1
|
Algheshairy RM, Alharbi HF, Almujaydil MS, Alhomaid RM, Ali HA. The protective effect of various forms of Nigella sativa against hepatorenal dysfunction: underlying mechanisms comprise antioxidation, anti- inflammation, and anti-apoptosis. Front Nutr 2025; 12:1553215. [PMID: 40432961 PMCID: PMC12106032 DOI: 10.3389/fnut.2025.1553215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction The liver and kidney are vital organs that are interconnected, dealing with detoxifying and excreting xenobiotics. They are constantly exposed to oxidative stress, which can cause hepatorenal dysfunction. This study compares two forms of Nigella sativa (NS), NS oil (NSO), and NS seeds (NSS), for the first time, in their ability to mitigate hepatorenal injury induced by azathioprine (AZA), exploring potential underlying mechanisms. Methods Group (1): negative control; Group (2): positive control received 15 mg/kg AZA orally. Groups (3, 4, and 5) received 100 mg/kg silymarin (standard reference), 500 mg/kg NSO, and 250 mg/kg NSS, respectively, and were subjected to the same dose of AZA. A one-way analysis of variance was conducted, followed by Mann-Whitney post-hoc analysis. Results Administration of AZA induced hepatorenal dysfunction, evidenced by dyslipidemia, elevations in serum liver enzymes, creatinine, urea, pro-inflammatory cytokines, and cytokeratin-18. Antioxidant enzymes in liver and kidney tissues were reduced, with an elevation in caspase-3 and caspase-9. Both forms of NS significantly balanced serum pro- inflammatory cytokines (14.33 ± 2.33, 15.15 ± 1.64 vs. 24.87 ± 1.87) pg/ml, interleukin-4 (16.72 ± 1.14, 15.95 ± 1.03 vs. 10.64 ± 1.04) pg/ml, and interleukin-10 (19.89 ± 0.69, 18.38 ± 0.38 vs. 15.52 ± 1.02) pg/ml, and downregulated cytokeratin-18 (210.43 ± 21.56, 195.86 ± 19.42 vs. 296.54 ± 13.94) pg/ml for NSO and NSS vs. the positive group, respectively. NSS enhanced liver antioxidant activity (P < 0.05), normalized liver enzymes (P < 0.05, P < 0.01) for alanine aminotransferase and aspartate aminotransferase, respectively, and significantly lessened dyslipidemia (P < 0.05). Liver caspase-3 and caspase-9 improved significantly with NSS, while kidney caspase-3 and caspase-9 improved with NSO. NSO increased kidney glutathione peroxidase and catalase (P < 0.01) and corrected creatinine and urea (P < 0.05). Histopathological observations confirmed the present data. Discussion Conclusively, NSO and NSS mitigated hepatorenal dysfunction responses to AZA through antioxidant, anti-inflammatory, and anti-apoptosis properties that underlie their protective performance. Interestingly, NSO surpassed NSS in restoring renal oxidative damage, while NSS provided better hepatic protection than NSO, suggesting NSO for patients with kidney dysfunction and NSS for those with liver problems.
Collapse
Affiliation(s)
- Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Hend F. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Mona S. Almujaydil
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Raghad M. Alhomaid
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Hoda A. Ali
- Department of Nutrition and Clinical Nutrition, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Khatun R, Dolai M, Sasmal M, Katarkar A, Islam ASM, Yasmin N, Maryum S, Haribabu J, Ali M. Small molecule interactions with biomacromolecules: selective sensing of human serum albumin by a hexanuclear manganese complex - photophysical and biological studies. J Mater Chem B 2024; 12:9408-9419. [PMID: 39192836 DOI: 10.1039/d4tb00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A covalently bonded hexanuclear neutral complex, [Mn6(μ3-O)2(3-MeO-salox)6(OAc)2(H2O)4] (1), has been synthesized and characterized by single crystal X-ray diffraction analysis along with IR and HRMS studies. Complex 1 has been found to selectively interact with human serum albumin (HSA), a model transport protein. The interaction of 1 with HSA was investigated by monitoring the change in the absorbance value of HSA at λ = 280 nm with increasing concentration of 1. Likewise, fluorescence titrations were carried out under two conditions: (i) titration of a 5 μM solution of complex 1 with the gradual addition of HSA, showing a ∼9-fold fluorescence intensity enhancement at 424 nm, upon excitation at 300 nm; and (ii) upon excitation at 295 nm, titration of 5 μM HSA solution with the incremental addition of complex 1, showing a quenching of fluorescence intensity at 334 nm, with simultaneous development of a new emission band at 424 nm. A linear form of the Stern-Volmer equation gives KSV = 9.77 × 104 M-1 and the Benesi-Hildebrand plot yields the binding constant as KBH = 1.98 × 105 M-1 at 298 K. The thermodynamic parameters, ΔS°, ΔH°, and ΔG°, were estimated by using the van't Hoff relationship which infer the major contribution of hydrophobic interactions between HSA and 1. It was observed that quenching of HSA emission arises mainly through a dynamic quenching mechanism as indicated by the dependence of average lifetime 〈τ〉 on the concentration of 1. The changes in the CD (circular dichroism) spectral pattern of HSA in the presence of 1 clearly establish the variation of HSA secondary structure on interaction with 1. The most probable interaction region in HSA for 1 was determined from molecular docking studies which establish the preferential trapping of 1 in the subdomain IIA of site I in HSA and substantiated by the results of site-specific marker studies. Complex 1 was further evaluated for its antiproliferative effects in lung cancer A549 cells, which strictly inhibits the growth of the cells in both 2D and 3D mammospheres, indicating its potential application as an anticancer drug.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, India
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, & 2B Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nasima Yasmin
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Sana Maryum
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
3
|
Yang Y, Zou J, Li M, Yun Y, Li J, Bai J. Extraction and characterization of polysaccharides from blackcurrant fruits and its inhibitory effects on acetylcholinesterase. Int J Biol Macromol 2024; 262:130047. [PMID: 38336315 DOI: 10.1016/j.ijbiomac.2024.130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Microwave assisted aqueous two-phase system (MA-ATPS) was used to simultaneously extract two polysaccharides from blackcurrant. Under the suitable ATPS (ethanol/(NH4)2SO4, 26.75 %/18.98 %) combining with the optimal MA conditions (liquid-to-material ratio 58.5 mL/g, time 9.5 min, temperature 60.5 °C, power 587 W) predicted by response surface methodology, the yields of the top/bottom phase polysaccharides were 13.08 ± 0.37 % and 42.65 ± 0.89 %, respectively. After purification through column chromatography, the top phase polysaccharide (PRTP) and bottom phase polysaccharide (PRBP) were obtained. FT-IR, methylation and NMR analyses confirmed that the repeating unit in the backbone of PRTP was →2, 5)-α-L-Araf-(1 → 3)-α-D-Manp-(1 → 6)-β-D-Galp-(1 → 6)-α-D-Glcp-(1 → 4)-α-L-Rhap-(1 → 4)-α-D-GalAp-(1→, while the possible unit in PRBP was →4)-α-L-Rhap-(1 → 3)-α-D-Manp-(1 → 6)-β-D-Galp-(1 → 6)-α-D-Glcp-(1 → 2, 5)-α-L-Araf-(1 → 4)-α-D-GalAp-(1→. PRBP with relatively low molecular weight exhibited better stability, rheological property, free radical scavenging and acetylcholinesterase (AChE) inhibitory activities than PRTP. PRTP and PRBP were reversible mixed-type inhibitors for AChE, and the conformation of AChE was changed after binding with the polysaccharides. Molecular docking, fluorescence and isothermal titration calorimetry assays revealed that PRTP and PRBP quenched the fluorescence through static quenching mechanism, and the van der Waals interactions and hydrogen bonding played key roles in the stability of polysaccharide-enzyme complexes. This study provided a theoretical basis for blackcurrant polysaccharides as AChE inhibitors to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaheng Zou
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Miao Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yang Yun
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianqiang Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
4
|
Daksh S, Gond C, Kumar N, Kaur L, Ojha H, Deep S, Datta A. Binding studies of potential amyloid-β inhibiting chalcone derivative with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123362. [PMID: 37774582 DOI: 10.1016/j.saa.2023.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Chalcones (α-phenyl-β-benzoylethylene) and their natural-source derivatives have been investigated for their remarkable biological activities, like neuroprotective, anti-inflammatory, and anti-tumor properties. A triazole chalcone ligand (E)-3-(4-(dimethylamino)phenyl)-1-(4-((1-(2-(4-((E)-3-(4(dimethylamino)phenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)prop-2-en-1-one (L1) was synthesized by Cu(I)- catalysed click reaction. The mechanistic properties of L1 for therapy were evaluated by analyzing the binding interactions between L1 and bovine serum albumin (BSA) through photophysical and computational studies. The structural elucidation of ligand L1 was carried out by NMR and mass spectrometry. The Aβ inhibitory activity of L1 was studied by thioflavin T assay and transmission electron microscopy. The biomolecular interaction of L1 with bovine serum albumin was examined through multi-spectroscopic techniques in combination with in silico studies. UV-Visible absorption, fluorescence spectroscopy, circular dichroism, Förster resonance energy transfer, and three-dimensional fluorescence studies confirmed the formation of a BSA-L1 complex. The potential binding sites, mechanism of interactions, and variations in the environment of tyrosine and tryptophan amino acid residues of BSA were assessed at different temperatures. The binding constant for the Static quenching mechanism of intrinsic fluorescence of BSA was of the order of 105 M-1. The esterase enzyme activity assay in the presence of L1 revealed an increase in the protein enzyme activity. Molecular docking studies suggested L1 was predominantly bound to BSA by hydrogen bonds and Van der Waals forces.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Lajpreet Kaur
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
5
|
Vinod LA, Rajendran D, Shivashankar M, Chandrasekaran N. Surface interaction of vancomycin with polystyrene microplastics and its effect on human serum albumin. Int J Biol Macromol 2024; 256:128491. [PMID: 38043666 DOI: 10.1016/j.ijbiomac.2023.128491] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Microplastics have a well-documented ability to adsorb various chemicals and contaminants found in the environment. By similar mechanisms, when medicines are stored in plastic packaging, the leaching of plastics into the contents poses the risk of possible toxicity and decreased drug efficacy. The work thus examines the presence of two categories of anthropogenic materials - microplastics (MPs) and medications - with their possible combined effects and fate in biological systems. A study on the kinetics and isotherm of the adsorption of vancomycin hydrochloride on the surface of polystyrene microspheres is performed, and the best-fitting models are obtained respectively as the pseudo-second-order model and the Temkin isotherm. Further, the interaction of each of, the drug, MPs and drug-adsorbed MPs with human serum albumin (HSA), the model protein chosen to validate the potential toxicity in humans, is determined by fluorescence spectroscopy. A thermodynamic analysis of this protein-ligand interaction shows that the process is spontaneous, endothermic and entropically favoured, and that hydrophobic forces operate between the interacting species. An unfolding of HSA is observed, disrupting its functions like the esterase activity. Competitive binding experiments with Warfarin and Ibuprofen as specific site markers on HSA reveal that all the studied ligands bind non-specifically to HSA.
Collapse
Affiliation(s)
- Lydia Ann Vinod
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Murugesh Shivashankar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Meng S, Yu Q, Li M, Liu X, Zhao X, Wu K, Wang Q, Liu Y, Wu Y, Gong Z. Unveiling the molecular interactions between alkyl imidazolium ionic liquids and human serum albumin: Implications for toxicological significance. Chem Biol Interact 2023; 386:110762. [PMID: 37844773 DOI: 10.1016/j.cbi.2023.110762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Alkyl imidazolium-based ionic liquids (ILs) are promising for diverse industrial applications; however, their growing prevalence has raised concerns regarding human exposure and potential health implications. A critical aspect to be clarified to address the adverse health effects associated with ILs exposure is their binding mode to human serum albumin (HSA). In this study, we delved into the binding interactions between three alkyl imidazolium ILs (1-hexyl-3-methyl-imidazolium (C6[MIM]), 1-ethyl-3-methyl-imidazolium chloride (C8[MIM]) and 1-decyl-3-methyl-imidazolium (C10[MIM]) and human serum albumins (HSAs) using a comprehensive approach encompassing molecular docking and multi-spectroscopy (UV-visible, Fluorescence, Circular Dichroism, FTIR). Furthermore, for the first time, we developed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach time to quantify plasma protein binding rates. Our results revealed that the ILs primarily bind to the hydrophobic cavity of HSA through hydrogen bonding and van der Waals forces, forming stable complexes via static quenching. This affected HSA's secondary structure, reducing α-helical content, particularly around specific residues. Equilibrium dialysis and ultrafiltration coupled with UPLC-MS/MS analysis showed modest plasma protein binding rates (17.84%-31.85%) for the three ILs, with no significant influence from alkyl chain effects or concentration relationship. Lower plasma protein binding rates can affect bioavailability and distribution of ILs, potentially influencing their toxicity. These findings provide critical insights into the potential toxicological implications at the molecular level, thereby contributing to continuous efforts to evaluate the risk profiles and ensure the safe utilization of these compounds.
Collapse
Affiliation(s)
- Shizhen Meng
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingqing Yu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Li
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Xiaole Zhao
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kejia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Qiao Wang
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yan Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongning Wu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
7
|
Pi X, Liu J, Peng Z, Liang S, Cheng J, Sun Y. Comparison of proanthocyanidins A2 and B2 on IgE-reactivity and epitopes in Gly m 6 using multispectral, LC/MS-MS and molecular docking. Int J Biol Macromol 2023; 249:126026. [PMID: 37506791 DOI: 10.1016/j.ijbiomac.2023.126026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study comparatively analyzed the changes in IgE-reactivity and epitopes in proanthocyanidins A2- (PA-Gly m 6) and B2-Gly m 6 (PB-Gly m 6) conjugates prepared by alkali treatment at 80 °C for 20 min. Similar to the western blot, ELISA also showed a higher reduced IgE-reactivity in PA-Gly m 6 (70.12 %) than PB-Gly m 6 (63.17 %). SDS-PAGE demonstrated that proanthocyanidins A2 caused more formation of >180 kDa polymers than proanthocyanidins B2. Multispectral analyses revealed that PA-Gly m 6 exhibited more structural alteration (e.g., a decrease of α-helical content and ANS fluorescence intensity) to unfold protein structure than proanthocyanidins B2, improving the accessibility to modify Gly m 6 for shielding or destroying conformational epitopes. LC/MS-MS revealed that PA-Gly m 6 conjugates had a lower abundance of allergens, peptides and linear epitopes than PB-Gly m 6 conjugates. Molecular docking showed that proanthocyanidins A2 and B2 reacted with Gln-317 and Asn-94 of epitopes, respectively. Overall, proanthocyanidins A2 is more effective than proanthocyanidins B2 to decrease the IgE-reactivity of Gly m 6 due to more shielding or destruction of conformational epitopes and lower content allergens and linear epitopes, which was attributed to more protein-crosslinks formation and structural changes in PA-Gly m 6 conjugates.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuxia Liang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Jiangsu DAISY FSMP Co., Ltd, Nantong, Jiangsu 226133, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Hadidi S. A binuclear Cu(I)-phosphine complex as a specific HSA site I binder: synthesis, X-ray structure determination, and a comprehensive HSA interaction analysis. J Biomol Struct Dyn 2023; 41:7616-7626. [PMID: 36120938 DOI: 10.1080/07391102.2022.2123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
In this research, we present a method for synthesis and a detailed description of geometry characterization of a novel binuclear Cu(I) phosphine complex, along with analysis of its interaction with HSA using spectroscopic and simulation methods. The Cu atoms are coordinated in a tetrahedral geometry, which results in coordination by two nitrogen atoms from the N,N'-(ethane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine ligand (L), a chloride, and a PPh3. The complex binding constant to HSA in a biochemical environment was determined to be ∼106, which is indicative of a strong interaction. The fluorescence of HSA is significantly quenched by binding to the complex via a static mechanism, whereas the microenvironment of the tryptophan residue remains unchanged. A spontaneous binding process was indicated by a negative value for ΔG. Thermodynamic signatures reflect the dominance of hydrophobic forces during the interaction. The site marker competitive experiment combined with docking simulation analysis revealed the closeness position of the complex binding site to warfarin location in specific ligand site I of HSA. The information generated in the present study would be valuable to understand the interaction mechanistic and pharmacological behavior of Cu(I) complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
9
|
Mishra V, Pathak AK, Bandyopadhyay T. Binding of human serum albumin with uranyl ion at various pH: an all atom molecular dynamics study. J Biomol Struct Dyn 2023; 41:7318-7328. [PMID: 36099177 DOI: 10.1080/07391102.2022.2120080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Uranium is routinely handled in various stages of nuclear fuel cycle and its association with human serum albumin (HSA) has been reported in literature, however, their binding characteristics still remains obscure. The present study aims to understand interaction of uranium with HSA by employing all atom molecular dynamics simulation of the HSA-metal ion complex. His67, His247 and Asp249 residues constitute the major binding site of HSA, which capture the uranyl ion (UO22+). A total of six sets of initial coordinates are used for Zn2+-HSA and UO22+-HSA system at pH = 4, 7.4 and 9, respectively. Enhance sampling method, namely, well-tempered meta-dynamics (WT-MtD) is employed to study the binding and un-binding processes of UO22+ and Zn2+ ions. Potential of mean force (PMF) profiles are generated for all the six sets of complexes from the converged WT-MtD run. Various basins and barriers are observed along the (un)binding pathways. Hydrogen bond dynamics and short-range Coulomb interactions are evaluated from the equilibrium run at each basins and barriers for both the ions at all pH values. The binding of UO22+ ion with HSA is the result of the dynamical balance between UO22+-HSA and UO22+-water short range Coulomb interactions. Zn2+ ion interact more strongly than UO22+ at all pH through short range Coulomb interactions. PMF values further concludes that UO22+ cannot associate to the Zn2+ bound HSA protein but can be captured by free HSA at all pH values i.e. endosomal, alkaline and physiological pH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijayakriti Mishra
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Arup Kumar Pathak
- Homi Bhabha National Institute, Mumbai, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Tusar Bandyopadhyay
- Homi Bhabha National Institute, Mumbai, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
10
|
Kubczak M, Grodzicka M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. The effect of novel tyrosine-modified polyethyleneimines on human albumin structure - Thermodynamic and spectroscopic study. Colloids Surf B Biointerfaces 2023; 227:113359. [PMID: 37209597 DOI: 10.1016/j.colsurfb.2023.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland.
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; BioMedChem Doctoral School of the UL and Lodz Institutes of the Polish Academy of Science, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland, Banacha 12/16, 90-237 Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Nemergut M, Sedláková D, Fabriciová G, Belej D, Jancura D, Sedlák E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int J Biol Macromol 2023; 232:123379. [PMID: 36702231 DOI: 10.1016/j.ijbiomac.2023.123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Thermal denaturation of human serum albumin has been the subject of many studies in recent decades, but the results of these studies are often conflicting and inconclusive. To clarify this, we combined different spectroscopic and calorimetric techniques and performed an in-depth analysis of the structural changes that occur during the thermal unfolding of different conformational forms of human serum albumin. Our results showed that the inconsistency of the results in the literature is related to the different quality of samples in different batches, methodological approaches and experimental conditions used in the studies. We confirmed that the presence of fatty acids (FAs) causes a more complex process of the thermal denaturation of human serum albumin. While the unfolding pathway of human serum albumin without FAs can be described by a two-step model, consisting of subsequent reversible and irreversible transitions, the thermal denaturation of human serum albumin with FAs appears to be a three-step process, consisting of a reversible step followed by two consecutive irreversible transitions.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
| |
Collapse
|
12
|
Jose A, Porel M. Probing the interactions of dansyl appended sequence-defined oligomers with serum albumins: Effect of functionality, hydrophobicity, and architecture. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Jithinraj TK, Saheer VC, Chakkumkumarath L. Chiral 8-aminoBODIPY-based fluorescent probes with site selectivity for the quantitative detection of HSA in biological samples. Analyst 2023; 148:286-296. [PMID: 36533779 DOI: 10.1039/d2an01525k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human serum albumin (HSA) is one of the vital proteins in blood serum, and its optimum level is a reflection of the physiological well-being of an individual. Any abnormalities in serum HSA levels could often be a sign of disguised physiological disorders. The importance of fast and accurate determination of serum HSA levels has led to the development of various quantification methods. Among these, fluorescence-based methods employ molecular probes capable of producing selective responses on interaction with HSA. Herein, we report chiral 8-aminoBODIPY-based probes having blue emission for the quantitative detection of HSA in buffer and human blood serum. A pair of 8-aminoBODIPY enantiomers, namely R-PEB and S-PEB, were synthesized. They exhibited a fast 'turn-on' fluorescence response towards HSA, allowing its detection and quantification. In PBS buffer, R-PEB and S-PEB showed very good sensitivity with a limit of detection (LoD) of 25 nM (KD = 9.84 ± 0.14 μM) and 39 nM (KD = 18.67 ± 0.21 μM), respectively. The linear relationship observed between the fluorescence intensity of R-PEB/S-PEB and the HSA concentration in serum samples allowed us to generate a reference curve for HSA estimation for practical applications. Examination of unknown serum samples showed a good correlation with the results obtained by the benchmark BCG method. Interestingly, the difference in these probes' dissociation constants and LoD indicated their differential binding to HSA. Considering the availability of multiple ligand binding sites in HSA, their binding preferences were investigated in detail by displacement assays using site-specific drugs. These studies showed the preferential affinity of R-PEB towards site II, which was further substantiated using molecular docking studies. However, these displacement assays could not identify the preferred binding site of S-PEB. Blind docking studies indicated that S-PEB occupied a site closer to FA5. Selective binding of R-PEB to site II and its characteristic photophysical response can be utilized to quickly screen potential site II binding drugs.
Collapse
Affiliation(s)
| | | | - Lakshmi Chakkumkumarath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
14
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Fatma I, Sharma V, Ahmad Malik N, Assad H, Cantero-López P, Sánchez J, López-Rendón R, Yañez O, Chand Thakur R, Kumar A. Influence of HSA on micellization of NLSS and BC: An experimental-theoretical approach of its binding characteristics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Study of reactive dye/serum albumin interactions: thermodynamic parameters, protein alterations and computational analysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Dezhampanah H, Moghaddam Pour AM. Multi technique investigation on interaction between 5-(2-thiazolylazo)-2,4,6-triaminopyrimidine and HSA and BSA. J Biomol Struct Dyn 2022; 40:8143-8154. [PMID: 33797349 DOI: 10.1080/07391102.2021.1906751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In research laboratories and in various industries, azo compounds are among the most effective and commonly used organic dyes. The association between human (HSA) and bovine (BSA) serum albumins with 5-(2-thiazolylazo)-2,4,6-triaminopyrimidine (TTP) was investigated in this research using spectroscopy methods and molecular modeling study. The fluorescence quenching results showed that the quenching mechanisms were static and dynamic processes for HSA and BSA, respectively. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions for HSA and hydrophobic interaction for BSA play the major roles. According to Förster energy transfer, non-radiative energy transferred from HSA and BSA to TTP, is provided by close distance (r0) between TTP and Trp residues of HSA and BSA. The synchronous fluorescence spectroscopy, FT-IR findings and UV-Vis absorption data confirm that TTP can induce conformational and micro environmental changes in both the proteins. Furthermore, docking results predicted the probable binding site of TTP in subdomain IIA of HSA and BSA molecules where Trp residues are located. Types of amino acid residues surrounding the TTP molecule supported that van der Waals forces, hydrophobic forces and electrostatic forces play important roles in stabilization of drug-protein complexes formed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Dezhampanah
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
18
|
Li MS, Zhang J, Zhu YX, Zhang Y. Interactions between hydroxylated polycyclic aromatic hydrocarbons and serum albumins: Multispectral and molecular docking analyses. LUMINESCENCE 2022; 37:1972-1981. [PMID: 36098937 DOI: 10.1002/bio.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) can bind to serum albumin and influence their distribution and elimination in organisms. Herein, multispectral analysis and molecular docking methods were used to investigate the binding mechanism of two OH-PAHs, 1-hydroxyphenanthrene (1-OHPhe) and 9-hydroxyphenanthrene (9-OHPhe), with two homologous serum albumins, human serum albumin (HSA) and bovine serum albumin (BSA). The quenching constants of HSA with 1-OHPhe and 9-OHPhe were much larger than those for BSA. Energy transfer from the tryptophan (Trp) residues in HSA to 1-OHPhe and 9-OHPhe was more probable than from Trp in BSA. The interactions of 1-OHPhe and 9-OHPhe with Trp in HSA and BSA altered the microenvironment of Trp. Molecular docking results revealed that the binding modes and binding forces of 1-OHPhe and 9-OHPhe with HSA and BSA were different. The two OH-PAHs were used as fluorescent probes to analyze the microenvironmental hydrophobicities of HSA and BSA, which were distinctly different. The structural difference between HSA and BSA induced significant variations in their binding behavior with 1-OHPhe and 9-OHPhe. Moreover, HSA was more susceptible to 1-OHPhe and 9-OHPhe than BSA. This work suggests that the differences between the two serum albumins should be considered in related studies.
Collapse
Affiliation(s)
- Meng-Shuo Li
- State Key Laboratory of Marine Environmental Sciences of China, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Ya-Xian Zhu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Sciences of China, College of Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Insight into the binding of alpha-linolenic acid (ALA) on Human Serum Albumin using spectroscopic and molecular dynamics (MD) studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Li W, Zhang X, Tan S, Li X, Gu M, Tang M, Zhao X, Wu Y. Zein enhanced the digestive stability of five citrus flavonoids via different binding interaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4780-4790. [PMID: 35218206 DOI: 10.1002/jsfa.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/03/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zein is commonly used to construct food flavonoid delivery systems. This study investigated the effect and mechanism of zein on the digestive stability of five citrus flavonoids, namely hesperetin (HET), hesperidin (HED), neohesperidin (NHD), naringenin (NEN), and naringin (NIN). RESULTS Zein enhanced the digestive stability of the five citrus flavonoids, especially that of HET and NEN, during digestion in the stomach and small intestine. Fluorescence spectroscopy results suggested that citrus flavonoids spontaneously quenched the endogenous fluorescence of zein in static quenching mode. The binding of HET, HED and NHD to zein was driven respectively by electrostatic, hydrophobic and electrostatic interaction. However, Van der Waals' force and hydrogen (H)-bond interaction represented the primary driving force for binding NEN, and NIN to zein to form complexes. The binding of the five citrus flavonoids to zein also caused a diverse bathochromic shift in ultraviolet absorbance. Analysis using Fourier-transform infrared and Raman spectroscopy revealed that the binding behavior of the five citrus flavonoids had different effects on changes in the secondary structures, disulfide bonds, and tyrosine exposure of zein. The results were also partially verified by molecular dynamic simulation. CONCLUSIONS Zein enhanced the digestive stability of the five citrus flavonoids via different binding interactions that was due to the difference in molecular structure of citrus flavonoids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xiaohua Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xueping Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyuan Gu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengqi Tang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yingmei Wu
- The Chongqing Engineering Laboratory for Green Cultivation and Deep Processing of the Three Gorges Reservoir Area's Medicinal Herbs, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
21
|
Interactions between stipuol enantiomers and human serum albumin. Food Chem 2022; 385:132686. [PMID: 35299022 DOI: 10.1016/j.foodchem.2022.132686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Natural polyacetylenes occur in food and herbal plants, have a wide range of bioactivities, and are recognized as important nutraceuticals. Stipuol is a natural polyacetylene present in the edible plant Panax notoginseng. The present study was aimed to study interactions of rac-stipuol and its enantiomers with human serum albumin (HSA) using multi-spectroscopic, molecular modeling and microscale thermophoresis. Steady-state and time-resolved fluorescence spectra manifest that the fluorescence quenching mechanism is mainly static in type. The bindings of (S)-stipuol, (R)-stipuol, rac-stipuol lead to some microenvironmental and slight conformational changes of HSA. Competitive ligand displacement experiments and molecular modeling studies revealed that stipuol enantiomers bind to HSA at subdomain III (site IIA). The calculated values of Ka and Kd showed that (R)-stipuol had a stronger binding affinity than (S)-stipuol. The results are informative for use of stipuol as a nutraceutical to improve human health.
Collapse
|
22
|
Malik S, Zaidi N, Siddiqi MK, Majid N, Masroor A, Salam S, Khan RH. Mechanistic insight into inhibition of amyloid fibrillation of human serum albumin by Vildagliptin. Colloids Surf B Biointerfaces 2022; 216:112563. [PMID: 35588684 DOI: 10.1016/j.colsurfb.2022.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Protein aggregation leads to several human pathologies such as Alzheimer's disease (AD), type 2 diabetes (T2D), Parkinson's disease (PD), etc. Due to the overlap in the mechanisms of type 2 diabetes and brain disorders, common effective pharmacological interventions to treat both T2D and AD is under extensive research. Therefore, major aim of research is to repurpose already established treatment of diabetes to cure AD as well. This study evaluates mechanistic insight into anti-amyloidogenic potential of anti-diabetic drug Vildagliptin (VLD) on human serum albumin fibrillation (HSA) by using biophysical, calorimetric, imaging techniques along with hemolytic assay. Dynamic light scattering (DLS) and Rayleigh light scattering (RLS) results showed presence of few small-sized aggregates in the presence of VLD which are formed by deaccelerating the amyloidogenesis as shown by thioflavin T (ThT) fluorescence and Congo red (CR) binding assay. Further, Isothermal titration calorimetry (ITC), steady state fluorescence quenching, molecular docking results revealed that VLD form complex with amyloid facilitating state of HSA and consequently mask the hydrophobic residues involved in amyloidogenesis as evident from decrease in ANS fluorescence. Differential scanning calorimetry (DSC) results confirm that VLD stabilizes the amyloid facilitating state of HSA. In addition, SEM images demonstrated that VLD alleviates the hemolytic effect induced by fibrils of HSA. This study reports VLD as a potential inhibitor of amyloid fibrillation and provides promising results to repurpose VLD as a drug candidate for the cure of Alzheimer's diseases along with diabetes.
Collapse
Affiliation(s)
- Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Samreen Salam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
23
|
Lyndem S, Gazi R, Belwal VK, Bhatta A, Jana M, Roy AS. Binding of bioactive esculin and esculetin with hen egg white lysozyme: Spectroscopic and computational methods to comprehensively elucidate the binding affinities, interacting forces, and conformational alterations at molecular level. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
An insight into the interaction between Indisulam and human serum albumin: Spectroscopic method, computer simulation and in vitro cytotoxicity assay. Bioorg Chem 2022; 127:106017. [PMID: 35841666 DOI: 10.1016/j.bioorg.2022.106017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Indisulam (IDM) is a sulfanilamide anticancer agent and has been identified as a molecular glue recently. It shows potential for novel therapies development and brings more hope for curing human diseases. The affinity between molecular glues and plasma protein makes it significant to understand the characteristics of such substances. Therefore, the interaction between IDM and human serum albumin (HSA) was explored through solvent experiments, computer simulation experiments, enzyme kinetics experiments, and cell viability assay. The results revealed that IDM and HSA spontaneously formed stable binary complex with the binding constant of the order 105 M-1. IDM inserted in the site I of HSA, resulting the change in HSA secondary structure. And π electrons in IDM's benzene rings, as well as van der Waals forces and the H-bond, all helped to stabilize the HSA-IDM complex. The results of molecular dynamic simulation (MD) corresponded with the results from solvent experiment well. For instance, there were approximately 1-5 H-bonds between IDM and HSA. Lys199 and Arg218 were crucial energy contributors in the binding process. The esterase-like activity experiment confirmed that IDM inhibited the catalytic activity of HSA. In addition, cell experiment revealed that serum albumin can significantly reduce the cytotoxicity of IDM towards human embryonic kidney 293T (HEK293T) cells.
Collapse
|
25
|
Xu M, Cui Z, Xiao Y, Liu C, Liu R, Zong W. Probing the potential toxicity by characterizing the binding mechanism of sodium dehydroacetate to human serum albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3655-3664. [PMID: 34882798 DOI: 10.1002/jsfa.11712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sodium dehydroacetate (DHA-S) is a common food additive, which can combine with serum proteins in the plasma, but the interaction mechanism between DHA-S and human serum albumin (HSA) is unclear. In this study, multiple spectroscopy techniques, isothermal titration calorimetry (ITC), molecular docking and esterase activity test were employed to investigate the interaction mechanism of DHA-S and HSA. RESULTS A DHA-S-HSA complex was formed and the structure of HSA were altered by DHA-S. Since DHA-S changed the tight structure of the hydrophobic subdomain IIA where tryptophan (Trp) was placed, the hydrophobicity of the microenvironment of HSA was enhanced. With the addition of DHA-S, the skeleton structure of HSA became loose and the solvent shell on the HSA surface was destroyed. DHA-S altered the secondary structure of HSA, resulting in the decreased α-helix and increased β-sheet contents. The interaction was exothermic and spontaneous driven by van der Waals and hydrogen bonding. DHA-S inhibited the esterase activity of HSA. Molecular docking demonstrated that the binding site of DHA-S on HSA located at the cavity of subdomains IIA and IIIA, but the amino acids related to esterase activity of HSA were not in the binding pocket, indicating that the mechanism by which DHA-S inhibited HSA esterase activity was the change in protein structure. CONCLUSION This study illustrated that DHA-S interacted with HSA and the structure and function of HSA were affected by DHA-S. This research could help to understand the toxicity of DHA-S and provide basic data for safe use of food additives. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, P. R. China
| | - Zhaohao Cui
- Qingdao Research Academy of Environmental Sciences, Qingdao, P. R. China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, P. R. China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, P. R. China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
26
|
An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food Chem 2022; 394:133484. [PMID: 35717913 DOI: 10.1016/j.foodchem.2022.133484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
The binding mechanisms between soy β-conglycinin/glycinin and (-)-epigallocatechin-3-gallate (EGCG) were evaluated using multi-spectral techniques and molecular modeling. Additionally, the emulsifying properties of β-conglycinin/glycinin were investigated in their interactions with EGCG. Fluorescence analysis revealed that the quenching of β-conglycinin/glycinin by EGCG was static quenching. Specifically, EGCG to β-conglycinin/glycinin resulted in the conformation changes of the Trp and Tyr residues, around which the polarity toward more hydrophilic. The dominated binding between β-conglycinin and EGCG was hydrogen bonding, whereas was mainly hydrophobic force between glycinin and EGCG. Such affinity induced a more organized protein confirmation with decreased random coil and increased α-helix and β-structures. The docking data indicated the better affinity between glycinin and EGCG, compared to β-conglycinin. The emulsifying ability and capacity of β-conglycinin were enhanced with involvement EGCG, however no effect was found for glycinin. Our findings deliver insights in understanding of the interaction mechanisms between β-conglycinin/glycinin and EGCG.
Collapse
|
27
|
Inclusion complex of 20(S)-protopanaxatriol with modified β-cyclodextrin: Characterization, solubility, and interaction with bovine serum albumin. Anal Biochem 2022; 653:114753. [PMID: 35691377 DOI: 10.1016/j.ab.2022.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
20(S)-protopanaxatriol (PPT) is one of the ginsenosides isolated from Panax ginseng which have many pharmaceutical activities. However, the poor water solubility of PPT restrict its applications. Herein, a novel bridged-bis-[6-(3,3'-(ethylenedioxy) bis (propylamine))-6-deoxy-β-cyclodextrin] (EDBA-bis-β-CD) was designed and synthesized, and the inclusion complex (IC) of EDBA-bis-β-CD with PPT was successfully prepared in the solid state, and characterized by UV, 1H NMR, 2D ROESY, FT-IR, XRD and SEM and molecular modelling methods. The continuous variation method analysis indicated that the stoichiometry of the IC was 1:1. UV-vis spectral analysis demonstrated the binding constant Ks was 995.94 M-1, and the solubility study showed that the solubility of PPT improved 290 times. The interaction of the IC with bovine serum albumin (BSA) was investigated via fluorescence spectroscopy. The results indicated that fluorescence quenching of BSA by IC was static quenching. Thermodynamic studies showed that van der Waals forces and hydrogen bonding play significant roles in interaction. The esterase-like activity of BSA in the presence of IC showed that it reduce the esterase activity of BSA in a competitive manner. Furthermore, molecular docking and molecular dynamics simulations for EDBA-bis-β-CD/PPT and BSA/IC systems were generated to provide information on the stability and the forces in the binding.
Collapse
|
28
|
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, Jouyaeian P, Mokaberi P, Yazdyani H, Amiri-Tehranizadeh Z, Reza Saberi M, Chamani J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment. Food Chem 2022; 377:131945. [PMID: 34999459 DOI: 10.1016/j.foodchem.2021.131945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022]
Abstract
The present study investigated the effect of pulsed electric field (PEF) pretreatment on the interaction between bovine serum albumin (BSA) and curcumin. Fluorescence quenching results showed that proper PEF pretreatment significantly increased the binding affinity of curcumin and BSA, the binding constant increased by 6.77 times under the conditions of 15 kV/cm for 0.51 ms. However, at higher PEF strength (≥25 kV/cm) and longer processing time (≥0.68 ms), the binding affinity was weakened. PEF pretreatment made the protein structure more disordered and induced partial unfolding of BSA, exposing more hydrophobic regions, thereby increasing the binding affinity to curcumin. PEF-treated BSA (PBSA) possessed better encapsulation efficiency (95.19%) and loading capacity (5.25 mg/g) for curcumin, and the storage stability of curcumin were enhanced by the formation of a complex with PBSA. This study provides new insights into the design of BSA-based delivery systems for curcumin and other hydrophobic nutrients.
Collapse
|
30
|
Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H. Multi-Spectroscopic, thermodynamic and molecular docking studies to investigate the interaction of eplerenone with human serum albumin. LUMINESCENCE 2022; 37:1162-1173. [PMID: 35489089 DOI: 10.1002/bio.4270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
The binding of small molecular drugs with human serum albumin (HSA) has a crucial influence on their pharmacokinetics. The binding interaction between the antihypertensive Eplerenone (EPL)and HSA was investigated using multi-spectroscopic techniques for the first time. These techniques include UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR), native fluorescence spectroscopy, synchronous fluorescence spectroscopy and molecular docking approach. The fluorescence spectroscopic study showed that EPL quenched HSA inherent fluorescence. The mechanism for quenching of HSA by EPL has been determined to be static in nature and confirmed by UV absorption and fluorescence spectroscopy. The modified Stern-Volmer equation was used to estimate the binding constant (Kb ) as well as the number of bindings (n). The results indicated that the binding occurs at a single site (Kb;2.238 x 103 L mol-1 at 298 K). The enthalpy and entropy changes (∆H and ∆S) were 58.061 and 0.258 K J mol-1 , respectively, illustrating that the principal intermolecular interactions stabilizing the EPL-HSA system are hydrophobic forces. Synchronous fluorescence spectroscopy revealed that EPL binding to HSA occurred around the tyrosine residue (Tyr) and this agreed with the molecular docking study. The FRET analysis confirmed the static quenching mechanism. The esterase enzyme activity of HSA was also evaluated showing its decrease in the presence of EPL. Furthermore, docking analysis and site-specific markers experiment revealed that EPL binds with HSA at subdomain IB (site III).
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
31
|
Synthesis, characterization and investigating the binding mechanism of novel coumarin derivatives with human serum albumin: Spectroscopic and computational approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
33
|
Bhosale M, Jeelani I, Nawaz A, Abe H, Padhye S. Site-Specific Binding of Anticancer Drugs to Human Serum Albumin. Anticancer Agents Med Chem 2022; 22:2876-2884. [PMID: 35331098 DOI: 10.2174/1871520622666220324094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body and showing great binding characteristics has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs and hence several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs and thus it is crucial to look at the binding characteristics of these drugs with HSA. Herein we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.
Collapse
Affiliation(s)
- Mrinalini Bhosale
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
| | - Subhash Padhye
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| |
Collapse
|
34
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
35
|
Insight into the binding characteristics of rutin and alcohol dehydrogenase: Based on the biochemical method, spectroscopic experimental and molecular model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112394. [PMID: 35086025 DOI: 10.1016/j.jphotobiol.2022.112394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Alcohol dehydrogenase (ADH) is a crucial enzyme in the alcohol metabolism pathway. Its activity is associated with the development of alcohol-relative diseases. Rutin is a kind of widely distributed dietary flavonoids, which have the ability to resist alcohol-induced liver injury. Here, the role of rutin on alcohol metabolism was investigated via the methods of biochemistry, spectroscopy and computer simulation. The experiment results demonstrated that rutin entered into the position of coenzyme (NAD) on ADH and formed a binary complex, which of process activated the catalyze activity of ADH in a concentration dependent manner. The combination of rutin on ADH induced microenvironmental variations as well as secondary structural change of ADH, where the level of α-helix reduced yet β-sheet raised. The values of ∆H and ∆S suggested that H-bonds and van der Waals force occupied vital roles in the stabilization of ADH-rutin complex. Furthermore, molecular docking results further confirmed that the H-bonds between the hydroxyl groups on the benzene rings of rutin and surrounding amino acid were beneficial to maintain the stability of complex. Particularly, the van der Waals force and π-alkyl between rutin and Val residues may be the main reason for activation of ADH activity.
Collapse
|
36
|
Yazdani F, Shareghi B, Farhadian S, Momeni L. Structural insights into the binding behavior of flavonoids naringenin with Human Serum Albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Sabir S, Saleem U, Akash MS, Qasim M, Chauhdary Z. Thymoquinone Induces Nrf2 Mediated Adaptive Homeostasis: Implication for Mercuric Chloride-Induced Nephrotoxicity. ACS OMEGA 2022; 7:7370-7379. [PMID: 35252727 PMCID: PMC8892676 DOI: 10.1021/acsomega.2c00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND the primary function of the kidney is to eliminate metabolic waste products and xenobiotics from the circulation. During this process, the kidney may become vulnerable to toxicity. OBJECTIVE it was aimed to investigate the impact of thymoquinone (TQ) in mercuric chloride (HgCl2)-induced nephrotoxicity through estimation of various proteins involved in natural defense mechanisms. MATERIAL AND METHODS HgCl2 (0.4 mg/kg) was administered to all groups (n = 5) except for the normal control. Three treatment groups received TQ (5, 10, and 15 mg/kg) 60 min before HgCl2 administration. The protective effect of TQ was evaluated from renal and liver function biomarkers, urine examination, glomerulus filtration rate (GFR), histopathological features, oxidative stress biomarkers, Hsp-70, apoptosis biomarkers, and gene expression. RESULTS TQ significantly attenuated hazardous effects of HgCl2 on renal and hepatic tissues. Urine albumin and glucose were considerably low in the treated groups in comparison with the HgCl2 group. TQ treatment also enhanced % GFR in rats. TQ-enhanced superoxide dismutase, catalase, and glutathione levels by enhancing the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2). TQ increased Hsp-70 and Bcl-2 levels and reduced caspase-3 activity. TQ also protected cells against HgCl2-induced cell death and decreased % DNA fragmentation. TQ increased the expression of protective proteins metallothionein I and II and reduced the expression of kidney injury molecule-1 (Kim-1). CONCLUSION TQ showed protective effects against HgCl2-induced nephrotoxicity through modifications of various constitutive and inducible protein and enzyme levels in renal tissues.
Collapse
Affiliation(s)
- Shakila Sabir
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Sajid
Hamid Akash
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Qasim
- Department
of Bioinformatics and Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
38
|
Bano N, Siddiqui S, Amir M, Zia Q, Banawas S, Iqbal D, Roohi. Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina. Saudi J Biol Sci 2022; 29:1858-1868. [PMID: 35280579 PMCID: PMC8913384 DOI: 10.1016/j.sjbs.2021.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022] Open
Abstract
The study aimed to assess the proficiency of secondary metabolites (SMs) synthesized by actinobacteria isolated from the rhizospheric soil of Rauwolfia serpentina for its antimicrobial and anti-biofilm activity. After morphological and biochemical identification of actinobacteria, primary and secondary screening was done for specific metabolite production. The secondary metabolites were then tested for their antioxidant, antibacterial, and antibiofilm potential. Out of 29 bacterial colonies isolated, only one emerged as a novel isolate, Microbacterium LA2(R). Partial 16S rRNA gene sequence of the isolate LA2(R) was deposited in NCBI GenBank with accession number MN560041. The highest antioxidant capacity of the methanolic extract the novel isolate was found to be 474.183 µL AAE/mL and 319.037 µL AAE/mL by DPPH assay and ABTS assay respectively; three folds higher than the control. These results were further supported by the high total phenolic (194.95 gallic acid equivalents/mL) and flavonoid contents (332.79 µL quercetin equivalents/mL) of the methanolic extract. GC–MS analysis revealed the abundance of antibacterial compounds; where, n-Hexadecanoic acid was found to be the major compound present with a peak of 14 min retention time (RT) and 95% similarity index. MIC value of the metabolite was noted to be around 132.28 ± 84.48 μg/mL. The IC50 value was found to be 74.37, 71.33, 66.28 and 84.48 μg/mL against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Salmonella abony, respectively. Treatment with IC50 of the extract decreased the biofilm formation up to 70%–80% against pathogenic strains viz. Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella abony. These significant activities of Microbacterium sp. LA2(R) suggests that it could be utilized for antibiotic production for human welfare and in various important industrial applications.
Collapse
|
39
|
Hekmat A, Hatamie S, Saboury AA. The effects of synthesized silver nanowires on the structure and esterase-like activity of human serum albumin and their impacts on human endometrial stem cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadie Hatamie
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Szymaszek P, Fiedor P, Chachaj-Brekiesz A, Tyszka-Czochara M, Świergosz T, Ortyl J. Molecular interactions of bovine serum albumin (BSA) with pyridine derivatives as candidates for non-covalent protein probes: a spectroscopic investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Chen R, He RJ, Guo D, Zhang ZF, Zhang WG, Fan J. Interactions of diclazuril enantiomers with serum albumins: Multi-spectroscopic and molecular docking approaches. J Mol Recognit 2022; 35:e2948. [PMID: 35094438 DOI: 10.1002/jmr.2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.
Collapse
Affiliation(s)
- Ran Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Ru-Jian He
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China.,Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, China
| | - Zhi-Feng Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Wei-Guang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, China
| |
Collapse
|
42
|
Binding of α-lipoic acid to human serum albumin: spectroscopic and molecular modeling studies. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02858-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Interactions of isoorientin and its Semi-synthetic analogs with human serum albumin. Bioorg Chem 2021; 116:105319. [PMID: 34488124 DOI: 10.1016/j.bioorg.2021.105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022]
Abstract
Isoorientin is a C-glycosyl flavone with a wide range of health beneficial effects and inhibits glycogen synthase kinase 3β (GSK-3β) potentially against Alzheimer's disease. Its semi-synthetic derivatives have greater potency than isoorientin. The present study was aimed to determine the mechanism of interactions of isoorientin and its derivatives with human serum albumin (HSA) using multi-spectroscopic, microscale thermophoresis (MST) and computational studies. Spectra of steady-state fluorescence, UV-Vis, and time-resolved fluorescence indicated that isoorientin and its derivatives quenched the intrinsic fluorescence of HSA through a static quenching process. Isoorientin and its derivatives had a moderate affinity with HSA (Ka 7.7-14.9 × 104 M-1). The binding process was accompanied by an exothermic phenomenon, ΔG° of HSA-isoorientin and its derivatives systems were calculated as from -29.51 kJ mol-1 to -27.87 kJ mol-1. Displacement experiments with site-specific markers revealed that isoorientin and its derivatives bind to HSA at site II (subdomain IIIA) only. A reduction in the α-helical content of HSA-isoorientin and its derivatives complex was observed, because the conformational changes was structurally perturbed by the hydrophilic groups of the compounds. Further molecular modeling studies confirmed that the binding of isoorientin and its derivatives to the site II via hydrophobic interaction. The MST results confirmed the interactions between HSA and the compounds of interest. The esterase-like assay studies indicated that isoorientin and its derivatives shared the same binding site in HSA, and their induced structural changes of HSA may have been caused by partial unfolding of HSA. This work helps to understand transport, distribution, bioactivity, and design of flavonoid-based GSK-3β inhibitors.
Collapse
|
44
|
|
45
|
Unraveling the thermodynamics, enzyme activity and denaturation studies of Triprolidine hydrochloride binding with model transport protein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Insights on the interaction mechanism of exemestane to three digestive enzymes by multi-spectroscopy and molecular docking. Int J Biol Macromol 2021; 187:54-65. [PMID: 34274402 DOI: 10.1016/j.ijbiomac.2021.07.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/27/2023]
Abstract
Exemestane is an irreversible steroidal aromatase inhibitor, typically used to treat breast cancer. As an anti-tumor drug, exemestane has more obvious side effects on the gastrointestinal tract. The purpose of this work is to investigate the combination of exemestane with three important digestive enzymes including pepsin (Pep), trypsin (Try) and α-Chymotrypsin (α-ChT) so as to analyze the mechanism of the gastrointestinal adverse effects causing by exemestane binding. Enzyme activity experiment showed that the enzyme activity of Pep was decreased in the presence of exemestane. Fluorescence spectra revealed that exemestane formed stable complexes with digestive enzymes, and the quenching mechanism of drug-digestive enzymes interaction were all static quenching. The binding constants of Pep, Try and α-ChT at 298 K were 2.34 × 105, 1.45 × 105, and 2.05 × 105 M-1, respectively. Synchronous fluorescence and 3D fluorescence spectroscopy showed that the conformation of exemestane was slightly changed after combining with digestive enzymes, and non-radiative energy transfer occurred. Circular dichroism results indicated that exemestane could change the secondary structure of digestive enzymes via increase the α-helix content and decrease in the β-sheet content. Thermodynamic parameters (ΔH0, ΔS0, and ΔG0) revealed that exemestane interacted with α-ChT through electrostatic force, and the binding force with Pep and Try was van der Waals interactions and hydrogen, which was basically consistent with the molecular docking results.
Collapse
|
47
|
Salim MM, El Sharkasy ME, Belal F, Walash M. Multi-spectroscopic and molecular docking studies for binding interaction between fluvoxamine and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119495. [PMID: 33524820 DOI: 10.1016/j.saa.2021.119495] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
In the present study, different spectroscopic techniques have been used to study the binding interaction between the antidepressant drug fluvoxamine and human serum albumin under simulated physiological conditions (pH 7.4). The utilized spectroscopic techniques include fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, UV-Vis absorption spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), and molecular modeling methods. The obtained results revealed that the formation of a complex between human serum albumin and fluvoxamine was responsible for quenching the native fluorescence of human serum albumin. The results indicated that the quenching mechanism between human serum albumin and fluvoxamine was static. Besides, the binding constant (K), number of binding sites (n), thermodynamic parameters (ΔH, ΔS, and ΔG), and binding forces were calculated at three different temperatures (298, 310, and 318 K). These data proposed that hydrophobic forces were the principal intermolecular forces stabilizing the complex. From the molecular docking results, it could be deduced that fluvoxamine was inserted into sub-domain II A (site I) of human serum albumin and led to a slight change in human serum albumin conformation.
Collapse
Affiliation(s)
- M M Salim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Mona E El Sharkasy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - F Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - M Walash
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
48
|
Lin J, Tang M, Meti MD, Liu Y, Han Q, Xu X, Zheng Y, He Z, Hu Z, Xu H. Exploring the binding mechanism of Ginsenoside Rd to Bovine Serum Albumin: Experimental studies and computational simulations. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1915154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jialiang Lin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Manjunath D. Meti
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yong Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qingguo Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuan Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
49
|
Taneva SG, Krumova S, Bogár F, Kincses A, Stoichev S, Todinova S, Danailova A, Horváth J, Násztor Z, Kelemen L, Dér A. Insights into graphene oxide interaction with human serum albumin in isolated state and in blood plasma. Int J Biol Macromol 2021; 175:19-29. [PMID: 33508363 DOI: 10.1016/j.ijbiomac.2021.01.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.
Collapse
Affiliation(s)
- Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria.
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - János Horváth
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; Doctoral School of Physics, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Násztor
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
50
|
Sarmah RJ, Kundu S. Structure, morphology and reversible hysteresis nature of human serum albumin (HSA) monolayer on water surface. Int J Biol Macromol 2021; 174:377-384. [PMID: 33485891 DOI: 10.1016/j.ijbiomac.2021.01.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Compression-decompression surface pressure (π)-specific molecular area (A) isotherm cycle of human serum albumin (HSA) monolayer is performed on water surface at four different subphase pH conditions, i.e., below and above the isoelectric point (pI ≈ 4.7) of HSA molecule. For all pH conditions, the decompression curve nearly follows the compression curve, however, at pH ≈ 5.0, hysteresis is observed at higher surface pressure. Out-of-plane structures and in-plane morphologies obtained from the X-ray reflectivity and AFM studies show that only the film thickness variation takes place with the change in surface pressure, which is also evidenced from the BAM images. With increase in surface pressure, the oblate-shaped HSA molecules start tilting making an angle with the water surface and as the monolayer is decompressed the molecules regain their initial untilted monomolecular configuration. Depending upon the subphase pH and local surface charge of the specific protein molecule, electrostatic repulsive interaction dominates over the van der Waals attraction and as a result decompression curve follows the compression curve as the molecules repel each other, however, closer to the isoelectric point as strength of the interactions reverses, a hysteresis is obtained at higher surface pressure and accordingly monolayer behaviour modifies on the water surface.
Collapse
Affiliation(s)
- Raktim J Sarmah
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India.
| |
Collapse
|