1
|
Hong J, Wu D, Wang H, Gong Z, Zhu X, Chen F, Wang Z, Zhang M, Wang X, Fang X, Yang S, Zhu J. Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration. Regen Biomater 2024; 11:rbae075. [PMID: 39055306 PMCID: PMC11272175 DOI: 10.1093/rb/rbae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. In vitro examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the in vivo imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juncong Hong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315000, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Xinxin Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Fang Chen
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zihang Wang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mingchen Zhang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
2
|
Nelogi SY, Patil AK, Chowdhary R. Enhancing bone tissue engineering using iron nanoparticles and magnetic fields: A focus on cytomechanics and angiogenesis in the chicken egg chorioallantoic membrane model. J Indian Prosthodont Soc 2024; 24:175-185. [PMID: 38650343 PMCID: PMC11129814 DOI: 10.4103/jips.jips_440_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
AIM To evaluate the potential of iron nanoparticles (FeNPs) in conjunction with magnetic fields (MFs) to enhance osteoblast cytomechanics, promote cell homing, bone development activity, and antibacterial capabilities, and to assess their in vivo angiogenic viability using the chicken egg chorioallantoic membrane (CAM) model. SETTINGS AND DESIGN Experimental study conducted in a laboratory setting to investigate the effects of FeNPs and MFs on osteoblast cells and angiogenesis using a custom titanium (Ti) substrate coated with FeNPs. MATERIALS AND METHODS A custom titanium (Ti) was coated with FeNPs. Evaluations were conducted to analyze the antibacterial properties, cell adhesion, durability, physical characteristics, and nanoparticle absorption associated with FeNPs. Cell physical characteristics were assessed using protein markers, and microscopy, CAM model, was used to quantify blood vessel formation and morphology to assess the FeNP-coated Ti's angiogenic potential. This in vivo study provided critical insights into tissue response and regenerative properties for biomedical applications. STATISTICAL ANALYSIS Statistical analysis was performed using appropriate tests to compare experimental groups and controls. Significance was determined at P < 0.05. RESULTS FeNPs and MFs notably improved osteoblast cell mechanical properties facilitated the growth and formation of new blood vessels and bone tissue and promoted cell migration to targeted sites. In the group treated with FeNPs and exposed to MFs, there was a significant increase in vessel percentage area (76.03%) compared to control groups (58.11%), along with enhanced mineralization and robust antibacterial effects (P < 0.05). CONCLUSION The study highlights the promising potential of FeNPs in fostering the growth of new blood vessels, promoting the formation of bone tissue, and facilitating targeted cell migration. These findings underscore the importance of further investigating the mechanical traits of FeNPs, as they could significantly advance the development of effective bone tissue engineering techniques, ultimately enhancing clinical outcomes in the field.
Collapse
Affiliation(s)
- Santosh Yamanappa Nelogi
- Department of Prosthodontics, KLEVK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belgavi, Karnataka, India
| | - Anand Kumar Patil
- Department of Prosthodontics, KLEVK Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belgavi, Karnataka, India
| | - Ramesh Chowdhary
- Department of Prosthodontics, Siddhartha Institute of Dental Sciences, Tumakuru, Karnataka, India
| |
Collapse
|
3
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
4
|
Liang HF, Zou YP, Hu AN, Wang B, Li J, Huang L, Chen WS, Su DH, Xiao L, Xiao Y, Ma YQ, Li XL, Jiang LB, Dong J. Biomimetic Structural Protein Based Magnetic Responsive Scaffold for Enhancing Bone Regeneration by Physical Stimulation on Intracellular Calcium Homeostasis. Adv Healthc Mater 2023; 12:e2301724. [PMID: 37767893 DOI: 10.1002/adhm.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The bone matrix has distinct architecture and biochemistry which present a barrier to synthesizing bone-mimetic regenerative scaffolds. To mimic the natural structures and components of bone, biomimetic structural decellularized extracellular matrix (ECM)/regenerated silk fibroin (RSF) scaffolds incorporated with magnetic nanoparticles (MNP) are prepared using a facile synthetic methodology. The ECM/RSF/MNP scaffold is a hierarchically organized and interconnected porous structure with silk fibroin twined on the collagen nanofibers. The scaffold demonstrates saturation magnetization due to the presence of MNP, along with good cytocompatibility. Moreover, the β-sheet crystalline domain of RSF and the chelated MNP could mimic the deposition of hydroxyapatite and enhance compressive modulus of the scaffold by ≈20%. The results indicate that an external static magnetic field (SMF) with a magnetic responsive scaffold effectively promotes cell migration, osteogenic differentiation, neogenesis of endotheliocytes in vitro, and new bone formation in a critical-size femur defect rat model. RNA sequencing reveals that the molecular mechanisms underlying this osteogenic effect involve calsequestrin-2-mediated Ca2+ release from the endoplasmic reticulum to activate Ca2+ /calmodulin/calmodulin-dependent kinase II signaling axis. Collectively, bionic magnetic scaffolds with SMF stimulation provide a potent strategy for bone regeneration through internal structural cues, biochemical composition, and external physical stimulation on intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Hai-Feng Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
| | - Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - An-Nan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ben Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Huang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Sin Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di-Han Su
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, Australia
| | - Yi-Qun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Orthopaedic Surgery, Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Orthopaedic Surgery, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, China
| |
Collapse
|
5
|
Frachini ECG, Selva JSG, Falcoswki PC, Silva JB, Cornejo DR, Bertotti M, Ulrich H, Petri DFS. Caffeine Release from Magneto-Responsive Hydrogels Controlled by External Magnetic Field and Calcium Ions and Its Effect on the Viability of Neuronal Cells. Polymers (Basel) 2023; 15:polym15071757. [PMID: 37050372 PMCID: PMC10097041 DOI: 10.3390/polym15071757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this stimulant. Thus, in this study, CAF was loaded into magnetic gelatin/alginate (Gel/Alg/MNP) hydrogels at 18.5 mg/ghydrogel. The in vitro release of CAF was evaluated in the absence and presence of an external magnetic field (EMF) and Ca2+. In all cases, the presence of Ca2+ (0.002 M) retarded the release of CAF due to favorable interactions between them. Remarkably, the release of CAF from Gel/Alg/MNP in PBS/CaCl2 (0.002 M) at 37 °C under an EMF was more sustained due to synergic effects. In PBS/CaCl2 (0.002 M) and at 37 °C, the amounts of CAF released after 45 min from Gel/Alg and Gel/Alg/MNP/EMF were 8.3 ± 0.2 mg/ghydrogel and 6.1 ± 0.8 mg/ghydrogel, respectively. The concentration of CAF released from Gel/Alg and Gel/Alg/MNP hydrogels amounted to ~0.35 mM, thereby promoting an increase in cell viability for 48 h. Gel/Alg and Gel/Alg/MNP hydrogels can be applied as reservoirs to release CAF at suitable concentrations, thus forestalling possible side effects and improving the viability of SH-SY5Y cells.
Collapse
Affiliation(s)
- Emilli C. G. Frachini
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica S. G. Selva
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula C. Falcoswki
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jean B. Silva
- Departament of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniel R. Cornejo
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Mauro Bertotti
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Henning Ulrich
- Departament of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Denise F. S. Petri
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
6
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
7
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
8
|
The effect of external magnetic field on osteogenic and antimicrobial behaviour of surface-functionalized custom titanium chamber with iron nanoparticles. A preliminary research. Odontology 2022:10.1007/s10266-022-00769-7. [DOI: 10.1007/s10266-022-00769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
|
9
|
Del Bianco L, Spizzo F, Yang Y, Greco G, Gatto ML, Barucca G, Pugno NM, Motta A. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells. NANOSCALE 2022; 14:14558-14574. [PMID: 36149382 DOI: 10.1039/d2nr03167a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report about a biomaterial in the form of film ∼10 μm thick, consisting of a silk fibroin matrix with embedded iron oxide superparamagnetic nanoparticles, for prospective applications as bioactive coating in regenerative medicine. Films with different load of magnetic nanoparticles are produced (nanoparticles/silk fibroin nominal ratio = 5, 0.5 and 0 wt%) and the structural, mechanical and magnetic properties are studied. The nanoparticles form aggregates in the silk fibroin matrix and the film stiffness, as tested by nanoindentation, is spatially inhomogeneous, but the protein structure is not altered. In vitro biological tests are carried out on human bone marrow-derived mesenchymal stem cells cultured on the films up to 21 days, with and without an applied static uniform magnetic field. The sample with the highest nanoparticles/silk fibroin ratio shows the best performance in terms of cell proliferation and adhesion. Moreover, it promotes a faster and better osteogenic differentiation, particularly under magnetic field, as indicated by the gene expression level of typical osteogenic markers. These findings are explained in light of the results of the physical characterization, combined with numerical calculations. It is established that the applied magnetic field triggers a virtuous magneto-mechanical mechanism in which dipolar magnetic forces between the nanoparticle aggregates give rise to a spatial distribution of mechanical stresses in the silk fibroin matrix. The film with the largest nanoparticle load, under cell culture conditions (i.e. in aqueous environment), undergoes matrix deformations large enough to be sensed by the seeded cells as mechanical stimuli favoring the osteogenic differentiation.
Collapse
Affiliation(s)
- Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy.
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy.
| | - Yuejiao Yang
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123 Trento, Italy.
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
| | - Maria Laura Gatto
- Department SIMAU, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Gianni Barucca
- Department SIMAU, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123 Trento, Italy.
| |
Collapse
|
10
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
11
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
12
|
Veloso SR, Andrade RG, Castanheira EM. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021; 288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials. After a discussion of the advantages of combining hydrogels with liposomes, the properties, fabrication strategies and applications of magnetic liposome-hydrogel composites (magnetic lipogels or magnetolipogels) are reviewed. Overall, the progress of magnetic gels towards smart multifunctional materials are emphasized, considering the contributions for future developments.
Collapse
|
13
|
Yu LM, Liu T, Ma YL, Zhang F, Huang YC, Fan ZH. Fabrication of Silk-Hyaluronan Composite as a Potential Scaffold for Tissue Repair. Front Bioeng Biotechnol 2020; 8:578988. [PMID: 33363124 PMCID: PMC7759629 DOI: 10.3389/fbioe.2020.578988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Interest is rapidly growing in the design and preparation of bioactive scaffolds, mimicking the biochemical composition and physical microstructure for tissue repair. In this study, a biomimetic biomaterial with nanofibrous architecture composed of silk fibroin and hyaluronic acid (HA) was prepared. Silk fibroin nanofiber was firstly assembled in water and then used as the nanostructural cue; after blending with hyaluronan (silk:HA = 10:1) and the process of freeze-drying, the resulting composite scaffolds exhibited a desirable 3D porous structure and specific nanofiber features. These scaffolds were very porous with the porosity up to 99%. The mean compressive modulus of silk-HA scaffolds with HA MW of 0.6, 1.6, and 2.6 × 106 Da was about 28.3, 30.2, and 29.8 kPa, respectively, all these values were much higher than that of pure silk scaffold (27.5 kPa). This scaffold showed good biocompatibility with bone marrow mesenchymal stem cells, and it enhanced the cellular proliferation significantly when compared with the plain silk fibroin. Collectively, the silk-hyaluronan composite scaffold with a nanofibrous structure and good biocompatibility was successfully prepared, which deserved further exploration as a biomimetic platform for mesenchymal stem cell-based therapy for tissue repair.
Collapse
Affiliation(s)
- Li-Min Yu
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Liu
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yu-Long Ma
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Feng Zhang
- Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yong-Can Huang
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi-Hai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
15
|
Zhang L, Wei F, Bai Q, Song D, Zheng Z, Wang Y, Liu X, Abdulrahman AA, Bian Y, Xu X, Chen C, Zhang H, Sun D. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52467-52478. [PMID: 33170636 DOI: 10.1021/acsami.0c17213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the widely explored biomaterial scaffolds in vascular tissue engineering applications lately, no ideal platform has been provided for small diameter synthetic vascular grafts mainly due to the thrombosis issue. Endothelium is the only known completely non-thrombogenic material; so, functional endothelialization onto vascular biomaterials is critical in maintaining the patency of vascular networks. Bacterial cellulose (BC) is a natural biomaterial with superior biocompatibility and appropriate hydrophilicity as potential vascular grafts. In previous studies, surface modification of active peptides such as Arg-Gly-Asp (RGD) sequences onto biomaterials has been proven to achieve accelerated and selective endothelial cell (EC) adhesion. In our study, we demonstrated a new strategy to remotely regulate the adhesion of endothelial cells based on an oscillating magnetic field and achieve successful endothelialization on the modified BC membranes. In details, we synthesized bacterial cellulose (BC), magnetic BC (MBC), and RGD peptide-grafted magnetic BC (RMBC), modified with the HOOC-PEG-COOH-coated iron oxide nanoparticles (PEG-IONs). The endothelial cells were cultured on the three materials under different frequencies of an oscillating magnetic field, including "stationary" (0 Hz), "slow" (0.1 Hz), and "fast" (2 Hz) groups. Compared to BC and MBC membranes, the cells on RMBC membranes generally show better adhesion and proliferation. Meanwhile, the "slow" frequency of a magnetic field promotes this phenomenon on RMBC and achieves endothelialization after culture for 4 days, whereas "fast" inhibits the cellular attachment. Overall, we demonstrate a non-invasive and convenient method to regulate the endothelialization process, with promising applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Feng Wei
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong SAR, P.R. China
| | - Danhong Song
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Zhuofan Zheng
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yafei Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xin Liu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Al-Ammari Abdulrahman
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yingxin Bian
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
16
|
Fan D, Wang Q, Zhu T, Wang H, Liu B, Wang Y, Liu Z, Liu X, Fan D, Wang X. Recent Advances of Magnetic Nanomaterials in Bone Tissue Repair. Front Chem 2020; 8:745. [PMID: 33102429 PMCID: PMC7545026 DOI: 10.3389/fchem.2020.00745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
The magnetic field has been proven to enhance bone tissue repair by affecting cell metabolic behavior. Magnetic nanoparticles are used as biomaterials due to their unique magnetic properties and good biocompatibility. Through endocytosis, entering the cell makes it easier to affect the physiological function of the cell. Once the magnetic particles are exposed to an external magnetic field, they will be rapidly magnetized. The magnetic particles and the magnetic field work together to enhance the effectiveness of their bone tissue repair treatment. This article reviews the common synthesis methods, the mechanism, and application of magnetic nanomaterials in the field of bone tissue repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Tengjiao Zhu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bingchuan Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Yifan Wang
- CED Education, North Carolina State University, Raleigh, NC, United States
| | - Zhongjun Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Dongwei Fan
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Liu Q, Feng L, Chen Z, Lan Y, Liu Y, Li D, Yan C, Xu Y. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:697. [PMID: 32695767 PMCID: PMC7338306 DOI: 10.3389/fbioe.2020.00697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous tissue-engineered constructs have been investigated as bone scaffolds in regenerative medicine. However, it remains challenging to non-invasively monitor the biodegradation and remodeling of bone grafts after implantation. Herein, silk fibroin/hydroxyapatite scaffolds incorporated with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were successfully synthesized, characterized, and implanted subcutaneously into the back of nude mice. The USPIO labeled scaffolds showed good three-dimensional porous structures and mechanical property, thermal stability for bone repair. After loaded with bone marrow-derived mesenchymal stem cells (BMSCs), the multifunctional scaffolds promoted cell adhesion and growth, and facilitated osteogenesis by showing increased levels of alkaline phosphatase activity and up-regulation of osteoblastic genes. Furthermore, in vivo quantitative magnetic resonance imaging (MRI) results provided valuable information on scaffolds degradation and bone formation simultaneously, which was further confirmed by computed tomography and histological examination. These findings demonstrated that the incorporation of USPIO into BMSCs-loaded multifunctional scaffold system could be feasible to noninvasively monitor bone regeneration by quantitative MRI. This tissue engineering strategy provides a promising tool for translational application of bone defect repair in clinical scenarios.
Collapse
Affiliation(s)
- Qin Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zelong Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lan
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Yu Liu
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Dan Li
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zhu Y, Li Z, Zhang Y, Lan F, He J, Wu Y. The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model. NANOSCALE 2020; 12:8720-8726. [PMID: 32285072 DOI: 10.1039/d0nr00867b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic hydroxyapatite (MHA) scaffolds promoted osteoblast proliferation in a model of osteoporosis through altering the osteoclast-derived exosomal cargo and decreasing the efficiency of exosome uptake by osteoblasts. Noticeably, certain proteins including ubiquitin, ATP and reactive oxygen species decreased in the osteoclast-derived exosomal cargo with MHA stimulation, while Rho kinase increased.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Ghorbani F, Zamanian A. An efficient functionalization of dexamethasone-loaded polymeric scaffold with [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent for bone regeneration: Synthesis, characterization, and in vitro evaluation. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520903761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, dexamethasone-loaded gelatin–starch scaffolds were fabricated by the freeze-drying technique under different cooling temperatures and polymeric compositions. The constructs were modified via [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent in order to produce a bioactive network structure for bone tissue engineering applications. Herein, the synergistic effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone was examined on the bioactivity and osteogenic behavior of scaffolds. Based on scanning electron microscopy micrographs, more fine pores were formed at higher freezing temperatures. The prepared microstructure at a rapid freezing rate resulted in diminished mechanical properties and a greater level of swelling and durability compared with a slow freezing rate. According to the acquired results, the mechanical strength decreased, while both absorption capacity and mass loss rate increased as a function of starch addition. Furthermore, the enhancement of hydrophilicity and reduction of mechanical stability enhanced the dexamethasone release levels. In addition, the synthesized constructs confirmed the positive effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone on biomimetic mineralization of the scaffolds. Supporting the cellular adhesion and proliferation alongside the expression of alkaline phosphatase, especially in the presence of dexamethasone, was the other advantage of synthetic scaffolds as a bone reconstructive substitute. Accordingly, drug-loaded hybrid constructs seem to be promising for further preclinical and clinical investigations in bone tissue engineering.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Islamic Republic of Iran
| |
Collapse
|
20
|
Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02869-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Xia Y, Chen H, Zhao Y, Zhang F, Li X, Wang L, Weir MD, Ma J, Reynolds MA, Gu N, Xu HHK. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:30-41. [PMID: 30813031 DOI: 10.1016/j.msec.2018.12.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. To date, there has been no report on osteoinductivity of IONP-incorporated calcium phosphate cement (IONP-CPC) scaffold on stem cells using an exterior static magnetic field (SMF). The objectives of this study were to: (1) develop a novel magnetic IONP-CPC construct for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of human dental pulp stem cells (hDPSCs) seeded on IONP-CPC scaffold for the first time. The novel magnetic IONP-CPC under SMF enhanced the cellular performance of hDPSCs, yielding greater alkaline phosphatase activities (about 3-fold), increased expressions of osteogenic marker genes, and more cell-synthesized bone minerals (about 2.5-fold), compared to CPC control and nonmagnetic IONP-CPC. In addition, IONP-CPC induced more active osteogenesis than CPC control in rat mandible defects. These results were consistent with the enhanced cellular performance by magnetic IONP in media under SMF. Moreover, nano-aggregates were detected inside the cells by transmission electron microscopy (TEM). Therefore, the enhanced cell performance was attributed to the physical forces generated by the magnetic field together with cell internalization of the released magnetic nanoparticles from IONP-CPC constructs.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yantao Zhao
- Beijing Engineering Research Center of Orthopedic Implants, First Affiliated Hospital of CPLA General Hospital, Beijing 100048, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greene Baum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Aidun A, Zamanian A, Ghorbani F. Novel bioactive porous starch-siloxane matrix for bone regeneration: Physicochemical, mechanical, and in vitro
properties. Biotechnol Appl Biochem 2018; 66:43-52. [DOI: 10.1002/bab.1694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Amir Aidun
- National Cell Bank of Iran; Pasteur Institute of Iran; Tehran Iran
- Tissues and Biomaterials Research Group (TBRG); Universal Scientific Education and Research Network (USERN); Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group; Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Tehran Iran
- Skin & Stem cell Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Farnaz Ghorbani
- Biomaterials Research Group; Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Tehran Iran
- Skin & Stem cell Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Biomedical Engineering; Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
- Department of Biomaterials; Aprin Advanced Technologies Development Company; Tehran Iran
| |
Collapse
|
23
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Gonçalves AI, Miranda MS, Rodrigues MT, Reis RL, Gomes ME. Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomed Mater 2018; 13:054001. [DOI: 10.1088/1748-605x/aac78b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Ghorbani F, Zamanian A, Behnamghader A, Daliri Joupari M. A novel pathway for in situ
synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. J Appl Polym Sci 2018. [DOI: 10.1002/app.46739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Science and Research Branch; Islamic Azad University; P.O. Box 4515-775 Tehran Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; P.O. Box 14155-4777 Karaj Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; P.O. Box 14155-4777 Karaj Iran
| | - Morteza Daliri Joupari
- Department of Animal, Avian and Marine Biotechnology; National Institute of Genetic Engineering and Biotechnology; P.O. Box 14965-161 Tehran Iran
| |
Collapse
|
26
|
Ghorbani F, Zamanian A, Behnamghader A, Joupari MD. Microwave-induced rapid formation of biomimetic hydroxyapatite coating on gelatin-siloxane hybrid microspheres in 10X-SBF solution. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractBioactive materials can attract calcium and phosphate ions in simulated body fluid (SBF) solution to mimic the composition of extracellular matrix (ECM). Rapid biodegradation rate of natural polymers in contact with water-based solutions and time-consuming process of mineralization in SBF led to using concentrated simulated media. Herein, gelatin-siloxane microspheres were fabricated via single emulsion method. Then hybrid spheres were immersed in the modified 10X-SBF solution, and microwave energy (600 W) was expanded for the rapid formation of hydroxyapatite (HA) on the spheres. Results indicated homogeneous coating of microspheres and high similarity of synthesized HA to the bone composition. Increasing intensity of HA-related peaks in Fourier transform infrared spectrum, X-ray diffraction and surface roughness after utilizing microwave-assisted method confirmed high efficiency of this technique in biomimetic mineralization of structures. Cell culture studies with human osteosarcoma cell lines (MG-63) demonstrated that mineralized HA in 10X-SBF solution under microwave treatment could be able to mimic bone ECM for tissue regeneration applications in the shortest time and highest similarity to the natural tissue.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 4515-775, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, P.O. Box 14155-4777, Iran, Tel.: (+98) 912 3211180, Fax: (+98) 263 6201818
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, P.O. Box 14155-4777, Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O. Box 14965-161, Iran
| |
Collapse
|
27
|
Yuan M, Wang Y, Qin YX. SPIO-Au core-shell nanoparticles for promoting osteogenic differentiation of MC3T3-E1 cells: Concentration-dependence study. J Biomed Mater Res A 2017; 105:3350-3359. [PMID: 28869707 PMCID: PMC5761339 DOI: 10.1002/jbm.a.36200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
Abstract
This work aims to explore the concentration-dependence of SPIO-Au core-shell nanoscale particles (NPs) (17.3 ± 1.2 nm in diameter) on biocompatibility and osteogenic differentiation of preosteoblast MC3T3-E1 cells. The stability of NPs was first investigated by UV-vis absorption spectra and zeta potential measurement. Then concentration effects of NPs (1-80 μg/mL) were evaluated on viability, morphology, proliferation, cellular uptake, and alkaline phosphate (ALP) activity levels. Results have shown strong stability and no acute toxicity (viability > 93%) or morphological difference at all concentration levels of NPs. The proliferation results indicated that the concentration of NPs below 40 μg/mL does not affect the cell proliferation for 7 days of incubation. Transmission electron microscopy images revealed the successful internalization of NPs into MC3T3-E1 cells and the dose-dependent accumulation of NPs inside the cytoplasm. The ALP level of MC3T3-E1 cells was improved by 49% (of control) after treated with NPs at 10 μg/mL for 10 days, indicating their positive effect on early osteogenic differentiation. This study confirmed the excellent biocompatibility of SPIO-Au NPs and their great potential for promoting osteogenic differentiation and promised the future application for these NPs in bone engineering including drug delivery, cell labeling, and activity tracking within scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3350-3359, 2017.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- Heavy Engineering 133, Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2300, Tel: 631-891-5208 Fax:(631) 632-8544,
| | - Ya Wang
- Assistant Professor, LE 153, Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2300
| | - Yi-Xian Qin
- Professor, 215 Bioengineering Bldg., Dept. of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281
| |
Collapse
|
28
|
Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22950-22958. [PMID: 28636315 DOI: 10.1021/acsami.7b05012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biocompatible and biodegradable porous scaffolds with adjustable pore structure have aroused increasing interest in bone tissue engineering. Here, we report a facile method to fabricate hierarchical macroporous biocompatible (HmPB) scaffolds by combining Pickering high internal phase emulsion (HIPE) templates with three-dimensional (3D) printing. HmPB scaffolds composed of a polymer matrix of poly(l-lactic acid), PLLA, and poly(ε-caprolactone), PCL, are readily fabricated by solvent evaporation of 3D printed Pickering HIPEs which are stabilized by hydrophobically modified silica nanoparticles (h-SiO2). The pore structure of HmPB scaffolds is easily tailored to be similar to natural extracellular matrix (ECM) by varying the fabrication conditions of the Pickering emulsion or adjusting the printing parameters. In addition, in vivo drug release studies which employ enrofloxacin (ENR) as a model drug indicate the potential of HmPB scaffolds as a drug carrier. Furthermore, in vivo cell culture assays prove that HmPB scaffolds that possess good biocompatibility as mouse bone mesenchymal stem cells (mBMSCs) can adhere and proliferate well on them. All the results suggest that HmPB scaffolds hold great potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ting Yang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Yang Hu
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|
29
|
Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca 2+ ions permeation. Colloids Surf B Biointerfaces 2017; 156:388-396. [PMID: 28551573 DOI: 10.1016/j.colsurfb.2017.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
Magnetic scaffolds with different charge densities were prepared using magnetic nanoparticles (MNP) and xanthan gum (XG), a negatively charged polysaccharide, or hydroxypropyl methylcellulose (HPMC), an uncharged cellulose ether. XG chains were crosslinked with citric acid (cit), a triprotic acid, whereas HPMC chains were crosslinked either with cit or with oxalic acid (oxa), a diprotic acid. The scaffolds XG-cit, HPMC-cit and HPMC-oxa were characterized by scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), superconducting quantum interference device (SQUID) magnetometry, contact angle and zeta-potential measurements. In addition, the flux of Ca2+ ions through the scaffolds was monitored by using a potentiometric microsensor. The adhesion and proliferation of murine fibroblasts (NIH/3T3) on XG-cit, XG-cit-MNP, HPMC-cit, HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP were evaluated by MTT assay. The magnetic scaffolds presented low coercivity (<25Oe). The surface energy values determined for all scaffolds were similar, ranging from 43mJm-2 to 46mJm-2. However, the polar component decreased after MNP incorporation and the dispersive component of surface energy increased in average 1mJm-2 after MNP incorporation. The permeation of Ca2+ ions through XG-cit-MNP was significantly higher in comparison with that on XG-cit and HPMC-cit scaffolds, but through HPMC-cit-MNP, HPMC-oxa and HPMC-oxa-MNP scaffolds it was negligible within the timescale of the experiment. The adhesion and proliferation of fibroblasts on the scaffolds followed the trend: XG-cit-MNP>XG-cit>HPMC-cit, HPMC-cit-MNP, HPMC-oxa, HPMC-oxa-MNP. A model was proposed to explain the cell behavior stimulated by the scaffold charge, MNP and Ca2+ ions permeation.
Collapse
|
30
|
Zhu Y, Yang Q, Yang M, Zhan X, Lan F, He J, Gu Z, Wu Y. Protein Corona of Magnetic Hydroxyapatite Scaffold Improves Cell Proliferation via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. ACS NANO 2017; 11:3690-3704. [PMID: 28314099 DOI: 10.1021/acsnano.6b08193] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The beneficial effect of magnetic scaffolds on the improvement of cell proliferation has been well documented. Nevertheless, the underlying mechanisms about the magnetic scaffolds stimulating cell proliferation remain largely unknown. Once the scaffold enters into the biological fluids, a protein corona forms and directly influences the biological function of scaffold. This study aimed at investigating the formation of protein coronas on hydroxyapatite (HA) and magnetic hydroxyapatite (MHA) scaffolds in vitro and in vivo, and consequently its effect on regulating cell proliferation. The results demonstrated that magnetic nanoparticles (MNP)-infiltrated HA scaffolds altered the composition of protein coronas and ultimately contributed to increased concentration of proteins related to calcium ions, G-protein coupled receptors (GPCRs), and MAPK/ERK cascades as compared with pristine HA scaffolds. Noticeably, the enriched functional proteins on MHA samples could efficiently activate of the MAPK/ERK signaling pathway, resulting in promoting MC3T3-E1 cell proliferation, as evidenced by the higher expression levels of the key proteins in the MAPK/ERK signaling pathway, including mitogen-activated protein kinase kinases1/2 (MEK1/2) and extracellular signal regulated kinase 1/2 (ERK1/2). Artificial down-regulation of MEK expression can significantly down-regulate the MAPK/ERK signaling and consequently suppress the cell proliferation on MHA samples. These findings not only provide a critical insight into the molecular mechanism underlying cellular proliferation on magnetic scaffolds, but also have important implications in the design of magnetic scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Minggang Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| |
Collapse
|
31
|
Karahaliloğlu Z, Yalçın E, Demirbilek M, Denkbaş EB. Magnetic silk fibroin e-gel scaffolds for bone tissue engineering applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517693635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the incorporation of magnetic nanoparticles into standard scaffolds has emerged as a promising approach for tissue engineering applications. This strategy can promote not only tissue regeneration but also reloading of scaffolds through an external supervising center that adsorbs growth factors, preserving their stability and biological activity. In this study, novel magnetic silk fibroin e-gel scaffolds were prepared by the electrogelation process of concentrated Bombyx mori silk fibroin (8 wt%) aqueous solution. In addition, basic fibroblast growth factor was conjugated physically to human serum albumin = Fe3O4 nanoparticles (71.52 ± 2.3 nm in size) with 97.5% binding yield. Scanning electron microscopy images of the prepared human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gel scaffolds showed a three-dimensional porous morphology. In terms of water uptake, basic fibroblast growth factor-conjugated scaffolds had the highest water absorbability among all groups. In vitro cell culture studies showed that both the human serum albumin coating of Fe3O4 nanoparticle surface and basic fibroblast growth factor conjugation had an inductive effect on cell viability. One of the most used markers of bone formation and osteoblast differentiation is alkaline phosphatase activity; human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels showed significantly enhanced alkaline phosphatase activity (p < 0.05). SaOS-2 cells cultured on human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels deposited more calcium compared with those cultured on bare silk fibroin e-gels. These results indicated that the proposed e-gel scaffolds are valuable candidates for magnetic guiding in bone tissue regeneration, and they will present new perspectives for magnetic field application in regenerative medicine.
Collapse
Affiliation(s)
| | - Eda Yalçın
- Pharmaceuticals and Medical Devices Agency, Ankara, Turkey
| | - Murat Demirbilek
- Advanced Technologies Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Emir Baki Denkbaş
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Aliramaji S, Zamanian A, Mozafari M. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:736-744. [PMID: 27770949 DOI: 10.1016/j.msec.2016.09.039] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022]
Abstract
Tissue engineering is a promising approach in repairing damaged tissues. During the last few years, magnetic nanoparticles have been of great interest in this field of study due to their controlled responsive characteristics in specific external magnetic fields. In this study, after synthesizing iron oxide (magnetite) nanoparticles through a reverse coprecipitation method, silk fibroin/chitosan-based magnetic scaffolds were prepared using different amounts of magnetite nanoparticles (0, 0.5, 1 and 2%) by freeze-casting method. The physicochemical activity of the scaffolds was monitored in phosphate-buffered saline (PBS) solution to determine the biodegradation and swelling behaviors. The stability of the magnetite nanoparticles in the fabricated scaffolds was determined by atomic absorption spectroscopy (AAS). Moreover, the cellular activity of the magnetic scaffolds was examined under a static magnetic field. The results showed that the lamellar structured scaffolds having MNPs in the walls could not affect the final structure and deteriorate the biological characteristics of the scaffolds, while the ability of magnetic responsivity was added to the scaffolds. This study warrants further pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
- Shamsa Aliramaji
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Ali Zamanian
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran.
| | - Masoud Mozafari
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| |
Collapse
|
33
|
Yun HM, Kang SK, Singh RK, Lee JH, Lee HH, Park KR, Yi JK, Lee DW, Kim HW, Kim EC. Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-κB pathways. Dent Mater 2016; 32:1301-1311. [PMID: 27634479 DOI: 10.1016/j.dental.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/07/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Magnetic biomaterials have recently gained great attention due to their some intriguing cell and tissue responses. However, little attention has been given to the fields of dental tissue regeneration. In this sense, we aim to investigate the effects of magnetic nanofiber scaffolds on the human dental pulp cell (HDPC) behaviors and to elucidate the underlying signaling mechanisms in the events. METHODS Magnetic nanofiber scaffolds incorporating magnetic nanoparticles at varying contents were prepared into nanofibrous matrices to cultivate cells. Cell growth by MTS assay, odontoblastic differentiation by alkaline phosphatase (ALP) activity, mineralization, and the mRNA expression of differentiation-related genes of HDPCs, in vitro angiogenesis by migration and capillary tube formation in endothelial cells on the conditioned medium obtained from HDPSCs in the presence or absence of scaffolds. Western blot analysis and confocal immunofluorescene were used to asses signaling pathways. RESULTS The growth of HDPCs was significantly enhanced on the magnetic scaffolds with respect to the non-magnetic counterpart. The odontogenic differentiation of cells was significantly up-regulated by the culture with magnetic scaffolds. Furthermore, the magnetic scaffolds promoted the HDPC-induced angiogenesis of endothelial cells. The expression of signaling molecules, Wnt3a, phosphorylated GSK-3β and nuclear β-catenin, was substantially stimulated by the magnetic scaffolds; in parallel, the MAPK and NF-κB were highly activated when cultured on the magnetic nanofiber scaffolds. SIGNIFICANCE This study is the first to demonstrate that magnetic nanofiber scaffolds stimulate HDPCs in the events of growth, odontogenic differentiation, and pro-angiogenesis, and the findings imply the novel scaffolds can be potentially useful as dentin-pulp regenerative matrices.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Soo-Kyung Kang
- Department of Conservative Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jin-Kyu Yi
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Deok-Won Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Regeneration (MRC), Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
34
|
Yu K, Zhou X, Zhu T, Wu T, Wang J, Fang J, El-Aassar MR, El-Hamshary H, El-Newehy M, Mo X. Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra15450f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, PEUU was blended with gelatin for electrospun nanofiber and nanoyarn. PEUU/gelatin with a mass ratio of 75 : 25 showed better comprehensive property than nanofiber thus paving way for the further research in tissue engineering field.
Collapse
|
35
|
Han X, Du W, Li Y, Li Z, Li L. Modulating stability and mechanical properties of silica-gelatin hybrid by incorporating epoxy-terminated polydimethylsiloxane oligomer. J Appl Polym Sci 2015. [DOI: 10.1002/app.43059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaona Han
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Weining Du
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Yupeng Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Zhengjun Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 China
| | - Lixin Li
- College of Chemistry; Sichuan University; Chengdu 610065 China
| |
Collapse
|
36
|
Samal SK, Goranov V, Dash M, Russo A, Shelyakova T, Graziosi P, Lungaro L, Riminucci A, Uhlarz M, Bañobre-López M, Rivas J, Herrmannsdörfer T, Rajadas J, De Smedt S, Braeckmans K, Kaplan DL, Dediu VA. Multilayered Magnetic Gelatin Membrane Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23098-109. [PMID: 26451743 PMCID: PMC4867029 DOI: 10.1021/acsami.5b06813] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications.
Collapse
Affiliation(s)
- Sangram K. Samal
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Vitaly Goranov
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Mamoni Dash
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium
| | - Alessandro Russo
- Laboratory of Biomechanics and Technology Innovation, NABI, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Tatiana Shelyakova
- Laboratory of Biomechanics and Technology Innovation, NABI, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Patrizio Graziosi
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Lisa Lungaro
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Osteoarticular Research Group, Centre for Genomic and Experimental Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Alberto Riminucci
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Marc Uhlarz
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Jose Rivas
- Department of Applied Physics, Faculty of Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Thomas Herrmannsdörfer
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Cardiovascular Pharmacology Division, Stanford Cardiovascular Institute, Stanford University, 1050 Arastradero, Palo Alto, California 94304, United States
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- Corresponding Authors (D.L.K.) Tel.: +16176270851. Fax: +16176273231. . (V.A.D.),
| | - V. Alek Dediu
- Spintronic Devices Division, Institute for Nanostructured Materials ISMN-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Corresponding Authors (D.L.K.) Tel.: +16176270851. Fax: +16176273231. . (V.A.D.),
| |
Collapse
|
37
|
Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater 2015; 16:103-16. [PMID: 25617805 DOI: 10.1016/j.actbio.2014.12.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/28/2014] [Accepted: 12/30/2014] [Indexed: 11/21/2022]
Abstract
A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration.
Collapse
|
38
|
Samal SK, Dash M, Shelyakova T, Declercq HA, Uhlarz M, Bañobre-López M, Dubruel P, Cornelissen M, Herrmannsdörfer T, Rivas J, Padeletti G, De Smedt S, Braeckmans K, Kaplan DL, Dediu VA. Biomimetic magnetic silk scaffolds. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6282-92. [PMID: 25734962 DOI: 10.1021/acsami.5b00529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 °C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications.
Collapse
Affiliation(s)
- Sangram K Samal
- †Consiglio Nazionale delle Ricerche-Institute for Nanostructured Materials, I-40129 Bologna-Roma, Italy
- ‡Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
- §Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | | | - Tatiana Shelyakova
- ⊥Laboratory of Biomechanics and Technology Innovation, NABI, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy
| | - Heidi A Declercq
- #Department of Basic Medical Science - Tissue Engineering Group, Ghent University, De Pintelaan 185 (6B3), 9000 Ghent, Belgium
| | - Marc Uhlarz
- ∇Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Manuel Bañobre-López
- ○International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | | | - Maria Cornelissen
- #Department of Basic Medical Science - Tissue Engineering Group, Ghent University, De Pintelaan 185 (6B3), 9000 Ghent, Belgium
| | - Thomas Herrmannsdörfer
- ∇Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jose Rivas
- ○International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Giuseppina Padeletti
- †Consiglio Nazionale delle Ricerche-Institute for Nanostructured Materials, I-40129 Bologna-Roma, Italy
| | - Stefaan De Smedt
- §Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- §Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - David L Kaplan
- ‡Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - V Alek Dediu
- †Consiglio Nazionale delle Ricerche-Institute for Nanostructured Materials, I-40129 Bologna-Roma, Italy
| |
Collapse
|