1
|
Moradi M, Georgopanos P. Polymerization-Induced Self-Assembly for the Synthesis of Polyisoprene-Polystyrene Block and Random Copolymers: Towards High Molecular Weight and Conversion. Macromol Rapid Commun 2025; 46:e2400727. [PMID: 39461895 PMCID: PMC11800055 DOI: 10.1002/marc.202400727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 10/29/2024]
Abstract
In this study, reversible addition-fragmentation chain- transfer (RAFT) polymerization combined with the polymerization-induced self-assembly (PISA) technique is used to synthesize polyisoprene (PI)-based block and random copolymers with polystyrene (PS), aiming for high molecular weight and monomer conversion. The focus is to optimize the polymerization conditions to overcome the existing challenge of cross-linking and Diels-Alder reactions during the polymerization of isoprene, which typically constrain the reaction conversion and molecular weight of the final polymers. Using a poly(methacrylic acid) (PMAA) macroRAFT agent synthesized in ethanol at 80 °C, random and block copolymers of PS-PI with a target molecular weight of 50 000 g mole-1 and a high monomer conversion of ≈80% are achieved under optimized conditions in water-emulsion at 35 °C. 1H nuclear magnetic resonance (NMR) verified the successful synthesis as well as the high content of 1,4 microstructure in polyisoprene. The thermal analysis via differential scanning calorimetry indicated distinct glass transitions for the microphase-separated PI-PS block copolymer, while a single transition for PI-PS random copolymer, indicating no microphase separation. Furthermore, dynamic light scattering analysis together with transmission electron microscopy provided further insight into the self-assembled emulsion nanoparticles of the polymers indicating a particle size in the range 70 to 130 nm.
Collapse
Affiliation(s)
- Maryam Moradi
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Straße 121502GeesthachtGermany
| | - Prokopios Georgopanos
- Helmholtz‐Zentrum HereonInstitute of Membrane ResearchMax‐Planck‐Straße 121502GeesthachtGermany
| |
Collapse
|
2
|
Chrysostomou V, Foryś A, Trzebicka B, Demetzos C, Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers (Basel) 2022; 14:polym14224901. [PMID: 36433029 PMCID: PMC9699196 DOI: 10.3390/polym14224901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Lipid-polymer chimeric (hybrid) nanosystems are promising platforms for the design of effective gene delivery vectors. In this regard, we developed DNA nanocarriers comprised of a novel poly[(stearyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate] [P(SMA-co-OEGMA)] amphiphilic random copolymer, the cationic 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP), and the zwitterionic L-α-phosphatidylcholine, hydrogenated soybean (soy) (HSPC) lipids. Chimeric HSPC:DOTAP:P[(SMA-co-OEGMA)] nanosystems, and pure lipid nanosystems as reference, were prepared in several molar ratios of the components. The colloidal dispersions obtained presented well-defined physicochemical characteristics and were further utilized for the formation of lipoplexes with a model DNA of linear topology containing 113 base pairs. Nanosized complexes were formed through the electrostatic interaction of the cationic lipid and phosphate groups of DNA, as observed by dynamic, static, and electrophoretic light scattering techniques. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy disclosed the strong binding affinity of the chimeric and also the pure lipid nanosystems to DNA. Colloidally stable chimeric/lipid complexes were formed, whose physicochemical characteristics depend on the N/P ratio and on the molar ratio of the building components. Cryogenic transmission electron microscopy (Cryo-TEM) revealed the formation of nanosystems with vesicular morphology. The results suggest the successful fabrication of these novel chimeric nanosystems with well-defined physicochemical characteristics, which can form stable lipoplexes.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence: ; Tel.: +30-2107273824
| |
Collapse
|
3
|
Penfold NJW, Neal TJ, Plait C, Leigh AE, Chimonides G, Smallridge MJ, Armes SP. Reverse sequence polymerization-induced self-assembly in aqueous media: a counter-intuitive approach to sterically-stabilized diblock copolymer nano-objects. Polym Chem 2022. [DOI: 10.1039/d2py01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 500 nm charge-stabilized latex is converted into 40 nm sterically-stabilized nanoparticles via reverse sequence polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Corentin Plait
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Andrew E. Leigh
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Gwen Chimonides
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
4
|
Dorsman IR, Chan DHH, Cunningham VJ, Brown SL, Williams CN, Varlas S, Armes SP. Synthesis of crystallizable poly(behenyl methacrylate)-based block and statistical copolymers and their performance as wax crystal modifiers. Polym Chem 2022. [DOI: 10.1039/d2py01023b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Behenyl methacrylate-based diblock and statistical copolymers are evaluated as additives for the crystal habit modification of a model wax (n-octacosane) in n-dodecane. The statistical copolymers more strongly influence the wax crystal morphology.
Collapse
Affiliation(s)
- Isabella R. Dorsman
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Derek H. H. Chan
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | | | - Steven L. Brown
- Scott Bader Company Ltd, Wollaston, Wellingborough NN29 7RL, UK
| | | | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
5
|
Raphael E, Derry MJ, Hippler M, Armes SP. Tuning the properties of hydrogen-bonded block copolymer worm gels prepared via polymerization-induced self-assembly. Chem Sci 2021; 12:12082-12091. [PMID: 34667573 PMCID: PMC8457373 DOI: 10.1039/d1sc03156b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) is exploited to design hydrogen-bonded poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] worm gels in n-dodecane. Using a carboxylic acid-based RAFT agent facilitates hydrogen bonding between neighboring worms to produce much stronger physical gels than those prepared using the analogous methyl ester-based RAFT agent. Moreover, tuning the proportion of these two types of end-groups on the PSMA chains enables the storage modulus (G') of a 20% w/w worm gel to be tuned from ∼4.5 kPa up to ∼114 kPa. This is achieved via two complementary routes: (i) an in situ approach using binary mixtures of acid- and ester-capped PSMA stabilizer chains during PISA or (ii) a post-polymerization processing strategy using a thermally-induced worm-to-sphere transition to mix acid- and ester-functionalized spheres at 110 °C that fuse to form worms on cooling to 20 °C. SAXS and rheology studies of these hydrogen-bonded worm gels provide detailed insights into their inter-worm interactions and physical behavior, respectively. In the case of the carboxylic acid-functionalized worms, SAXS provides direct evidence for additional inter-worm interactions, while rheological studies confirm both a significant reduction in critical gelation concentration (from approximately 10% w/w to 2-3% w/w) and a substantial increase in critical gelation temperature (from 41 °C to 92 °C). It is remarkable that a rather subtle change in the chemical structure results in such improvements in gel strength, gelation efficiency and gel cohesion.
Collapse
Affiliation(s)
- Eleanor Raphael
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Matthew J Derry
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Michael Hippler
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Steven P Armes
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
6
|
Baddam V, Välinen L, Tenhu H. Thermoresponsive Polycation-Stabilized Nanoparticles through PISA. Control of Particle Morphology with a Salt. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vikram Baddam
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Lauri Välinen
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, Helsinki 00014, Finland
| |
Collapse
|
7
|
Li JW, Chen M, Zhou JM, Pan CY, Zhang WJ, Hong CY. RAFT dispersion copolymerization of styrene and N-methacryloxysuccinimide: Promoted morphology transition and post-polymerization cross-linking. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
9
|
Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021. [DOI: 10.1039/d0py00793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to produce self-assembled structures with hydrophobic polypeptide cores via Reversible Addition–Fragmentation chain Transfer (RAFT) – mediated Polymerisation-Induced Self-Assembly (PISA).
Collapse
Affiliation(s)
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM
- Univ Montpellier
- CNRS
- ENSCM
| | | |
Collapse
|
10
|
Jung KH, Kim HJ, Kim MH, Seo H, Lee JC. Superamphiphilic zwitterionic block copolymer surfactant-assisted fabrication of polyamide thin-film composite membrane with highly enhanced desalination performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Gibson RR, Fernyhough A, Musa OM, Armes SP. Synthesis of well-defined diblock copolymer nano-objects by RAFT non-aqueous emulsion polymerization of N-(2-acryloyloxy)ethyl pyrrolidone in non-polar media. Polym Chem 2021. [DOI: 10.1039/d1py00572c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RAFT non-aqueous emulsion polymerization of N-(2-acryloyloxy)ethyl pyrrolidone in n-dodecane using a poly(stearyl methacrylate) precursor is used to prepare sterically-stabilized nanoparticles, which are evaluated as a putative Pickering emulsifier.
Collapse
Affiliation(s)
- R. R. Gibson
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
12
|
Hunter SJ, Cornel EJ, Mykhaylyk OO, Armes SP. Effect of Salt on the Formation and Stability of Water-in-Oil Pickering Nanoemulsions Stabilized by Diblock Copolymer Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15523-15535. [PMID: 33332972 PMCID: PMC7884014 DOI: 10.1021/acs.langmuir.0c02742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sterically stabilized diblock copolymer nanoparticles are prepared in n-dodecane using polymerization-induced self-assembly. Precursor Pickering macroemulsions are then prepared by the addition of water followed by high-shear homogenization. In the absence of any salt, high-pressure microfluidization of such precursor emulsions leads to the formation of relatively large aqueous droplets with DLS measurements indicating a mean diameter of more than 600 nm. However, systemically increasing the salt concentration produces significantly finer droplets after microfluidization, until a limiting diameter of around 250 nm is obtained at 0.11 M NaCl. The mean size of these aqueous droplets can also be tuned by systematically varying the nanoparticle concentration, applied pressure, and the number of passes through the microfluidizer. The mean number of nanoparticles adsorbed onto each aqueous droplet and their packing efficiency are calculated. SAXS studies conducted on a Pickering nanoemulsion prepared using 0.11 M NaCl confirms that the aqueous droplets are coated with a loosely packed monolayer of nanoparticles. The effect of varying the NaCl concentration within the droplets on their initial rate of Ostwald ripening is investigated using DLS. Finally, the long-term stability of these water-in-oil Pickering nanoemulsions is assessed using analytical centrifugation. The rate of droplet ripening can be substantially reduced by using 0.11 M NaCl instead of pure water. However, increasing the salt concentration up to 0.43 M provided no further improvement in the long-term stability of such nanoemulsions.
Collapse
|
13
|
Dao TPT, Vezenkov L, Subra G, Amblard M, In M, Le Meins JF, Aubrit F, Moradi MA, Ladmiral V, Semsarilar M. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. P. Tuyen Dao
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Martin In
- Laboratoire Charles Coulomb, L2C, Univ Montpellier, CNRS, Montpellier 34095, France
| | - Jean-François Le Meins
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Florian Aubrit
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
14
|
Thompson SW, Guimarães TR, Zetterlund PB. RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules 2020; 21:4577-4590. [DOI: 10.1021/acs.biomac.0c00685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
15
|
Lv Y, Wang L, Liu F, Feng W, Wei J, Lin S. Rod-coil block copolymer aggregates via polymerization-induced self-assembly. SOFT MATTER 2020; 16:3466-3475. [PMID: 32207755 DOI: 10.1039/d0sm00244e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymerization-induced self-assembly (PISA), incorporating the polymerization with in situ self-assembly, can achieve nano-objects efficiently. However, the cooperative polymerization and self-assembly lead to unclear polymerization kinetics and aggregation behavior, especially for the systems forming rigid chains. Here, we used dissipative particle dynamics simulations with a probability-based reaction model to explore the PISA behavior of rod-coil block copolymer systems. The impact of the length of macromolecular initiators, the targeted length of rigid chains, and the reaction probability on the PISA behavior, including polymerization kinetics and self-assembly, were examined. The difference between PISA and traditional self-assembly was revealed. A comparison with experimental observations shows that the simulation can capture the essential feature of the PISA. The present work provides a comprehensive understanding of rod-coil PISA systems and may provide meaningful information for future experimental research.
Collapse
Affiliation(s)
- Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
16
|
Hatton FL, Derry MJ, Armes SP. Rational synthesis of epoxy-functional spheres, worms and vesicles by RAFT aqueous emulsion polymerisation of glycidyl methacrylate. Polym Chem 2020. [DOI: 10.1039/d0py01097a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rational synthesis of epoxy-functional diblock copolymer nano-objects has been achieved by RAFT aqueous emulsion polymerisation of glycidyl methacrylate under mild conditions (50 °C, pH 7) to preserve the epoxy groups.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Matthew J. Derry
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Steven P. Armes
- Dainton Building
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
17
|
Man SK, Wang X, Zheng JW, An ZS. Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2303-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
He X, Wang B, Li X, Dong J. Converse transitions between the micelles and the vesicles of pyrrolidone-based AIE amphiphilic copolymers in polar and apolar solvents. RSC Adv 2019; 9:28102-28111. [PMID: 35530500 PMCID: PMC9070998 DOI: 10.1039/c9ra05997k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Herein, a new family of aggregation-induced emission (AIE) amphiphilic copolymers, named poly(N-(2-methacryloyloxyethyl)pyrrolidone)-b-poly(lauryl methacrylate-co-1-ethenyl-4-(1,2,2-triphenylethenyl)benzene), PNMPx-b-P(LMAy-co-TPEz), was developed by the reversible addition–fragmentation chain transfer (RAFT) polymerization method. The polymerization degree x of the NMP segment was kept constant at 35, whereas that of the LMA segment ranged from 9 to 55 with the polymerization degree ratio y/z of the LMA and TPE segments being around 9. As a result, the PNMPx-b-P(LMAy-co-TPEz) copolymer gradually transformed from being water soluble to oil soluble with an increase in the length of the P(LMAy-co-TPEz) segment. Moreover, these copolymers could form self-organized normal and reverse assemblies in both water and n-dodecane. Various morphologies, including spherical micelles, worm-like micelles and vesicles, were confirmed by the transmission electron microscopy (TEM) observation. Specifically, the micelle-to-vesicle transition via worm-like micelles occurred in the aqueous solution upon increasing the length of the P(LMAy-co-TPEz) segment, whereas the reverse transition occurred in n-dodecane. Because of the presence of the AIE-active TPE segment, both the aqueous and the n-dodecane solutions of PNMPx-b-P(LMAy-co-TPEz) were highly luminescent, and their fluorescence quantum yields significantly depended on the polarity of the solvent and the morphology of the assemblies. Due to the strong luminescence properties of PNMPx-b-P(LMAy-co-TPEz) assemblies, these AIE-active amphiphilic copolymers acted as excellent bioimaging probes with high efficiency. A series of AIE-active amphiphilic copolymers, PNMPx-b-P(LMAy-co-TPEz), were developed as bioimaging probes. Converse transitions from spherical micelles to vesicles via wormlike micelles of them in water and n-dodecane were happened, respectively.![]()
Collapse
Affiliation(s)
- Xiaolong He
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Beibei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xuefeng Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinfeng Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
19
|
He X, Li X, Dong J. Self-assembly of well-defined amphiphilic poly(N-(2-methacryloylxyethyl)pyrrolidone)- poly(lauryl methacrylate) diblock copolymers in non-polar solvent. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Penfold NJW, Yeow J, Boyer C, Armes SP. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1029-1054. [PMID: 35619484 DOI: 10.1021/acsmacrolett.9b00464] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Perspective, we summarize recent progress in polymerization-induced self-assembly (PISA) for the rational synthesis of block copolymer nanoparticles with various morphologies. Much of the PISA literature has been based on thermally initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Herein, we pay particular attention to alternative PISA protocols, which allow the preparation of nanoparticles with improved control over copolymer morphology and functionality. For example, initiation based on visible light, redox chemistry, or enzymes enables the incorporation of sensitive monomers and fragile biomolecules into block copolymer nanoparticles. Furthermore, PISA syntheses and postfunctionalization of the resulting nanoparticles (e.g., cross-linking) can be conducted sequentially without intermediate purification by using various external stimuli. Finally, PISA formulations have been optimized via high-throughput polymerization and recently evaluated within flow reactors for facile scale-up syntheses.
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2051, Australia
| | - Steven P. Armes
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
21
|
Luppi L, Babut T, Petit E, Rolland M, Quemener D, Soussan L, Moradi MA, Semsarilar M. Antimicrobial polylysine decorated nano-structures prepared through polymerization induced self-assembly (PISA). Polym Chem 2019. [DOI: 10.1039/c8py01351a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polylysine decorated diblock copolymer nano-objects are prepared by polymerization-induced self-assemblyviaRAFT dispersion polymerization of 2-hydroxypropyl methacrylate. Antimicrobial properties of the resulting nano-objects evaluated using a gram positive bacteria.
Collapse
Affiliation(s)
- L. Luppi
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - T. Babut
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - E. Petit
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - M. Rolland
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - D. Quemener
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - L. Soussan
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| | - M. A. Moradi
- Laboratory of Materials and Interface Chemistry and Centre for Multiscale Electron Microscopy
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - M. Semsarilar
- Institut Européen des Membranes
- IEM
- UMR 5635
- University of Montpellier
- ENSCM
| |
Collapse
|
22
|
Oliver AM, Gwyther J, Boott CE, Davis S, Pearce S, Manners I. Scalable Fiber-like Micelles and Block Co-micelles by Polymerization-Induced Crystallization-Driven Self-Assembly. J Am Chem Soc 2018; 140:18104-18114. [PMID: 30452254 DOI: 10.1021/jacs.8b10993] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembled 1D block copolymer nanoparticles (micelles) are of interest for a range of applications. However, morphologically pure samples are often challenging to access, and precise dimensional control is not possible. Moreover, the development of synthetic protocols that operate on a commercially viable scale has been a major challenge. Herein, we describe the preparation 1D fiber-like micelles with crystalline cores at high concentrations by a one-pot process termed polymerization-induced crystallization-driven self-assembly (PI-CDSA). We also demonstrate the formation of uniform fibers by living PI-CDSA, a process in which block copolymer synthesis, self-assembly, and seeded growth are combined. We have demonstrated that the method is successful for block copolymers that possess the same composition as that of the seed (homoepitaxial growth) and also where the coronal chemistries differ to give segmented 1D fibers known as block co-micelles. We have also shown that heteroepitaxial growth allows the formation of scaled-up block co-micelles where the composition of both the core and corona was varied. These proof-of-concept experiments indicate that PI-CDSA is a promising, scalable route to a variety of polydisperse or uniform 1D nanoparticles based on block copolymers with different crystalline core chemistries and, therefore, functions.
Collapse
Affiliation(s)
- Alex M Oliver
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K.,Department of Chemistry , University of Victoria , Victoria , British Columbia, V8W 3V6 , Canada
| | - Jessica Gwyther
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Charlotte E Boott
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Sean Davis
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Samuel Pearce
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K
| | - Ian Manners
- School of Chemistry , University of Bristol , Bristol , BS8 1TS , U.K.,Department of Chemistry , University of Victoria , Victoria , British Columbia, V8W 3V6 , Canada
| |
Collapse
|
23
|
Lomège J, Lapinte V, Negrell C, Robin JJ, Caillol S. Fatty Acid-Based Radically Polymerizable Monomers: From Novel Poly(meth)acrylates to Cutting-Edge Properties. Biomacromolecules 2018; 20:4-26. [PMID: 30273485 DOI: 10.1021/acs.biomac.8b01156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing price of barrels of oil, global warming, and other environmental problems favor the use of renewable resources to replace the petroleum-based polymers used in various applications. Recently, fatty acids (FAs) and their derivatives have appeared among the most promising candidates to afford novel and innovative bio-based (co)polymers because of their ready availability, their low toxicity, and their high versatility. However, the current literature mostly focused on FA-based polymers prepared by condensation polymerization or oxypolymerization, while only a few works have been devoted to radical polymerization due to the low reactivity of FAs through radical process. Thus, the aim of this Review is to give an overview of (i) the most common synthetic pathways reported in the literature to provide suitable monomers from FAs and their derivatives for radical polymerization, (ii) the available radical processes to afford FA-based (co)polymers, and (iii) the different applications in which FA-based (co)polymers have been used since the past few years.
Collapse
Affiliation(s)
- Juliette Lomège
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Claire Negrell
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
24
|
Rubio A, Desnos G, Semsarilar M. Nanostructured Membranes from Soft and Hard Nanoparticles Prepared via RAFT-mediated PISA. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adrien Rubio
- Institut Européen des Membranes; UMR 5635; Université de Montpellier; ENSCM; Centre National de la Recherche Rcientifique (CNRS); Montpellier 34090 France
| | - Gregoire Desnos
- Institut Européen des Membranes; UMR 5635; Université de Montpellier; ENSCM; Centre National de la Recherche Rcientifique (CNRS); Montpellier 34090 France
| | - Mona Semsarilar
- Institut Européen des Membranes; UMR 5635; Université de Montpellier; ENSCM; Centre National de la Recherche Rcientifique (CNRS); Montpellier 34090 France
| |
Collapse
|
25
|
Wang X, An Z. New Insights into RAFT Dispersion Polymerization-Induced Self-Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces. Macromol Rapid Commun 2018; 40:e1800325. [PMID: 29974537 DOI: 10.1002/marc.201800325] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Indexed: 12/26/2022]
Abstract
Polymerization-induced self-assembly (PISA) has been established as an efficient, robust, and versatile approach to synthesize various block copolymer nano-objects with controlled morphologies, tunable dimensions, and diverse functions. The relatively high concentration and potential scalability makes it a promising technique for industrial production and practical applications of functional polymeric nanoparticles. This feature article outlines recent advances in PISA via reversible addition-fragmentation chain transfer dispersion polymerization. Considerable efforts to understand morphological control, broaden the monomer library, enhance morphological stability, and incorporate multiple driving forces in PISA syntheses are summarized herein. Finally, perspectives on the future of PISA research are discussed.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Zesheng An
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
26
|
Derry MJ, Mykhaylyk OO, Ryan AJ, Armes SP. Thermoreversible crystallization-driven aggregation of diblock copolymer nanoparticles in mineral oil. Chem Sci 2018; 9:4071-4082. [PMID: 29780536 PMCID: PMC5944243 DOI: 10.1039/c8sc00762d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022] Open
Abstract
A poly(behenyl methacrylate)37 (PBeMA37) macromolecular chain transfer agent is utilized for the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) directly in mineral oil at 90 °C. Polymerization-induced self-assembly (PISA) occurs under these conditions, yielding a series of sterically-stabilized PBeMA37-PBzMA x diblock copolymer spheres of tunable diameter as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies. Rheological studies indicate that a relatively transparent, free-flowing, concentrated dispersion of non-interacting 32 nm PBeMA37-PBzMA100 spheres at 50 °C forms a turbid, paste-like dispersion on cooling to 20 °C. Turbidimetry and differential scanning calorimetry (DSC) studies conducted on solutions of PBeMA37 homopolymer in mineral oil suggest that this switchable colloidal stability is linked to crystallization-induced phase separation exhibited by this stabilizer block. Indeed, variable-temperature small-angle X-ray scattering (SAXS) indicates that a loose mass fractal network of strongly interacting spheres is formed on cooling to 20 °C, which accounts for this thermoreversible sol-gel transition. Moreover, SAXS, DSC and wide-angle X-ray scattering (WAXS) analyses indicate that the behenyl (C22H45) side-chains first form crystalline domains comprising adjacent stabilizer chains within individual spherical nanoparticles, with subsequent crystallization between neighboring nanoparticles leading to the formation of the mass fractal aggregates.
Collapse
Affiliation(s)
- Matthew J Derry
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Anthony J Ryan
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Steven P Armes
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| |
Collapse
|
27
|
Guragain S, Perez-Mercader J. Light-mediated one-pot synthesis of an ABC triblock copolymer in aqueous solution via RAFT and the effect of pH on copolymer self-assembly. Polym Chem 2018. [DOI: 10.1039/c8py00775f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the triblock copolymer self-assembly resulting into different morphologies that occurred during the polymerization of a hydrophobic third block in aqueous solution.
Collapse
Affiliation(s)
- Sudhina Guragain
- Department of Earth and Planetary Science
- Origin of Life Initiative
- Harvard University
- Cambridge
- USA
| | - Juan Perez-Mercader
- Department of Earth and Planetary Science
- Origin of Life Initiative
- Harvard University
- Cambridge
- USA
| |
Collapse
|
28
|
Huo M, Wan Z, Zeng M, Wei Y, Yuan J. Polymerization-induced self-assembly of liquid crystalline ABC triblock copolymers with long solvophilic chains. Polym Chem 2018. [DOI: 10.1039/c8py00643a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymerization-induced self-assembly was exploited to investigate the self-assembly behavior of liquid crystalline triblock copolymers with long solvophilic chains.
Collapse
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Zhengyi Wan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
29
|
Huo M, Zeng M, Wu D, Wei Y, Yuan J. Topological engineering of amphiphilic copolymers via RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate for polymeric assemblies with tunable nanostructures. Polym Chem 2018. [DOI: 10.1039/c8py00029h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RAFT dispersion copolymerization of benzyl methacrylate and 2-(perfluorooctyl)ethyl methacrylate enables the regulation of the nanostructure of polymer assemblies.
Collapse
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics & Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
30
|
Tan M, Shi Y, Fu Z, Yang W. In situ synthesis of diblock copolymer nano-assemblies via dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polym Chem 2018. [DOI: 10.1039/c7py01905j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lacunal nanospheres were obtained through the dispersion of styrene in an ethanol/water mixture mediated by PAA-CTA, while pure vesicles were obtained for PAA-b-P(AA-r-St) block assemblies under similar conditions.
Collapse
Affiliation(s)
- Mengting Tan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yan Shi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhifeng Fu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
31
|
Huo M, Xu Z, Zeng M, Chen P, Liu L, Yan LT, Wei Y, Yuan J. Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Pengyu Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
32
|
Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02767] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ulrich Tritschler
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Sam Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
33
|
Byard SJ, Williams M, McKenzie BE, Blanazs A, Armes SP. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2017; 50:1482-1493. [PMID: 28260814 PMCID: PMC5333187 DOI: 10.1021/acs.macromol.6b02643] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Various carboxylic acid-functionalized poly( N , N -dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC-PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40-58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC-PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40-PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2-3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC-PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms.
Collapse
Affiliation(s)
- Sarah J Byard
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark Williams
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Beulah E McKenzie
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Adam Blanazs
- BASF SE, GMV/P-B001, 67056 Ludwigshafen, Germany
| | - Steven P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
34
|
Boott CE, Gwyther J, Harniman RL, Hayward DW, Manners I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat Chem 2017; 9:785-792. [DOI: 10.1038/nchem.2721] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022]
|
35
|
Penfold NJW, Lovett JR, Verstraete P, Smets J, Armes SP. Stimulus-responsive non-ionic diblock copolymers: protonation of a tertiary amine end-group induces vesicle-to-worm or vesicle-to-sphere transitions. Polym Chem 2017. [DOI: 10.1039/c6py01076h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morpholine-functionalised poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are transformed into worms or spheres on lowering the solution pH.
Collapse
Affiliation(s)
| | | | | | - Johan Smets
- Procter & Gamble
- Eurocor NV/SA
- 1853 Strombeek-Bever
- Belgium
| | | |
Collapse
|
36
|
Zhou D, Dong S, Kuchel RP, Perrier S, Zetterlund PB. Polymerization induced self-assembly: tuning of morphology using ionic strength and pH. Polym Chem 2017. [DOI: 10.1039/c7py00552k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is demonstrated how the morphology of polymeric nanoparticles produced via polymerization-induced self-assembly (PISA) in dispersion can be conveniently tuned via the pH and ionic strength.
Collapse
Affiliation(s)
- Dewen Zhou
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Siming Dong
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Rhiannon P. Kuchel
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Sebastien Perrier
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
37
|
Canning SL, Cunningham VJ, Ratcliffe LPD, Armes SP. Phenyl acrylate is a versatile monomer for the synthesis of acrylic diblock copolymer nano-objects via polymerization-induced self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py01161j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(phenyl acrylate) has a sufficiently high glass transition temperature to enable TEM studies of the morphology of diblock copolymer nano-objects prepared using three different polymerization-induced self-assembly (PISA) formulations.
Collapse
Affiliation(s)
- S. L. Canning
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | | - S. P. Armes
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
38
|
Cunningham VJ, Ning Y, Armes SP, Musa OM. Poly( N -2-(methacryloyloxy)ethyl pyrrolidone)-poly(benzyl methacrylate) diblock copolymer nano-objects via RAFT alcoholic dispersion polymerisation in ethanol. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Penfold NJW, Ning Y, Verstraete P, Smets J, Armes SP. Cross-linked cationic diblock copolymer worms are superflocculants for micrometer-sized silica particles. Chem Sci 2016; 7:6894-6904. [PMID: 28567260 PMCID: PMC5450592 DOI: 10.1039/c6sc03732a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, Mn = 4400 g mol-1; Mw/Mn = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, Mn = 31 800 g mol-1, Mw/Mn = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 μm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25-28 μm diameter when using the former worms but only 3-5 μm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the much more delicate linear worms underwent fragmentation under the same conditions. Similar results were obtained with 4 μm silica particles.
Collapse
Affiliation(s)
- Nicholas J W Penfold
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - Yin Ning
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - Pierre Verstraete
- Procter & Gamble, Eurocor NV/SA , Temselaan 100 , 1853 Strombeek-Bever , Belgium
| | - Johan Smets
- Procter & Gamble, Eurocor NV/SA , Temselaan 100 , 1853 Strombeek-Bever , Belgium
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| |
Collapse
|
40
|
Gao C, Zhou H, Qu Y, Wang W, Khan H, Zhang W. In Situ Synthesis of Block Copolymer Nanoassemblies via Polymerization-Induced Self-Assembly in Poly(ethylene glycol). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00688] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chengqiang Gao
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yaqing Qu
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials
of the Ministry of Education, Institute of Polymer Chemistry and ‡Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Canning S, Smith GN, Armes SP. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016; 49:1985-2001. [PMID: 27019522 PMCID: PMC4806311 DOI: 10.1021/acs.macromol.5b02602] [Citation(s) in RCA: 666] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Gregory N. Smith
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
42
|
Jones ER, Mykhaylyk OO, Semsarilar M, Boerakker M, Wyman P, Armes SP. How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization? Macromolecules 2016; 49:172-181. [PMID: 26893528 PMCID: PMC4745608 DOI: 10.1021/acs.macromol.5b02385] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/03/2015] [Indexed: 01/20/2023]
Abstract
A poly(2-(dimethylamino)ethyl methacrylate) (PDMA) chain transfer agent (CTA) is used for the reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization of benzyl methacrylate (BzMA) in ethanol at 70 °C. THF GPC analysis indicated a well-controlled polymerization with molecular weight increasing linearly with conversion. GPC traces also showed high blocking efficiency with no homopolymer contamination apparent and Mw/Mn values below 1.35 in all cases. 1H NMR studies confirmed greater than 98% BzMA conversion for a target PBzMA degree of polymerization (DP) of up to 600. The PBzMA block becomes insoluble as it grows, leading to the in situ formation of sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA). Fixing the mean DP of the PDMA stabilizer block at 94 units and systematically varying the DP of the PBzMA block enabled a series of spherical nanoparticles of tunable diameter to be obtained. These nanoparticles were characterized by TEM, DLS, MALLS, and SAXS, with mean diameters ranging from 35 to 100 nm. The latter technique was particularly informative: data fits to a spherical micelle model enabled calculation of the core diameter, surface area occupied per copolymer chain, and the mean aggregation number (Nagg). The scaling exponent derived from a double-logarithmic plot of core diameter vs PBzMA DP suggests that the conformation of the PBzMA chains is intermediate between the collapsed and fully extended state. This is in good agreement with 1H NMR studies, which suggest that only 5-13% of the BzMA residues of the core-forming chains are solvated. The Nagg values calculated from SAXS and MALLS are in good agreement and scale approximately linearly with PBzMA DP. This suggests that spherical micelles grow in size not only as a result of the increase in copolymer molecular weight during the PISA synthesis but also by exchange of individual copolymer chains between micelles and/or by sphere-sphere fusion events.
Collapse
Affiliation(s)
- E. R. Jones
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - O. O. Mykhaylyk
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - M. Semsarilar
- DSM
Ahead, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - M. Boerakker
- DSM
Ahead, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - P. Wyman
- DSM
Ahead, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - S. P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
43
|
Pei Y, Jarrett K, Garces LG, Saunders M, Croue JP, Roth PJ, Buckley CE, Lowe AB. Synthesis and characterisation of non-ionic AB-diblock nanoparticles prepared by RAFT dispersion polymerization with polymerization-induced self-assembly. RSC Adv 2016. [DOI: 10.1039/c6ra04649e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RAFT-PISA synthesis and characterization of non-ionic soft matter nanoparticles is described.
Collapse
Affiliation(s)
- Yiwen Pei
- Nanochemistry Research Institute (NRI)
- Curtin University
- Perth
- Australia
- Department of Chemistry
| | - Kevin Jarrett
- Department of Physics and Astronomy
- Curtin University
- Perth
- Australia
| | | | - Martin Saunders
- Centre for Microscopy
- Characterisation and Analysis (CMCA)
- University of Western Australia
- Crawley
- Australia
| | - Jean-Philippe Croue
- Department of Chemistry
- Curtin University
- Perth
- Australia
- Curtin Water Quality Research Centre
| | - Peter J. Roth
- Nanochemistry Research Institute (NRI)
- Curtin University
- Perth
- Australia
- Department of Chemistry
| | - Craig E. Buckley
- Department of Physics and Astronomy
- Curtin University
- Perth
- Australia
| | - Andrew B. Lowe
- Nanochemistry Research Institute (NRI)
- Curtin University
- Perth
- Australia
- Department of Chemistry
| |
Collapse
|
44
|
Jones ER, Semsarilar M, Wyman P, Boerakker M, Armes SP. Addition of water to an alcoholic RAFT PISA formulation leads to faster kinetics but limits the evolution of copolymer morphology. Polym Chem 2016. [DOI: 10.1039/c5py01795e] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Addition of water leads to a much faster rate for the RAFT dispersion polymerization of benzyl methacrylate in ethanol, enabling degrees of polymerization of up to 1500 to be achieved.
Collapse
Affiliation(s)
- E. R. Jones
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - M. Semsarilar
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - P. Wyman
- DSM Ahead
- 6160 MD Geleen
- The Netherlands
| | | | - S. P. Armes
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
45
|
Derry MJ, Fielding LA, Armes SP. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.10.002] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Ratcliffe LPD, McKenzie BE, Le Bouëdec GMD, Williams CN, Brown SL, Armes SP. Polymerization-Induced Self-Assembly of All-Acrylic Diblock Copolymers via RAFT Dispersion Polymerization in Alkanes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02119] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Liam P. D. Ratcliffe
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Beulah E. McKenzie
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Gaëlle M. D. Le Bouëdec
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Clive N. Williams
- Scott Bader Company
Ltd., Wollaston, Wellingborough, Northants NN29 7RL, U.K
| | - Steven L. Brown
- Scott Bader Company
Ltd., Wollaston, Wellingborough, Northants NN29 7RL, U.K
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
47
|
Yeow J, Xu J, Boyer C. Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett 2015; 4:984-990. [PMID: 35596469 DOI: 10.1021/acsmacrolett.5b00523] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ruthenium-based photoredox catalyst, Ru(bpy)3Cl2, was employed to activate reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization via a photoinduced electron transfer (PET) process under visible light (λ = 460 nm, 0.7 mW/cm2). Poly(oligo(ethylene glycol) methyl ether methacrylate) was chain extended with benzyl methacrylate to afford in situ self-assembled polymeric nanoparticles with various morphologies. The effect of different intrinsic reaction parameters, such as catalyst concentration, total solids content, and cosolvent addition was investigated with respect to the formation of different nanoparticle morphologies, including spherical micelles, worm-like micelles, and vesicles. Importantly, highly pure worm-like micelles were readily isolated due to the in situ formation of highly viscous gels. Finally, "ON/OFF" control over the dispersion polymerization was demonstrated by online Fourier transform near-infrared (FTNIR) spectroscopy, allowing for temporal control over the nanoparticle morphology.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
48
|
Gaitzsch J, Huang X, Voit B. Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chem Rev 2015; 116:1053-93. [DOI: 10.1021/acs.chemrev.5b00241] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Gaitzsch
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland
| | - Xin Huang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China
| | - Brigitte Voit
- Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany
| |
Collapse
|
49
|
Lopez-Oliva AP, Warren NJ, Rajkumar A, Mykhaylyk OO, Derry MJ, Doncom KEB, Rymaruk MJ, Armes SP. Polydimethylsiloxane-Based Diblock Copolymer Nano-objects Prepared in Nonpolar Media via RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00576] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alejandra P. Lopez-Oliva
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Nicholas J. Warren
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Arthi Rajkumar
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Oleksandr O. Mykhaylyk
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Matthew J. Derry
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Kay E. B. Doncom
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Matthew J. Rymaruk
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, The University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K
| |
Collapse
|
50
|
Bauri K, Narayanan A, Haldar U, De P. Polymerization-induced self-assembly driving chiral nanostructured materials. Polym Chem 2015. [DOI: 10.1039/c5py00919g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amino acid coated chiral nanostructured soft materials are made by the polymerization induced self-assembly (PISA) technique, where the post-polymerization chemical group transformation leads to a morphological transition.
Collapse
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Amal Narayanan
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Ujjal Haldar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| |
Collapse
|