1
|
Kumari R, Mendki N, Chandra P. Smartphone-Integrated Automated Sensor Employing Electrochemically Engineered 3D Bimetallic Nanoflowers for Hydrogen Peroxide Quantification in Milk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11146-11159. [PMID: 38739881 DOI: 10.1021/acs.langmuir.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydrogen peroxide (H2O2), one of the reactive oxygen species in living beings, serves as a regulator of various cellular processes. However, excessive peroxide concentrations are linked to oxidative stress and promptly disrupt cellular components, leading to several pathological conditions in the body. Moreover, it is extremely reactive and has a limited lifetime; thus, H2O2 sensing remains a prominent focus of research. Enzymatic sensing probes were widely employed to detect H2O2 in the recent past; however, they are susceptible to intrinsic chemical and thermal instabilities, which decrease the reliability and durability of the surface. This research was designed to come up with a feasible solution to this problem. Herein, a novel nonenzymatic peroxidase-mimic three-dimensional (3D) bimetallic nanoflower has been synergistically engineered for quick sensing of H2O2. The sensor platform showed minimal resistance or enhanced charge transfer properties as well as remarkable analytical capability, having a broad linear range between 0.01 and 1 nM and a detection limit of 1.46 ± 0.07 pM. The probe responded to changes in H2O2 concentration in just 2.10 ± 0.02 s, making it a quick sensing platform for H2O2 tracking. This peroxidase-mimic nanozyme probe showed minimal sensitivity to interferants often seen in real-world sample matrices and possessed good recoveries ranging from 92.88 to 99.09% in milk samples. Further, a facile and user-friendly smartphone application (APP) named "HPeroxide-Check" was developed and integrated into the sensor to check the milk adulteration by detecting H2O2. It processes the current output obtained from the sensing interface and provides real-time peroxide concentrations in milk. The entire procedure of fabricating the probe is a single, highly robust step that takes only 10 min and is coupled with a smartphone APP, highlighting the sensor's quick manufacturing and deployment for automated H2O2 monitoring in industrial and point-of-care settings.
Collapse
Affiliation(s)
- Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Nachiket Mendki
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Ji L, Luo S, Li L, Qian N, Li X, Li J, Huang J, Wu X, Zhang H, Yang D. Facile synthesis of defect-rich RuCu nanoflowers for efficient hydrogen evolution reaction in alkaline media. NANOSCALE ADVANCES 2023; 5:861-868. [PMID: 36756518 PMCID: PMC9890511 DOI: 10.1039/d2na00840h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Developing high-performance electrocatalysts toward hydrogen evolution reaction (HER) in alkaline media is highly desirable for industrial applications in the field of water splitting but is still challenging. Herein, we successfully synthesized RuCu nanoflowers (NFs) with tunable atomic ratios using a facile wet chemistry method. The Ru3Cu NFs need only 55 mV to achieve a current density of 10 mA cm-2, which shows ideal durability with only 4 mV decay after 2000 cycles, largely outperforming the catalytic properties of commercial Pt/C. The Ru3Cu NFs comprise many nanosheets that can provide more active sites for HER. In addition, the introduction of Cu can modulate the electronic structure of Ru, facilitate water dissociation, and optimize H adsorption/desorption ability. Thus, the flower-like structure together with the proper incorporation of Cu boosts HER performance.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Sai Luo
- Sunrise Power Co., Ltd Dalian Liaoning 116024 People's Republic of China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 People's Republic of China
| | - Lei Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xiao Li
- Sunrise Power Co., Ltd Dalian Liaoning 116024 People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xingqiao Wu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311200 People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311200 People's Republic of China
| |
Collapse
|
3
|
Hossain SS, Ahmad Alwi MM, Saleem J, Al-Odail F, Basu A, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts. CHEM REC 2022; 22:e202200156. [PMID: 36073789 DOI: 10.1002/tcr.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Indexed: 12/14/2022]
Abstract
Platinum-based catalysts have a long history of application in formic acid oxidation (FAO). The single metal Pt is active in FAO but expensive, scarce, and rapidly deactivates. Understanding the mechanism of FAO over Pt important for the rational design of catalysts. Pt nanomaterials rapidly deactivate because of the CO poisoning of Pt active sites via the dehydration pathway. Alloying with another transition metal improves the performance of Pt-based catalysts through bifunctional, ensemble, and steric effects. Supporting Pt catalysts on a high-surface-area support material is another technique to improve their overall catalytic activity. This review summarizes recent findings on the mechanism of FAO over Pt and Pt-based alloy catalysts. It also summarizes and analyzes binary and ternary Pt-based catalysts to understand their catalytic activity and structure relationship.
Collapse
Affiliation(s)
- Sk Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Avijit Basu
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Crystal growth and catalytic properties of AgPt and AuPt bimetallic nanostructures under surfactant effect. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties. NANOMATERIALS 2021; 11:nano11020340. [PMID: 33572848 PMCID: PMC7911664 DOI: 10.3390/nano11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Collapse
|
6
|
Miroslav Spasojević, Ribić-Zelenović L, Spasojević M, Trišović T. The Mixture of Nanoparticles of RuO2 and Pt Supported on Ti as an Efficient Catalyst for Direct Formic Acid Fuel Cell. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193519120164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Li C, Xu Y, Yu H, Deng K, Liu S, Wang Z, Li X, Wang L, Wang H. Facile dual tuning of PtPdP nanoparticles by metal-nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis. NANOTECHNOLOGY 2020; 31:045401. [PMID: 31574496 DOI: 10.1088/1361-6528/ab49ae] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tuning the compositions and morphologies of catalysts is very important for the design of efficient formic acid oxidation reaction (FAOR) electrocatalysts. Herein, unique PtPdP dendritic nanoparticles (PtPdP DNs) with uniform size and open-pore structure are fabricated by a facile method, in which the Pd and P elements are simultaneously incorporated into Pt DNs. The prepared PtPdP DNs show enhanced catalytic activity and stability for FAOR. The improved electrocatalytic activity toward FAOR for the PtPdP DNs is mainly attributed to the synergic enhancement effect of the structural and compositional advantages, which jointly promote the electrocatalytic kinetics and thus enhance the electrocatalytic performance.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gong M, Deng Z, Xiao D, Han L, Zhao T, Lu Y, Shen T, Liu X, Lin R, Huang T, Zhou G, Xin H, Wang D. One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00603] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Dongdong Xiao
- Materials Science and Engineering Program & Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, United States
| | - Lili Han
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Ruoqian Lin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ting Huang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program & Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, United States
| | - Huolin Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| |
Collapse
|
9
|
Li L, Wong SS. Ultrathin Metallic Nanowire-Based Architectures as High-Performing Electrocatalysts. ACS OMEGA 2018; 3:3294-3313. [PMID: 31458586 PMCID: PMC6641357 DOI: 10.1021/acsomega.8b00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 05/24/2023]
Abstract
Fuel cells (FCs) convert chemical energy into electricity through electrochemical reactions. They maintain desirable functional advantages that render them as attractive candidates for renewable energy alternatives. However, the high cost and general scarcity of conventional FC catalysts largely limit the ubiquitous application of this device configuration. For example, under current consumption requirements, there is an insufficient global reserve of Pt to provide for the needs of an effective FC for every car produced. Therefore, it is absolutely necessary in the future to replace Pt either completely or in part with far more plentiful, abundant, cheaper, and potentially less toxic first row transition metals, because the high cost-to-benefit ratio of conventional catalysts is and will continue to be a major limiting factor preventing mass commercialization. We and other groups have explored a number of nanowire-based catalytic architectures, which are either Pt-free or with reduced Pt content, as an energy efficient solution with improved performance metrics versus conventional, currently commercially available Pt nanoparticles that are already well established in the community. Specifically, in this Perspective, we highlight strategies aimed at the rational modification of not only the physical structure but also the chemical composition as a means of developing superior electrocatalysts for a number of small-molecule-based anodic oxidation and cathodic reduction reactions, which underlie the overall FC behavior. In particular, we focus on efforts to precisely, synergistically, and simultaneously tune not only the size, morphology, architectural motif, surface chemistry, and chemical composition of the as-generated catalysts but also the nature of the underlying support so as to controllably improve performance metrics of the hydrogen oxidation reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and the formic acid oxidation reaction, in addition to the oxygen reduction reaction.
Collapse
|
10
|
Wu H, Qi W, Peng H, He J. Facile Synthesis of Ag@Pt Core-Shell Nanoparticles with Different Dendrites Pt Shells. ChemistrySelect 2017. [DOI: 10.1002/slct.201701863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haofei Wu
- School of Materials Science and Engineering; Central South University; Changsha 410083, P. R. China
| | - Weihong Qi
- School of Materials Science and Engineering; Central South University; Changsha 410083, P. R. China
- Key Laboratory of Non-ferrous Materials Science and Engineering; Ministry of Education; Changsha 410083, P. R. China
| | - Hongcheng Peng
- School of Materials Science and Engineering; Central South University; Changsha 410083, P. R. China
| | - Jieting He
- School of Materials Science and Engineering; Central South University; Changsha 410083, P. R. China
| |
Collapse
|
11
|
Dealloyed platinum-copper with isolated Pt atom surface: Facile synthesis and promoted dehydrogenation pathway of formic acid electro-oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Li M, Liu R, Han G, Tian Y, Chang Y, Xiao Y. Facile Synthesis of Pd-Ni Nanoparticles on Reduced Graphene Oxide under Microwave Irradiation for Formic Acid Oxidation. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miaoyu Li
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Ruiqin Liu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yanni Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yunzhen Chang
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| | - Yaoming Xiao
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University; Taiyuan Shanxi 030006 China
| |
Collapse
|
13
|
Xu GR, Bai J, Yao L, Xue Q, Jiang JX, Zeng JH, Chen Y, Lee JM. Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. ACS Catal 2016. [DOI: 10.1021/acscatal.6b03049] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guang-Rui Xu
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Bai
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Lin Yao
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Qi Xue
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jia-Xing Jiang
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jing-Hui Zeng
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yu Chen
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi
Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab
for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jong-Min Lee
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
14
|
Selective Dehydrogenation of HCOOH on Zn-Decorated Pd(111) Surface Studied by First-Principles Calculations. Catal Letters 2016. [DOI: 10.1007/s10562-016-1866-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Core–shell Pd–P@Pt nanoparticles as efficient catalysts for electrooxidation of formic acid. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Cao Y, Yang Y, Shan Y, Huang Z. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5998-6003. [PMID: 26885678 DOI: 10.1021/acsami.5b11364] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.
Collapse
Affiliation(s)
- Yanqin Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P.R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yong Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P.R. China
| | - Yufeng Shan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P.R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhengren Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road, Shanghai 200050, P.R. China
| |
Collapse
|
17
|
Li D, Meng F, Wang H, Jiang X, Zhu Y. Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Wu ZQ, Ji YG, Zhai YN, Li SN, Lee JM. The facile ionic liquid-assisted synthesis of hollow and porous platinum nanotubes with enhanced catalytic performances. RSC Adv 2016. [DOI: 10.1039/c6ra13451c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile one-pot synthetic method was developed to synthesize hollow and porous Pt nanotubes (Pt-HPNTs) using silica nanorods as a template, ionic liquid as a precipitator and reductant, and in situ generated KCl as an etching agent.
Collapse
Affiliation(s)
- Zhu-Qing Wu
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Yi-Gang Ji
- Jiangsu Key Laboratory of Biofunction Molecule
- Department of Life Sciences and Chemistry
- Jiangsu Second Normal University
- Nanjing 210013
- PR China
| | - Ya-Nan Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
- PR China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
19
|
Qu X, Cao Z, Zhang B, Tian X, Zhu F, Zhang Z, Jiang Y, Sun S. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem Commun (Camb) 2016; 52:4493-6. [DOI: 10.1039/c6cc00184j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic PtPb nanodendrites with a single-crystalline structure were obtained by a facile one-pot strategy.
Collapse
Affiliation(s)
- Ximing Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenming Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Binwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - XiaoChun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Fuchun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zongcheng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
20
|
Liu H, Wang S, Jia F. Conversion of commercial Pt/C to “clean” Pt-Cu/C catalyst with high activity toward methanol oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Zhu C, Du D, Eychmüller A, Lin Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem Rev 2015; 115:8896-943. [DOI: 10.1021/acs.chemrev.5b00255] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Key
Laboratory of Pesticide and Chemical Biology of the Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
22
|
Zhao H, Liu R, Guo Y, Yang S. Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation. Phys Chem Chem Phys 2015; 17:31170-6. [DOI: 10.1039/c5cp05641a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wormlike PtxAgy nanotubes (NTs) were synthesized in a molten salt media without using any organic surfactant or solvent. They presented a enhanced performance in fuel cell catalysis compared with that of the Pt black.
Collapse
Affiliation(s)
- Haidong Zhao
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong 037009
- People's Republic of China
| | - Rui Liu
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong 037009
- People's Republic of China
| | - Yong Guo
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Datong 037009
- People's Republic of China
| | - Shengchun Yang
- School of Science
- Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics
- State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|