CSs/CSF shows good electrical conductivity due to the large contact area and the stable connection between the carbonized silk fabrics and carbon spheres. We demonstrate that the as-obtained non-enzymatic glucose sensor possesses high sensitivity and good stability, indicating its potential for practical applications. This strategy diversifies the toolbox available to the field of nonenzymatic glucose sensors and holds promise for flexible electronic devices.
Collapse
Affiliation(s)
- Wangdong Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hu B, Zhang W, Yu C, Zheng Z, Chen Y, Wang J, Liu J, Ma K, Ren W. Electrochemical Synthesis of Al/CuO Thermite Films on Copper Substrates. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenchao Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunpei Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zilong Zheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yajie Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiaxin Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingping Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Ren
- Shanxi Applied Physics and Chemistry Research Institute, Xian, 710000, China
| |
Collapse
|
47
|
|
48
|
Sandwich nanoporous framework decorated with vertical CuO nanowire arrays for electrochemical glucose sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens Bioelectron 2019; 126:632-639. [DOI: 10.1016/j.bios.2018.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/23/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
50
|
Zhou Q, Li TT, Wang J, Guo F, Zheng YQ. Hierarchical Cu2S NRs@CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.183] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|