1
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
2
|
Cardellini A, Jiménez-Ángeles F, Asinari P, Olvera de la Cruz M. A Modeling-Based Design to Engineering Protein Hydrogels with Random Copolymers. ACS NANO 2021; 15:16139-16148. [PMID: 34644059 DOI: 10.1021/acsnano.1c04955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein enzymes have shown great potential in numerous technological applications. However, the design of supporting materials is needed to preserve protein functionality outside their native environment. Direct enzyme-polymer self-assembly offers a promising alternative to immobilize proteins in an aqueous solution, achieving higher control of their stability and enzymatic activity in industrial applications. Herein, we propose a modeling-based design to engineering hydrogels of cytochrome P450 and of PETase with styrene/2-vinylpyridine (2VP) random copolymers. By tuning the copolymer fraction of polar groups and of charged groups via quaternization of 2VP for coassembly with cytochrome P450 and via sulfonation of styrene for coassembly with PETase, we provide quantitative guidelines to select either a protein-polymer hydrogel structure or a single-protein encapsulation. The results highlight that, regardless of the protein surface domains, the presence of polar interactions and hydration effects promote the formation of a more elongated enzyme-polymer complex, suggesting a membrane-like coassembly. On the other hand, the effectiveness of a single-protein encapsulation is reached by decreasing the fraction of polar groups and by increasing the charge fraction up to 15%. Our computational analysis demonstrates that the enzyme-polymer assemblies are first promoted by the hydrophobic interactions which lead the protein nonpolar residues to achieve the maximum coverage and to play the role of the most robust contact points. The mechanisms of coassembly are unveiled in the light of both protein and polymer physical-chemistry, providing bioconjugate phase diagrams for the optimal material design.
Collapse
Affiliation(s)
- Annalisa Cardellini
- Politecnico di Torino, Torino 10129, Italy
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Pietro Asinari
- Politecnico di Torino, Torino 10129, Italy
- Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Yao H, Olsen BD. SANS quantification of bound water in water-soluble polymers across multiple concentration regimes. SOFT MATTER 2021; 17:5303-5318. [PMID: 34013304 DOI: 10.1039/d0sm01962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-variation small-angle neutron scattering (CV-SANS) is a widely used technique for quantifying hydration water in soft matter systems, but it is predominantly applied in the dilute regime or for systems with a well-defined structure factor. Here, CV-SANS was used to quantify the number of hydration water molecules associating with three water-soluble polymers with different critical solution temperatures and types of water-solute interactions in dilute, semidilute, and concentrated solution through the exploration of novel methods of data fitting and analysis. Multiple SANS fitting workflows with varying levels of model assumptions were evaluated and compared to give insight into SANS model selection. These fitting pathways ranged from general, model-free algorithms to more standard form and structure factor fitting. In addition, Monte Carlo bootstrapping was evaluated as a method to estimate parameter uncertainty through simulation of technical replicates. The most robust fitting workflow for dilute solutions was found to be form factor fitting without CV-SANS (i.e. polymer in 100% D2O). For semidilute and concentrated solutions, while the model-free approach can be mathematically defined for CV-SANS data, the addition of a structure factor imposes physical constraints on the optimization problem, suggesting that the optimal fitting pathway should include appropriate form and structure factor models. The measured hydration numbers were consistent with the number of tightly bound water molecules associated with each monomer unit, and the concentration dependence of the hydration number was largely governed by the chemistry-specific interactions between water and polymer. Polymers with weaker water-polymer interactions (i.e. those with fewer hydration water molecules) were found to have more bound water at higher concentrations than those with stronger water-polymer interactions due to the increase in the number of forced water-polymer contacts in the concentrated system. This SANS-based method to count hydration water molecules can be applied to polymers in any concentration regime, which will lead to improved understanding of water-polymer interactions and their impact on materials design.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
5
|
Velasco-Rodriguez B, Soltero-Martínez JF, Rosales-Rivera LC, Macías-Balleza ER, Landázuri G, Larios-Durán ER. Adsorption and Interaction of Bovine Serum Albumin and Pluronic P103 Triblock Copolymer on a Gold Electrode: Double-Layer Capacitance Measurements. ACS OMEGA 2020; 5:17347-17355. [PMID: 32715219 PMCID: PMC7377067 DOI: 10.1021/acsomega.0c01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The interactions of proteins and other molecules and their adsorption onto substrates is a fascinating topic that has been applied to surface technologies, biosensors, corrosion studies, biotechnologies, and other fields. The success of these applications requires a previous characterization using some analytical techniques that, ordinarily, are not electrochemical. This work proposes analyzing the variation of the double-layer capacitance obtained through impedance electrochemical spectroscopy as an alternative strategy to show evidence of the interactions between proteins and triblock copolymers. The proposal is supported through the study of the interaction and adsorption of bovine serum albumin (BSA) and a commercial triblock copolymer (P103) in phosphate buffer on a gold electrode. The double-layer capacitance and the apparent interface thickness vs polarization potential curves as well as the potential of zero charge for pure P103 (0.6 wt %, corresponding to 6 g L-1), pure BSA (3 mg mL-1), and P103-BSA solutions (0.6 wt % and 3 mg mL-1, respectively) are sensitive enough to show not only the interaction and the adsorption of the species but also the polarization potential where these interactions are taking place. A qualitative and quantitative analysis concerning the double-layer capacitance behavior is given. The significance and impact of this work is also presented.
Collapse
|
6
|
Hanifi S, Farahmandghavi F, Imani M. RAFT-derived siloxane-based amphiphilic triblock copolymers: Synthesis, characterization, and self-assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
|
8
|
Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, Olsen BD. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kai Sheng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jialing Sun
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Shupeng Yan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yingqin Hou
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Hua Lu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
9
|
Huang A, Yao H, Olsen BD. SANS partial structure factor analysis for determining protein-polymer interactions in semidilute solution. SOFT MATTER 2019; 15:7350-7359. [PMID: 31468047 DOI: 10.1039/c9sm00766k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction between proteins and polymers in solution contributes to numerous important technological processes, including protein crystallization, biofouling, and the self-assembly of protein-polymer bioconjugates. To quantify these interactions, three different polymers-PNIPAM, POEGA, and PDMAPS-were each blended with a model protein mCherry and studied using contrast variation small angle neutron scattering (SANS). This technique allows for the decomposition of the SANS scattering intensity into partial structure factors corresponding to interactions between two polymer chains, interactions between two proteins, and interactions between a polymer chain and a protein, even for concentrations above the overlap concentration. Examining correlations between each component offers insight into the interactions within the system. In particular, mCherry-PNIPAM interactions are consistent with a depletion interaction, and mCherry-POEGA interactions suggest a considerable region of polymer enrichment close to the protein surface, indicative of attractive forces between the two. Interactions between mCherry and PDMAPS are more complex, with possible contributions from both depletion forces and electrostatic forces.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
10
|
Huang A, Paloni JM, Wang A, Obermeyer AC, Sureka HV, Yao H, Olsen BD. Predicting Protein-Polymer Block Copolymer Self-Assembly from Protein Properties. Biomacromolecules 2019; 20:3713-3723. [PMID: 31502834 PMCID: PMC6794641 DOI: 10.1021/acs.biomac.9b00768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protein–polymer
bioconjugate self-assembly has attracted
a great deal of attention as a method to fabricate protein nanomaterials
in solution and the solid state. To identify protein properties that
affect phase behavior in protein–polymer block copolymers,
a library of 15 unique protein-b-poly(N-isopropylacrylamide) (PNIPAM) copolymers comprising 11 different
proteins was compiled and analyzed. Many attributes of phase behavior
are found to be similar among all studied bioconjugates regardless
of protein properties, such as formation of micellar phases at high
temperature and low concentration, lamellar ordering with increasing
temperature, and disordering at high concentration, but several key
protein-dependent trends are also observed. In particular, hexagonal
phases are only observed for proteins within the molar mass range
20–36 kDa, where ordering quality is also significantly enhanced.
While ordering is generally found to improve with increasing molecular
weight outside of this range, most large bioconjugates exhibited weaker
than predicted assembly, which is attributed to chain entanglement
with increasing polymer molecular weight. Additionally, order–disorder
transition boundaries are found to be largely uncorrelated to protein
size and quality of ordering. However, the primary finding is that
bioconjugate ordering can be accurately predicted using only protein
molecular weight and percentage of residues contained within β
sheets. This model provides a basis for designing protein–PNIPAM
bioconjugates that exhibit well-defined self-assembly and a modeling
framework that can generalize to other bioconjugate chemistries.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Justin M Paloni
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Amy Wang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Allie C Obermeyer
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Hursh V Sureka
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Helen Yao
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
11
|
Chen Y, Sun Z, Li H, Dai Y, Hu Z, Huang H, Shi Y, Li Y, Chen Y. Molecular Bottlebrushes Featuring Brush-on-Brush Architecture. ACS Macro Lett 2019; 8:749-753. [PMID: 35619534 DOI: 10.1021/acsmacrolett.9b00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular bottlebrushes featuring brush-on-brush (BoB) architecture were prepared by combining azide-alkyne click chemistry, ring-opening polymerization (ROP), and atom transfer radical polymerization (ATRP). Primary side chains of diblock copolymers with a poly(ε-caprolactone) (PCL) block and a poly(α-bromo-ε-caprolactone) (P(CL-Br)) block were synthesized by ROP and then grafted onto PCL backbone by the click reaction. Then the secondary side chains of poly(oligo(ethylene glycol) acrylate) (POEGA) were grafted from the P(CL-Br) block by ATRP, yielding an amphiphilic core/shell structure. Imaging of individual macromolecules by atomic force microscopy (AFM) demonstrated dramatically thickened wormlike formation with distinct hairy side chains. Interestingly, for the BoB molecular bottlebrushes with enough long primary and secondary side chains, sufficient tension can be generated along the backbone and thus lead to its cleavage.
Collapse
Affiliation(s)
- Yi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang Sun
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huaan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunkai Dai
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhitao Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huahua Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Abstract
Bioconjugates made of the model red fluorescent protein mCherry and synthetic polymer blocks show that topology, i.e. the BA, BA2, ABA and ABC chain structure of the block copolymers, where B represents the protein and A and C represent polymers, has a significant effect on ordering transitions and the type and size of nanostructures formed during microphase separation.
Collapse
Affiliation(s)
- Takuya Suguri
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Yokkaichi Research Center
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
13
|
Paloni JM, Miller EA, Sikes HD, Olsen BD. Improved Ordering in Low Molecular Weight Protein-Polymer Conjugates Through Oligomerization of the Protein Block. Biomacromolecules 2018; 19:3814-3824. [PMID: 30132651 DOI: 10.1021/acs.biomac.8b00928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The self-assembly of protein-polymer conjugates incorporating oligomers of a small, engineered high-affinity binding protein, rcSso7d.SA, is studied to determine the effect of protein oligomerization on nanoscale ordering. Oligomerization enables a systematic increase in the protein molar mass without changing its overall folded structure, leading to a higher driving force for self-assembly into well-ordered structures. Though conjugates of monomeric rcSso7d.SA are found to only exist in disordered states, oligomers of this protein linked to a poly( N-isopropylacrylamide) (PNIPAM) block self-assemble into lamellar nanostructures. Conjugates of trimeric and tetrameric rcSso7d.SA are observed to produce the strongest ordering in concentrated solution, displaying birefringent lamellae at concentrations as low as 40 wt %. In highly concentrated solution, the oligomeric rcSso7d.SA-PNIPAM block copolymers exhibit ordering and domain spacing trends atypical from that of most block copolymers. Fluorescent binding assays indicate that oligomerized protein blocks retain binding functionality and exhibit limits of detection up to three times lower than that of surface-immobilized protein sensors. Therefore, oligomerization of the protein block in these block copolymers serves as an effective method to improve both nanoscale ordering and biosensing capabilities.
Collapse
Affiliation(s)
- Justin M Paloni
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Eric A Miller
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Hadley D Sikes
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
14
|
Mills CE, Michaud Z, Olsen BD. Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins. Biomacromolecules 2018; 19:2517-2525. [PMID: 29791150 DOI: 10.1021/acs.biomac.8b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zachary Michaud
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
15
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
16
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
17
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
18
|
Dong X, Obermeyer AC, Olsen BD. Three‐Dimensional Ordered Antibody Arrays Through Self‐Assembly of Antibody–Polymer Conjugates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue‐Hui Dong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Allie C. Obermeyer
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Bradley D. Olsen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
19
|
Dong X, Obermeyer AC, Olsen BD. Three‐Dimensional Ordered Antibody Arrays Through Self‐Assembly of Antibody–Polymer Conjugates. Angew Chem Int Ed Engl 2016; 56:1273-1277. [DOI: 10.1002/anie.201607085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xue‐Hui Dong
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Allie C. Obermeyer
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Bradley D. Olsen
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
20
|
Chang D, Huang A, Olsen BD. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Dongsook Chang
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| | - Aaron Huang
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| | - Bradley D. Olsen
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| |
Collapse
|
21
|
Lam CN, Yao H, Olsen BD. The Effect of Protein Electrostatic Interactions on Globular Protein–Polymer Block Copolymer Self-Assembly. Biomacromolecules 2016; 17:2820-9. [DOI: 10.1021/acs.biomac.6b00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher N. Lam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Helen Yao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Huang A, Olsen BD. Self-Assembly of Differently Shaped Protein-Polymer Conjugates through Modification of the Bioconjugation Site. Macromol Rapid Commun 2016; 37:1268-74. [PMID: 27322114 DOI: 10.1002/marc.201500744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/20/2016] [Indexed: 12/17/2022]
Abstract
Self-assembly of protein-polymer block copolymers is an attractive route for preparing biocatalytic materials. To clarify the effect of bioconjugate shape on self-assembly without changing the chemical details of either block, four different conjugation sites are selected on the surface of the model globular protein mCherry at residues 3, 108, 131, and 222 to alter the colloidal shape of the bioconjugate. All four mCherry-b-poly(N-isopropylacrylamide) bioconjugates show qualitatively similar phase diagrams, indicating that self-assembly is robust with respect to changes in conjugation site. However, protein orientation has an effect on the location of the order-disorder transition concentration, and the stability of the disordered micellar phase is shown to be different for each conjugate. Differences in domain spacing also suggest changes in protein orientation within the lamellae.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, USA
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA, 02139, USA
| |
Collapse
|
23
|
Qin G, Perez PM, Mills CE, Olsen BD. Effect of ELP Sequence and Fusion Protein Design on Concentrated Solution Self-Assembly. Biomacromolecules 2016; 17:928-34. [PMID: 26927835 DOI: 10.1021/acs.biomac.5b01604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusion proteins provide a facile route for the purification and self-assembly of biofunctional protein block copolymers into complex nanostructures; however, the use of biochemical synthesis techniques introduces unexplored variables into the design of the structures. Using model fusion constructs of the red fluorescent protein mCherry and the coil-like protein elastin-like polypeptide (ELP), it is shown that the molar mass and hydrophobicity of the ELP sequence have a large effect on the propensity of a fusion to form well-ordered nanostructures, even when the ELP is in the low temperature, highly solvated state. In contrast, the presence of a 6xHis purification tag has little effect on self-assembly, and the order of blocks in the construct (N-terminal vs C-terminal) only has a significant effect on the nanostructure when the conjugates are heated above the transition temperature of the ELP block. These results indicate that for a sufficiently hydrophobic and high molar mass ELP block, there is a great deal of design latitude in the construction of fusion protein block copolymers for self-assembling nanomaterials.
Collapse
Affiliation(s)
- Guokui Qin
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paola M Perez
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Carolyn E Mills
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Chang D, Olsen BD. Self-assembly of protein-zwitterionic polymer bioconjugates into nanostructured materials. Polym Chem 2016. [DOI: 10.1039/c5py01894c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bioconjugates of a red fluorescent protein mCherry and a zwitterionic polymer (PDMAPS) are self-assembled into nanostructured materials. The concentrated solution phase behaviour is studied to elucidate the effect of high charge density along the polymer backbone.
Collapse
Affiliation(s)
- Dongsook Chang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
25
|
Wang JT, Hong Y, Ji X, Zhang M, Liu L, Zhao H. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J Mater Chem B 2016; 4:4430-4438. [DOI: 10.1039/c6tb00699j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
26
|
Lam CN, Chang D, Wang M, Chen W, Olsen BD. The shape of protein–polymer conjugates in dilute solution. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher N. Lam
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge Massachusetts02139
| | - Dongsook Chang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge Massachusetts02139
| | - Muzhou Wang
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge Massachusetts02139
| | - Wei‐Ren Chen
- Biology and Soft Matter DivisionOak Ridge National LaboratoryOak Ridge Tennessee37831
| | - Bradley D. Olsen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge Massachusetts02139
| |
Collapse
|
27
|
pH-responsive double hydrophilic protein-polymer hybrids and their self-assembly in aqueous solution. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3725-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Why synthesize protein–polymer conjugates? The stability and activity of chymotrypsin-polymer bioconjugates synthesized by RAFT. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, Kempe K, Haddleton DM. Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. J Am Chem Soc 2015; 137:9344-53. [DOI: 10.1021/jacs.5b04139] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Muxiu Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Chongyu Zhu
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Zaidong Li
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - Kristian Kempe
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
30
|
Obermeyer AC, Olsen BD. Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Lett 2015; 4:101-110. [PMID: 35596389 DOI: 10.1021/mz500732e] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins possess an impressive array of functionality ranging from catalytic activity to selective binding and mechanical strength, making them highly attractive for materials engineering. Conjugation of synthetic polymers to proteins has the potential to improve the physical properties of the protein as well as provide functionality not typically found in native proteins, such as stimuli-responsive behavior and the programmable ability to self-assemble. This viewpoint discusses the design of protein-polymer conjugates, an important class of block copolymers. Use of these hybrid molecules in biological and catalytic applications is highlighted, and the ability of the polymer to direct the solution and solid-state self-assembly of the hybrid block copolymers is reviewed. Future challenges in polymer and material science that will enable these hybrid molecules to reach their potential as protein-based materials are outlined.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Falatach R, McGlone C, Al-Abdul-Wahid MS, Averick S, Page RC, Berberich JA, Konkolewicz D. The best of both worlds: active enzymes by grafting-to followed by grafting-from a protein. Chem Commun (Camb) 2015; 51:5343-6. [DOI: 10.1039/c4cc09287b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophilic polymers were attached to lysozyme by a combination of grafting-to and grafting-from approaches using RAFT polymerization.
Collapse
Affiliation(s)
- Rebecca Falatach
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | - Cameron McGlone
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | | - Saadyah Averick
- Laboratory for Biomolecular Medicine
- Allegheny Health Network Research Institute
- Pittsburgh
- USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jason A. Berberich
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | | |
Collapse
|