1
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
2
|
Liu Y, Wang Z, Miao K, Zhang X, Li W, Zhao P, Sun P, Zheng T, Zhang X, Chen C. Research progress on near-infrared long persistent phosphor materials in biomedical applications. NANOSCALE ADVANCES 2022; 4:4972-4996. [PMID: 36504755 PMCID: PMC9680941 DOI: 10.1039/d2na00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
After excitation is stopped, long persistent phosphor materials (LPPs) can emit light for a long time. The most important feature is that it allows the separation of excitation and emission in time. Therefore, it plays a vital role in various fields such as data storage, information technology, and biomedicine. Owing to the unique mechanism of storage and luminescence, LPPs can avoid the interference of sample autofluorescence, as well as show strong tissue penetration ability, good afterglow performance, and rich spectral information in the near-infrared (NIR) region, which provides a broad prospect for the application of NIR LPPs in the field of biomedicine. In recent years, the development and applications in biomedical fields have been advanced significantly, such as biological imaging, sensing detection, and surgical guidance. In this review, we focus on the synthesis methods and luminescence mechanisms of different types of NIR LPPs, as well as their applications in bioimaging, biosensing detection, and cancer treatment in the field of biomedicine. Finally, future prospects and challenges of NIR LPPs in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Zengxue Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Kun Miao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Wei Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Peng Sun
- Innovative of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
3
|
Some new antimicrobial/antioxidant nanostructure zinc complexes: Synthesis, crystal structure, Hirshfeld surface analyses and thermal behavior. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal-organic frameworks: a review. Chem Commun (Camb) 2022; 58:11488-11506. [PMID: 36165339 DOI: 10.1039/d2cc04190a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) possess excellent advantages, such as high porosity, large specific surface area, and an adjustable structure, showing good potential for applications in gas adsorption and separation, catalysis, conductivity, sensing, magnetism, etc. However, they still suffer from significant limitations in terms of the scale-up synthesis and shaping, hindering the realization of large-scale commercial applications. Despite some attempts having been devoted to addressing this, challenges remain. In this paper, we outline the advantages and drawbacks of existing synthetic routes such as electrochemistry, microwave, ultrasonic radiation, green solvent reflux, room temperature stirring, steam-assisted transformation, mechanochemistry, and fluid chemistry in terms of scale-up production. Then, the shaping methods of MOFs such as extrusion, mechanical compaction, rolling granulation, spray drying, gel technology, embedded granulation, phase inversion, 3D printing and other shaping methods for the preparation of membranes, coatings and nanoparticles are discussed. Finally, perspectives on the large-scale synthesis and shaping of MOFs are also proposed. This work helps provide in-depth insight into the scale-up production and shaping process of MOFs and boost commercial applications of MOFs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Guilin Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhe Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Qingrun Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Hongxing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Bin Tao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| |
Collapse
|
6
|
Yan XW, Gharib M, Esrafili L, Wang SJ, Liu KG, Morsali A. Ultrasound Irradiation Assisted Synthesis of Luminescent Nano Amide-Functionalized Metal-Organic Frameworks; Application Toward Phenol Derivatives Sensing. Front Chem 2022; 10:855886. [PMID: 35372287 PMCID: PMC8967136 DOI: 10.3389/fchem.2022.855886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Two nano amide-functionalized metal-organic frameworks (MOFs) with molecular formula [Co(oba) (bpta)]·(DMF)2 TMU-50 and [Co2(oba)2 (bpfn)]·(DMF)2.5 TMU-51 obtained under ultrasonic method without any surfactants. The only difference between the two selected amide functionalized pillar ligands, N,N′-bis(4-pyridinyl)-terephthalamide (bpta), and N,N′-bis-(4-pyridylformamide)-1,5-naphthalenediamine (bpfn), is related to the naphthyl group, which led to the different luminescence properties of the nano frameworks. In this study, the special ability of the luminescent nano MOFs were investigated to sensitize nitroaromatic compounds. Due to its unique and porous framework, Nano TMU-50 shows a good sensitivity towards nitro phenol by strong fluorescence emission with a detection limit of 2 × 10–3 mM−1. Both nano MOF structures were characterized via many analyses such as powder X-ray diffraction, Field Emission Scanning Electron Microscopy (FE-SEM), elemental analysis, and FTIR spectroscopy. Moreover, the effect of a number of important parameters including initial reagent concentrations, power of ultrasound, time on morphology, and size of nano structures were examined. According to the fluorescence titration results, the activated nano-TMU-50 detected NP selectively with a quick response.
Collapse
Affiliation(s)
- Xiao-Wei Yan
- College of Food and Bioengineering, Hezhou University, Hezhou, China
| | - Maniya Gharib
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leili Esrafili
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Su-Juan Wang
- College of Food and Bioengineering, Hezhou University, Hezhou, China
- *Correspondence: Su-Juan Wang, ; Ali Morsali,
| | - Kuan-Guan Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yinchuan, China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Su-Juan Wang, ; Ali Morsali,
| |
Collapse
|
7
|
He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun (Camb) 2021; 57:12417-12435. [PMID: 34734601 DOI: 10.1039/d1cc04846e] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent organic frameworks (COFs), as a new type of crystalline porous materials, mainly consist of light-weight elements (H, B, C, N and O) linked by dynamic covalent bonds to form periodical structures of two or three dimensions. As an attribute of their low density, large surface area, and excellent adjustable pore size, COFs show great potential in many fields including energy storage and separation, catalysis, sensing, and biomedicine. However, compared with metal organic frameworks (MOFs), the relatively large size and irregular morphology of COFs affect their biocompatibility and bioavailability in vivo, thus impeding their further biomedical applications. This Review focuses on the controlled design strategies of nanoscale COFs (NCOFs), unique properties of NCOFs for biomedical applications, and recent progress in NCOFs for cancer therapy. In addition, current challenges for the biomedical use of NCOFs and perspectives for further improvements are presented.
Collapse
Affiliation(s)
- Xuelu He
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
8
|
Kamali M, Dewil R, Appels L, Aminabhavi TM. Nanostructured materials via green sonochemical routes - Sustainability aspects. CHEMOSPHERE 2021; 276:130146. [PMID: 33740648 DOI: 10.1016/j.chemosphere.2021.130146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The production of environmentally friendly nanostructured materials with well-defined properties is a major challenge. Characteristics of the nanomaterials such as dimensionality, size and morphology strongly affect their performance in various applications. Additionally, sustainability considerations require an acceptable level of efficiency while being economically feasible and environmentally benign. The use of ultrasonic irradiation (UI) is a green and powerful technology, which can be applied for the synthesis of a variety of nanostructured materials. This review critically discusses the progress made in the fabrication of environmentally benign engineered nanomaterials with various dimensionalities (i.e., zero, one, two, or three dimensions) assisted by UI. The evolution and current status in this area are further illustrated using a scientometric approach. Application of UI for the synthesis of nanostructured materials has been also assessed according to the main sustainability pillars including the performance and environmental compatibility, as well as the relevant economic and social considerations. The outlook as well as recommendations for future research has been also provided and discussed towards the promotion of sustainable nanomaterials synthesis and application in various fields.
Collapse
Affiliation(s)
- Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SETs' College of Pharmacy, Dharwad, 580002, India.
| |
Collapse
|
9
|
Meng L, Yu B, Qin Y. Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Commun Chem 2021; 4:82. [PMID: 36697527 PMCID: PMC9814928 DOI: 10.1038/s42004-021-00522-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/06/2021] [Indexed: 01/28/2023] Open
Abstract
Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.
Collapse
Affiliation(s)
- Lingyao Meng
- grid.266832.b0000 0001 2188 8502Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM USA
| | - Binyu Yu
- grid.63054.340000 0001 0860 4915Department of Chemical and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT USA
| | - Yang Qin
- grid.266832.b0000 0001 2188 8502Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM USA ,grid.63054.340000 0001 0860 4915Department of Chemical and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
10
|
A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta 2021; 233:122529. [PMID: 34215032 DOI: 10.1016/j.talanta.2021.122529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
A hybrid material (nano-metal organic framework@organic polymer, named as nano-MOF@polymer) was applied for the first time as sorbent for on-line solid-phase extraction capillary electrophoresis with ultraviolet detection (SPE-CE-UV). The resulting material was prepared building layer-by-layer a HKUST-1 (Hong Kong University of Science and Technology-1) nano-MOF onto the polymer surface, which allowed controlling the thickness and maximizing the active surface area. The sorbent was widely characterized at micro- and nano-scale to validate the synthesis and to establish the material properties. Then, fritless microcartridges (2 mm) were assembled by packing only a few micrograms of sorbent particles and investigated for preconcentration of fluoroquinolones (FQs) in several real samples (river water, human urine and whole cow milk). Under the optimized conditions, the sample (ca. 60 μL) was loaded in separation background electrolyte (BGE, 50 mM phosphate (pH 7)), and retained analytes were eluted using a small volume of 2% v/v formic acid in methanol (ca. 50 nL). The SPE-CE-UV method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), repeatability, reproducibility and reusability. The developed method showed a LOD decreasing until 1 ng L-1 when larger volumes of sample were loaded (ca. 180 μL), which was 500,000 times lower than by CE-UV. This undescribed sensitivity enhancement would arise from the homogenous and populated MOF nano-domains and the appropriate permeability of the hybrid material, which would promote high extraction efficiency and loading capacity. Furthermore, the sorbent showed appropriate selectivity regardless the analyzed complex environmental, biological or food matrix samples, achieving excellent detectability and recoveries (>90%).
Collapse
|
11
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
12
|
Armaghan M, Najafi E, Knedel T, Frank W, Janiak C. Synthesis and Single Crystal Structure Characterization of Dinuclear and Polymeric Mixed‐ligand Coordination Compounds of Zinc(II) and Cadmium(II) with the Bridging Ligand 1,2‐Bis(pyridin‐4‐ylmethylene)hydrazine. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahsa Armaghan
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Ezzat Najafi
- Department of Chemistry Payame Noor University (PNU) 19395–3697 Tehran Iran
| | - Tim‐Oliver Knedel
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Walter Frank
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Christoph Janiak
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| |
Collapse
|
13
|
Tirado-Guizar A, González-Gómez W, Pina-Luis G, Galindo JTE, Paraguay-Delgado F. Anthracene removal from water samples using a composite based on metal-organic-frameworks (MIL-101) and magnetic nanoparticles (Fe 3O 4). NANOTECHNOLOGY 2020; 31:195707. [PMID: 31995521 DOI: 10.1088/1361-6528/ab70fd] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polycyclic hydrocarbons constitute an important source of very dangerous pollutants. Different materials have been used as adsorbent for their removal, but they present difficulties in the separation process. The use of a material based on metal-organic framework (MOF) with large pores and high surface area and magnetic nanoparticles with superparamagnetic properties is an interesting strategy. In this work a magnetic composite based on MOF (MIL-101) and Fe3O4 magnetic nanoparticles (Fe3O4/MIL-101) was obtained by a simple synthesis method and used as adsorbent for the removal of anthracene. The composite was characterized by transmission electron microscopy, x-ray powder diffraction and vibrating sample magnetometer. The results showed that kinetic data followed a first-order model and equilibrium data were well fitted by the Langmuir model. The maximum adsorption capacity was 12.7 mg g-1 at pH 6 in 60 min of exposure. The composite was applied for the adsorption of anthracene in water samples reaching more than 95% of anthracene removal in 1 h of contact. The composite material was effectively separated using an external magnet, and no further centrifugation or filtration processes were needed. This composite is a great alternative to remove polycyclic hydrocarbons from water samples and has potential to extend to the removal of other contaminants.
Collapse
Affiliation(s)
- Antonio Tirado-Guizar
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22500, BC, México
| | | | | | | | | |
Collapse
|
14
|
Bigdeli F, Rouhani F, Morsali A, Ramazani A. Ultrasonic-assisted synthesis of the nanostructures of a Co(II) metal organic framework as a highly sensitive fluorescence probe of phenol derivatives. ULTRASONICS SONOCHEMISTRY 2020; 62:104862. [PMID: 31806553 DOI: 10.1016/j.ultsonch.2019.104862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Nanostructures of a metal-organic framework with chemical formula, [Co(BDC)(L*)]n.DMF (TMU-40), BDC = 1,4-benzendicarboxylate, L* = 5,6-dipyridin-4-yl-1,2,3,4-tetrahydropyrazine, under ultrasonic irradiation at ambient temperature and atmospheric pressure were prepared and characterized by Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Sonication time, concentration of initial reagents and ultrasonic generator power effects on the size and morphology of nano-structured compounds were studied. TMU-40 (for Tarbiat Modares University) displayed a good potential as a luminescent sensor against phenol derivatives consist of phenol, 4-aminophenol, 4-methylphenol and 4-chlorophenol. Nano-sized TMU-40 showed the better sensing performance in comparison to its bulk phase. The nano TMU-40 displayed very selective and sensitive in detection of phenol derivatives. The detection limit amounts of 15 nM and 63 nM were achieved for 4-aminophenol in nano TMU-40 and bulk TMU-40, respectively. The special structure and fluorescent character of L* ligand and high surface area of nano MOF provide an effective interaction between MOF and phenolic analytes to selectively and sensitively detect of the analyte molecules.
Collapse
Affiliation(s)
- Fahime Bigdeli
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran.
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 10 45195-313, Zanjan, Iran.
| |
Collapse
|
15
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
16
|
Soleimani M, Abbasi A, Najafi M. Preparation of Micro and Nanorod Metal Organic Framework Through Coordination Modulation Method as Precursor for Micro and Nanorod NiO. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01351-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
18
|
|
19
|
Vaitsis C, Sourkouni G, Argirusis C. Metal Organic Frameworks (MOFs) and ultrasound: A review. ULTRASONICS SONOCHEMISTRY 2019; 52:106-119. [PMID: 30477790 DOI: 10.1016/j.ultsonch.2018.11.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs) have received a lot of attention due to their unique properties and abundant functionalities. Permanent porosity and high surface area are just a few traits that have made them attractive to researchers. They can be prepared as task-specific materials by exploiting the functional group variety and tuning their size and geometry. The main purpose of this review is to present an alternative method of preparing MOF crystals and underline the advantages of ultrasound assisted (sonochemical) synthesis. State of the art ultrasound assisted techniques for the preparation of MOFs in nanoscale are presented. Optimization of morphology and particle size is highlighted throughout this work, as we discuss the effects of various factors, such as energy input, reagent concentration, adequate solvents, reaction time and more.
Collapse
Affiliation(s)
- Christos Vaitsis
- National Technical University of Athens, School of Chemical Engineering, 9 Heroon Polytechniou, 15773 Zografou, Athens, Greece
| | - Georgia Sourkouni
- Clausthal Centre of Materials Technology, Leibnizstr. 9, 38678 Clausthal-Zell., Germany
| | - Christos Argirusis
- National Technical University of Athens, School of Chemical Engineering, 9 Heroon Polytechniou, 15773 Zografou, Athens, Greece; Clausthal Centre of Materials Technology, Leibnizstr. 9, 38678 Clausthal-Zell., Germany; Institute of Energy Research and Phys. Technologies, Clausthal University of Technology, Leibnizstr. 4, 38678 Clausthal-Zell., Germany.
| |
Collapse
|
20
|
Hakimifar A, Morsali A. High-sensitivity detection of nitroaromatic compounds (NACs) by the pillared-layer metal-organic framework synthesized via ultrasonic method. ULTRASONICS SONOCHEMISTRY 2019; 52:62-68. [PMID: 30482438 DOI: 10.1016/j.ultsonch.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
Nanorods of zinc(II) based metal-organic framework (MOF) were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure. Control of particle size and morphology was enhanced in this synthesis method. Nanorods of pillared-layer metal organic framework, [Zn2(ubl)2(bipy)]·DMF (TMU-18), where ubl (urea-based ligand) is 4,4'-carbonylbis(azanediyl)dibenzoic acid, 4,4'-Bipyridine (bipy) DMF = N,N-dimethyl formamide), was synthesized under ultrasound irradiation in different concentrations of initial precursor. The nano structure and morphology of the synthesized MOF were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction, elemental analysis and FT-IR spectroscopy. Moreover, Fluorescence emissions of nanorods have been studied. Luminescent MOFs (LMOFs) have shown great potential as sensor for various nitro explosives by modulating the luminescence behavior in presence of nitro explosives. Urea-functionalized MOF shows high selectivity for sensing of the nitro explosive 2,4,6-trinitrophenol (TNP) even in the presence of other nitroaromatic compounds in methanol solution. Fluorescence intensity decreased with increasing contents of nitroaromatics in organic solution due to fluorescence quenching effect. The ultrasound method has some advantages such as short duration time of reaction, no need to high temperatures and pressures for synthesis nano-materials and low costs in comparison to other methods. Considering these advantages we used ultrasonic method to produce these nanorods which show high sensitivity in detecting nitroaromatics.
Collapse
Affiliation(s)
- Azar Hakimifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-4838 Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, 14115-4838 Tehran, Islamic Republic of Iran.
| |
Collapse
|
21
|
Burgaz E, Erciyes A, Andac M, Andac O. Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Khan NA, Hasan Z, Jhung SH. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Chen F, Cao Q, Dong C, Shao B, Zhai W, Ma X, Wei B. Ultrasonic polymerization of CuO@PNIPAM and its temperature tuning glucose sensing behavior. ULTRASONICS SONOCHEMISTRY 2018; 49:190-195. [PMID: 30122470 DOI: 10.1016/j.ultsonch.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The extraordinary high pressure and temperature produced during cavitation is crucial for ultrasonic sonochemistry. However, the cavitation effect is usually confined to a small zone nearby the ultrasonic horn, outside of which ultrasound produces much less effects on chemical reaction. In present work, in order to expand the range of effective zone and intensify the cavitation effect, N2 aeration was introduced to an ultrasonic polymerization process of CuO@PNIPAM in aqueous solution. By increasing the number of bubble nucleus gathered on the CuO surface and lowering the surface tension of the aqueous solution, the cavitation effect is intensified on the CuO surface within the whole reaction vessel, which benefits the covalently bonding between PNIPAM and CuO to a large degree and results in the formation of CuO@PNIPAM hybrid composite with excellent interfacial bonding. It is promising that the hybrid composite can be applied as temperature responsive glucose sensing platform with ON and OFF states due to the wettability change of PNIPAM versus temperature.
Collapse
Affiliation(s)
- Fang Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen 518097, PR China; The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Qi Cao
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Chen Dong
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen 518097, PR China; The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Bo Shao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen 518097, PR China; The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Wei Zhai
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Xiaoyan Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen 518097, PR China; The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| | - Bingbo Wei
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi'an 710129, PR China
| |
Collapse
|
24
|
Ultrasound assisted synthesis of a zinc(II) coordination polymer with nano-flower morphology and the use as precursor for zinc(II) oxide nanoparticles. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Singh AK, Thakur S, Pani B, Ebenso EE, Quraishi MA, Pandey AK. 2-Hydroxy- N'-((Thiophene-2-yl)methylene)benzohydrazide: Ultrasound-Assisted Synthesis and Corrosion Inhibition Study. ACS OMEGA 2018; 3:4695-4705. [PMID: 31458691 PMCID: PMC6641359 DOI: 10.1021/acsomega.8b00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/15/2018] [Indexed: 05/26/2023]
Abstract
2-Hydroxy-N'-((thiophene-2-yl)methylene)benzohydrazide (HTMBH) was synthesized by conventional method as well as by ultrasonication (US). The ultrasound-assisted synthesis of HTMBH was found to have good yield and be more eco-friendly compared to the conventional method of synthesis. The synthesized compound HTMBH was characterized by Fourier transform infrared, 1H NMR, and CHN analyses. The corrosion inhibition behavior of HTMBH was investigated using gravimetric and electrochemical methods in 0.5 M H2SO4. The thermodynamic adsorption parameters revealed that HTMBH was adsorbed on the mild steel surface in both ways, physically and chemically, although physisorption is predominant. The study of activation parameters revealed that it is the increase in activation energy that is a prominent factor to lower the corrosion rate in acid medium. Atomic force microscopy analysis is also carried out to investigate the effect of HTMBH on the surface of mild steel surface in acid solution. The contact angle measurement showed decreased affinity of mild steel surface for acid solution containing HTMBH. The results obtained from all of these methods showed good consistency.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department
of Applied Science, Bharati Vidyapeeth’s
College of Engineering, New Delhi 110063, India
| | - Sanjeeve Thakur
- Department
of Chemistry, NSIT, University of Delhi, New Delhi 110078, India
| | - Balaram Pani
- Department
of Chemistry, Bhaskaracharya College of Applied Science, University
of Delhi, New Delhi 110075, India
| | - Eno E. Ebenso
- Material
Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty
of Natural and Agricultural Sciences, North-West
University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mumtaz Ahmad Quraishi
- Department
of Chemistry, Indian Institute of Technology
(BHU), Varanasi 221005, India
| | - Ajit Kumar Pandey
- Department
of Chemistry, NSIT, University of Delhi, New Delhi 110078, India
| |
Collapse
|
26
|
Chang HN, Hou SX, Hao ZC, Cui GH. Ultrasound irradiation effect on morphological properties of a 3D nano zinc(II) supramolecular coordination polymer. ULTRASONICS SONOCHEMISTRY 2018; 41:67-74. [PMID: 29137799 DOI: 10.1016/j.ultsonch.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/24/2023]
Abstract
Nano-structures of [Zn(L)(atpt)]n (1) (L=1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene and H2atpt=2-aminoterephthalic acid) were obtained by hydrothermal and sonochemical approaches, characterized by scanning electron microscopy (SEM), IR, powder X-ray diffraction (PXRD), and elemental analysis. CP 1 features a 2D (4,4) network with the point symbol {44.62}, the 3D supramolecular architecture in CP 1 is controlled through π⋯π stacking interactions. The influence of various concentrations of initial reagents, power of ultrasound irradiation, and ultrasound time on the morphology and size of nano-structured CP 1 were studied in detail. In addition, the luminescence and photocatalytic properties of the nanoparticles of CP 1 for the degradation of methyl blue (MB) have also been investigated.
Collapse
Affiliation(s)
- Hai Ning Chang
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-city, Tangshan, Hebei 063210, PR China
| | - Suo Xia Hou
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-city, Tangshan, Hebei 063210, PR China
| | - Zeng Chuan Hao
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-city, Tangshan, Hebei 063210, PR China
| | - Guang Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-city, Tangshan, Hebei 063210, PR China.
| |
Collapse
|
27
|
Chang HN, Hou SX, Hao ZC, Cui GH. Ultrasonic green synthesis of an Ag/CP nanocomposite for enhanced photodegradation effectiveness. ULTRASONICS SONOCHEMISTRY 2018; 40:1039-1048. [PMID: 28946401 DOI: 10.1016/j.ultsonch.2017.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
A nanoparticle of cobalt(II) coordination polymer (CP), [Co(L)(npht)]n (1) (H2npht=4-nitrophthalic acid, L=1,3-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene) and its nanocomposite (Ag/CP 1) were obtained by the sonochemical approach and characterized by IR, elemental analysis, thermogravimetric analyses (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRPD). CP 1 shows a 1D double chain containing two different helical chains, which is further extended into a two-dimensional supramolecular framework by C-H⋯O hydrogen bonding interactions. The photoluminescence properties and photocatalytic properties of the nanoparticles of CP 1 and Ag/CP 1 on the degradation of methylene blue (MB) were investigated, Ag/CP 1 exhibited excellent photocatalytic activity under UV and visible light, which can be attributed to the strong interactions between Ag nanorods and CP 1, which lead to electron-hole pair separation between Ag nanorods and CP 1. In addition, the photocatalytic mechanism is also carried out by introducing t-butyl alcohol (TBA) as a widely used ·OH scavenger. The influence of ultrasound irradiation time and power on the morphology and size of the nanostructure CP 1 were studied. The results indicated that a decrease in time and an increase in power led to a decrease of particle size.
Collapse
Affiliation(s)
- Hai Ning Chang
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan, Hebei 063009, PR China
| | - Suo Xia Hou
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan, Hebei 063009, PR China
| | - Zeng Chuan Hao
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan, Hebei 063009, PR China
| | - Guang Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan, Hebei 063009, PR China.
| |
Collapse
|
28
|
Abbasi AR, Rizvandi M. Influence of the ultrasound-assisted synthesis of Cu-BTC metal-organic frameworks nanoparticles on uptake and release properties of rifampicin. ULTRASONICS SONOCHEMISTRY 2018; 40:465-471. [PMID: 28946447 DOI: 10.1016/j.ultsonch.2017.07.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/24/2023]
Abstract
In this work, we study uptake and release properties of rifampicin (denoted henceforth as Rif) from ultrasound-assisted synthesis Cu-BTC nanoparticles in comparison with bulk Cu-BTC and activated carbon. To explore the absorption ability of the Cu-BTC to Rif, fresh sample of Cu-BTC was immersed in an aqueous solution of Rif and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of Rif over nano Cu-BTC (denoted henceforth as I) is much higher than those over a bulk Cu-BTC (denoted henceforth as II) and activated carbon. In compound I and all of the nano-MOFs the channel length is decreased so that the amount of adsorption is increased a little. The samples were characterized with X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and UV/vis spectroscopy.
Collapse
Affiliation(s)
- Amir Reza Abbasi
- Faculty of Chemistry, Razi University, Kermanshah 67149, Islamic Republic of Iran; Institute of Nano Science and Nano Technology, Razi University, Kermanshah 67149, Islamic Republic of Iran.
| | - Maryam Rizvandi
- Faculty of Chemistry, Razi University, Kermanshah 67149, Islamic Republic of Iran
| |
Collapse
|
29
|
Bagheri H, Amanzadeh H, Yamini Y, Masoomi MY, Morsali A, Salar-Amoli J, Hassan J. A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides. Mikrochim Acta 2017; 185:62. [DOI: 10.1007/s00604-017-2607-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
30
|
Sonochemical synthesis and characterization of a novel hetro-binuclear metal organic nano polymer based on picolinic acid ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Razavi SAA, Masoomi MY, Morsali A. Ultrasonic assisted synthesis of a tetrazine functionalized MOF and its application in colorimetric detection of phenylhydrazine. ULTRASONICS SONOCHEMISTRY 2017; 37:502-508. [PMID: 28427662 DOI: 10.1016/j.ultsonch.2017.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 05/05/2023]
Abstract
TMU-34(-2H), [Zn(OBA)(DPT)0.5].DMF, has been sonochemically synthesized by applying H2OBA, (4,4'-oxybis(benzoic acid)), as the dicarboxylate linker, and DPT, (3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine), as pillar spacer. Sonication time, concentration of initial reagents, sonication power and molar ratio of pyridine as modulator has been optimized to synthesize nano powder of TMU-34(-2H) including uniform plate morphology. Nano TMU-34(-2H), can detect phenylhydrazine (PH) by color changing from pink to deep purple. As a comparison, nano and crystal samples of TMU-34(-2H) were treated to detect PH. Experiments show that nano TMU-34(-2H) has better detection limit and response time.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Yaser Masoomi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
33
|
Soltanian Fard MJ, Hayati P, Firoozadeh A, Janczak J. Sonochemical synthesis of two new zinc(II) 1,10-phenanthroline coordination supramolecular compounds: New precursors to produce nano-sized zinc(II) oxide. ULTRASONICS SONOCHEMISTRY 2017; 37:286-297. [PMID: 28427635 DOI: 10.1016/j.ultsonch.2017.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles of two zinc(II) coordination supramolecule compounds (CSCs), [Zn(L)Cl2] (1) and [Zn(L)Br2] (2) L=1,10-phen=1,10-phenanthroline ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn+2 ions are four coordinated. Topological analysis shows that the compound 1 and 2 are new topology for net: 1,3M4-1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc(II) CPs at 500°C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy.
Collapse
Affiliation(s)
- Mohammad Jaafar Soltanian Fard
- Department of Chemistry, Faculty of Chemical Science, Firoozabad Branch, Islamic Azad University, Firoozabad, Fars P.O. Box 74715-117, Iran.
| | - Payam Hayati
- Department of Chemistry, Dashtestan Branch, Islamic Azad University, Borazjan, Iran
| | - Azita Firoozadeh
- Department of Chemistry, Faculty of Chemical Science, Firoozabad Branch, Islamic Azad University, Firoozabad, Fars P.O. Box 74715-117, Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410 Okolna 2 Str., 50-950 Wroclaw, Poland
| |
Collapse
|
34
|
Amanzadeh H, Yamini Y, Masoomi MY, Morsali A. Nanostructured metal–organic frameworks, TMU-4, TMU-5, and TMU-6, as novel adsorbents for solid phase microextraction of polycyclic aromatic hydrocarbons. NEW J CHEM 2017. [DOI: 10.1039/c7nj03225k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zn(ii) based metal–organic frameworks were coated onto stainless steel wire and applied to the headspace solid phase microextraction of PAHs.
Collapse
Affiliation(s)
| | | | | | - Ali Morsali
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
35
|
Masoomi MY, Bagheri M, Morsali A. Enhancement of photocatalytic performance in two zinc-based metal–organic frameworks by solvent assisted linker exchange. CrystEngComm 2017. [DOI: 10.1039/c7ce01295k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent-assisted linker exchange (SALE) was performed on two pillared metal–organic frameworks (MOFs), [Zn2(oba)2(4-bpdb)]n·(DMF)2 (TMU-4) and [Zn(oba)(4-bpmb)0.5]n·(DMF)1.5 (TMU-6), to tune their photocatalytic properties.
Collapse
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Minoo Bagheri
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| |
Collapse
|
36
|
Amini MM, Najafi E, Karami B, Khavasi H. Synthesis and characterization of a new organotin(IV) complex as a new precursor for preparation SnO2 nanoparticles. INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1186051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mostafa M. Amini
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | - Behzad Karami
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | |
Collapse
|
37
|
Shahangi Shirazi F, Akhbari K. Sonochemical procedures; the main synthetic method for synthesis of coinage metal ion supramolecular polymer nano structures. ULTRASONICS SONOCHEMISTRY 2016; 31:51-61. [PMID: 26964923 DOI: 10.1016/j.ultsonch.2015.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/05/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
During the last two decades, supramolecular polymers have received great attention and the number of their synthesized compounds is still growing. Although people have long been interested in their crystalline network form it was only until 2005 that the first examples of nano- or microscale coordination polymers particles be demonstrated. This review tries to give an overview of all nano supramolecular compounds which were reported from coinage metal ions, their attributed synthetic procedures and to investigate the relation between the dimensions of coinage metal ions (Cu, Ag and Au) coordination and supramolecular polymers with their nano-structural morphologies and dimensions. Eleven compounds (from twenty compounds) with nano-structure morphology were prepared by sonochemical process and Ag(I) coordination and supramolecular polymer nano-structures can be easily prepared by sonochemical procedures.
Collapse
Affiliation(s)
- Fatemeh Shahangi Shirazi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Islamic Republic of Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Islamic Republic of Iran.
| |
Collapse
|
38
|
Karahan HE, Birer Ö, Karakuş K, Yıldırım C. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition. ULTRASONICS SONOCHEMISTRY 2016; 31:481-489. [PMID: 26964975 DOI: 10.1016/j.ultsonch.2016.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/16/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.
Collapse
Affiliation(s)
- H Enis Karahan
- Materials Science and Engineering Graduate Program, Koç University, Sarıyer, Istanbul 34450, Turkey; Chemistry Department, Koç University, Sarıyer, Istanbul 34450, Turkey
| | - Özgür Birer
- Materials Science and Engineering Graduate Program, Koç University, Sarıyer, Istanbul 34450, Turkey; Chemistry Department, Koç University, Sarıyer, Istanbul 34450, Turkey; KUYTAM, Surface Science and Technology Research Center, Koç University, Sarıyer, Istanbul 34450, Turkey.
| | - Kerem Karakuş
- Materials Science and Engineering Graduate Program, Koç University, Sarıyer, Istanbul 34450, Turkey; Chemistry Department, Koç University, Sarıyer, Istanbul 34450, Turkey
| | - Cansu Yıldırım
- KUYTAM, Surface Science and Technology Research Center, Koç University, Sarıyer, Istanbul 34450, Turkey
| |
Collapse
|
39
|
Two new 1D zigzag Hg(II) nanostructure coordination polymers: Sonochemical synthesis, thermal study, crystal structure and Hirshfeld surface analysis. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Israr F, Kim DK, Kim Y, Oh SJ, Ng KC, Chun W. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition. ULTRASONICS SONOCHEMISTRY 2016; 29:186-193. [PMID: 26584997 DOI: 10.1016/j.ultsonch.2015.08.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/29/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30.
Collapse
Affiliation(s)
- Farrukh Israr
- Department of Nuclear and Energy Engineering, Jeju National University, Jeju 690-756, South Korea
| | - Duk Kyung Kim
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Yeongmin Kim
- Department of Nuclear and Energy Engineering, Jeju National University, Jeju 690-756, South Korea
| | - Seung Jin Oh
- Mechanical Engineering Department, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore, Singapore
| | - Kim Choon Ng
- Mechanical Engineering Department, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore, Singapore
| | - Wongee Chun
- Department of Nuclear and Energy Engineering, Jeju National University, Jeju 690-756, South Korea.
| |
Collapse
|
41
|
Xu W, Li G, Li W, Zhang H. Facile room temperature synthesis of metal–organic frameworks from newly synthesized copper/zinc hydroxide and their application in adsorptive desulfurization. RSC Adv 2016. [DOI: 10.1039/c6ra04465d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Facile synthesis of metal–organic frameworks was demonstrated via directly adding organic ligands solution into the newly synthesized copper/zinc hydroxide solution.
Collapse
Affiliation(s)
- Wencong Xu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Gang Li
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Weigang Li
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Haojie Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute (SARI)
- Chinese Academy of Sciences (CAS)
- Shanghai
- China
| |
Collapse
|
42
|
Shi N, Xu D, Zhou X, Song L, Li L, Xie L, Wang L, Yi M, Huang W. Shape uniformity control of metal–organic framework nanodisks via surfactant and substrate synergetic scissoring effects and their fluorescence sensing properties. CrystEngComm 2016. [DOI: 10.1039/c6ce00818f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Masoomi MY, Morsali A. Sonochemical synthesis of nanoplates of two Cd(II) based metal-organic frameworks and their applications as precursors for preparation of nano-materials. ULTRASONICS SONOCHEMISTRY 2016; 28:240-249. [PMID: 26384904 DOI: 10.1016/j.ultsonch.2015.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/27/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
Nano plates of two Cd(II)-based metal-organic frameworks, [Cd2(oba)2(4-bpdb)2]n ·(DMF)x(TMU-8) and [Cd(oba)(4,4'-bipy)]n ·(DMF)y (TMU-9) were synthesized via sonochemical reaction by using various time and concentrations of initial reagents and power of irradiation and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. Moreover, the effect of triethylamine on speed of nucleation during the synthesis was investigated. Thermolysis of these MOFs at 550°C under air atmosphere yields CdO nanoparticles.
Collapse
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran.
| |
Collapse
|
44
|
Dhankhar SS, Kaur M, Nagaraja CM. Green Synthesis of a Microporous, Partially Fluorinated ZnIIPaddlewheel Metal-Organic Framework: H2/CO2Adsorption Behavior and Solid-State Conversion to a ZnO-C Nanocomposite. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
|
46
|
Derakhshandeh PG, Soleimannejad J, Janczak J. Sonochemical synthesis of a new nano-sized cerium(III) coordination polymer and its conversion to nanoceria. ULTRASONICS SONOCHEMISTRY 2015; 26:273-280. [PMID: 25682466 DOI: 10.1016/j.ultsonch.2015.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
Nanoparticles of a new two-dimensional cerium(III) coordination polymer compound, [Ce(pzdc)(pzdcH)(H2O)3]n (1), (H2pzdc=2,3-pyrazinedicarboxylic acid), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy and elemental analyses. Compound 1 was structurally characterized by single crystal X-ray diffraction and was shown that it consists of 2D sheets that construct a three-dimensional supramolecular architecture via non-covalent interactions i.e. hydrogen bonding. The thermal stability of compound 1 both for its crystals and nanostructures has been studied by the thermal gravimetric (TG) method and compared with each other. The role of ultrasound irradiation power and the concentration of initial reactants on the size and morphology of the nano-structured compound 1, has been investigated. Calcination of compound 1 at 800°C under air atmosphere yields ceria nanoparticles. Furthermore, the fluorescent properties of compound 1 at room temperature were studied.
Collapse
Affiliation(s)
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
| |
Collapse
|
47
|
Kumar B, Smita K, Cumbal L, Debut A. Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2015.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Kumar VB, Gedanken A, Porat Z. Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. ULTRASONICS SONOCHEMISTRY 2015; 26:340-344. [PMID: 25819681 DOI: 10.1016/j.ultsonch.2015.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
This work describes the single-step synthesis of GaO(OH) by ultrasonic irradiation of molten gallium in warm water. The ultrasonic energy causes dispersion of the liquid gallium into micrometric spheres, as-well-as decomposition of some of the water into H and OH radicals. The OH radicals and the dissolved oxygen react on the surface of the gallium spheres to form crystallites of GaO(OH). These crystallites prevent the re-coalescence of the gallium spheres, and as the reaction proceeds all the gallium is converted into crystalline GaO(OH).
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Bar Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Bar Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel; National Cheng Kung University, Department of Materials Science & Engineering, Tainan 70101, Taiwan.
| | - Ze'ev Porat
- Division of Chemistry, Nuclear Research Center-Negev, Be'er Sheva 84190, Israel; Institute of Applied Research, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| |
Collapse
|
49
|
Overview on the synthesis and applications of cadmium hydroxide nanomaterials. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0658-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Sonochemical Synthesis of Bismuth(III) Nano Coordination Compound and Direct Synthesis of Bi2O3 Nanoparticles from a Bismuth(III) Nano Coordination Compound Precursor. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0231-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|