1
|
Lv H, Li J, Hu Z, Wang Y, Chen Y, Wang Y. Multi-stimuli responsive photonic hydrogel based on a novel photonic crystal template containing gold nanorods. SOFT MATTER 2023; 20:167-177. [PMID: 38063065 DOI: 10.1039/d3sm01349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Multi-stimuli responsive photonic hydrogels (MRPHs) fabricated by doping nanoparticles into hydrogels show promising potential value in the fields of visual detection and drug delivery. However, complicated surface chemical modification is selected to improve the compatibility between nanoparticles and a pre-gel solution of hydrogel. Herein, we developed a simple and convenient vertical deposition method to prepare a novel photonic crystal (PC) template containing gold nanorods (Au NRs) (Au NRs/PC template), which could respond to near-infrared (NIR) light due to the conversion capability of Au NRs from NIR light to heat. Additionally, carboxyl groups on the surface of polystyrene (PS) colloids endowed the Au NRs/PC template with pH-stimulus responsiveness. Based on the Au NRs/PC template, MRPH film was fabricated by infiltrating the pre-gel solution of poly(N-isopropylacrylamide) (PNIPAM) hydrogel into the gap of a 'sandwich' structure through capillary forces and then polymerizing at 25 °C for 24 h. The obtained MRPH film could respond to NIR light, pH and temperature. Under the irradiation of NIR light, only the irradiated position lost structural color while the film volume had no distinct change. With the increase of ambient temperature, the whole MRPH film completely lost structural color and shrank significantly, which was greatly different from the phenomenon irradiated by NIR light. Besides, the structural color of the MRPH film exhibited a red shift from green to orange-red as the pH increased. Overall, both the Au NRs/PC template and the MRPH film may have potential applications in visual detection, due to their multi-stimuli responsiveness.
Collapse
Affiliation(s)
- Hanlin Lv
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jin Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhengsheng Hu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yuhang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Yifeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
2
|
Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria. Anal Bioanal Chem 2023; 415:1917-1931. [PMID: 36864311 DOI: 10.1007/s00216-023-04603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023]
Abstract
Low-dimensional (<10 nm) semiconductor carbon quantum dots (CQDs) have been widely used in metal ion sensing and bioimaging. Here, we used the renewable resource Curcuma zedoaria as a carbon source and prepared green carbon quantum dots with good water solubility by a hydrothermal method without any chemical reagent. At different pH values (4-6) and high NaCl concentrations, the photoluminescence of the CQDs was very stable, which indicated that they were suitable for a wide range of applications even under harsh conditions. The CQDs exhibited fluorescence quenching in the presence of Fe3+ ions, indicating their application potential as fluorescence probes for the sensitive and selective detection of Fe3+ ions. The CQDs showed high photostability, low cytotoxicity, and good hemolytic activity, and were successfully applied to bioimaging experiments, i.e. multicolor cell imaging in L-02 (human normal hepatocytes) and CHL (Chinese hamster lung) cells with and without Fe3+, as well as wash-free labeling imaging of Staphylococcus aureus and Escherichia coli. The CQDs also showed good free radical scavenging activity and demonstrated a protective effect against photooxidative damage to L-02 cells. These results indicate that CQDs obtained from medicinal herb sources have multiple potential applications in the fields of sensing, bioimaging, and even disease diagnosis.
Collapse
|
3
|
Li L, Yang L, Lin D, Xu S, Mei C, Yu S, Jiang C. Hydrogen-bond induced enhanced emission ratiometric fluorescent handy needle for visualization assay of amoxicillin by smartphone sensing platform. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130403. [PMID: 36403445 DOI: 10.1016/j.jhazmat.2022.130403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Amoxicillin (AMO) is one of the most commonly used antibiotics, and its abuse in animal husbandry or clinical therapy can pose unpredictable hazards to humans. Therefore, it is crucial to develop a real-time and rapid method to accurately determine AMO content. Here, we designed a fluorescent nanoprobe for qualitative and quantitative AMO determination by using as-synthesized green safe materials of nontoxic red carbon dots (RCDs) and blue carbon dots (BCDs). In the presence of AMO, a reaction promoting hydrogen bonding occurred immediately, resulting in an instant increase in the intensity of the blue fluorescence of BCDs, accompanied by a marked color change from red to blue. For practical application, we designed a nontoxic sensing fluorescent handy needle to directly and quantitatively detect AMO in real samples. This portable and easy-to-use device was demonstrated on a smartphone platform based on 3D printing technology, which offers the advantages of simple production, excellent visualization, fast response, and instant quantitative detection. The device requires an extremely short detection time and has a sensitive detection limit of 2.39 nM. The method presented here enables real-time assessment for food safety, as well as on-site detection under field conditions to track various trace substances for timely health checks.
Collapse
Affiliation(s)
- Lingfei Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chunsheng Mei
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
4
|
Clustering of photoluminescent carbon quantum dots using biopolymers for biomedical applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lu J, Yang J, Gu J, Yang J, Gao Z, Su L, Tao X, Yuan M, Yang L. Mono-(6-diethylenetriamine-6-deoxy)- β-cyclodextrin Supramolecular Fluorescent Switch Constructed Based on Au 3+ and I –. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Filtration and structure of bentonite-β-cyclodextrin polymer microspheres suspensions: Effect of thermal aging time. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Hu Y, Ji W, Qiao J, Li H, Zhang Y, Luo J. Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. J Fluoresc 2021; 31:1379-1392. [PMID: 34156612 DOI: 10.1007/s10895-021-02764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, two kinds of nitrogen-doped CDs (NCD-m and NCD-o) based on soluble starch (SS) as carbon source were prepared through one-pot hydrothermal process using m-phenylenediamine and o-phenylenediamine as nitrogenous dopant respectively. Through fluorescence "on-off" mechanism of CDs, NCD-m and NCD-o could be used as a fluorescence sensor for detection of Fe 3+ and Ag + with LOD of 0.25 and 0.51 μM, respectively. Additionally, NCD-m could be used for indirect detection of ascorbic acid (AA) with LOD of 5.02 μM. Moreover, fluorescence intensity of NCD-m also exhibited the sensitivity to pH change from 2 to 13. More importantly, Both NCD-m and NCD-o had potential application for analysis of complicated real samples such as tap water, Vitamin C tablets and orange juice. Ultimately, the small size of NCD-m could contribute to reinforcing intracellular endocytosis, which allowed them to be used for bacteria imaging. Obviously, these easily obtainable nitrogen-doped CDs were able to be used for multi-components detection. Strategy for synthesis of nitrogen-doped carbon dots (NCDs) and a schematic for fabrication of as-prepared NCDs for detection of Fe 3+, Ag + and ascorbic acid (AA).
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine of China, SATCM), China Three Gorges University, Yichang, 443002, China.
| | - Wenxuan Ji
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yun Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|
8
|
Dzyazko Y, Ogenko V. Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Hu Y, Ji W, Sun J, Liu X, Zhou R, Yan J, Zhang N. Simple and eco-friendly synthesis of crude orange-peel-derived carbon nanoparticles for detection of Fe 3+ and ascorbic acid. LUMINESCENCE 2021; 36:1385-1394. [PMID: 33942474 DOI: 10.1002/bio.4064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 01/23/2023]
Abstract
Although fluorescence sensors based on carbon dots (CDs) have been developed widely, multicomponent detection using CDs without extra and tedious surface modification remains a challenge. Here, the crude carbon nanoparticles (CPs) as a fluorescence sensor were prepared through one-pot hydrothermal process using orange peel as the precursor. The method was simple, rapid, economical, and eco-friendly given that such extra steps as dialysis and lyophilization were not required. By adding ethanol into the reaction solvent, the fluorescence properties of orange-peel-derived CPs as well as their sensitivity of detecting Fe3+ with a limit of detection of 0.25 μM were improved. Additionally, orange-peel-derived CPs could be used as a fluorescence sensor for detection of ascorbic acid (AA) with a LOD of 5 μM. More importantly, the proposed fluorescence methods were successfully used to qualitatively and quantitatively analyze Fe3+ and AA in real samples. Recovery of Fe3+ from tap water was within the range 97.2-105.4%. Conversely, recovery of AA from vitamin C tablets and orange juices laid within the ranges 97.7-99.3% and 93.2-97.6%, respectively.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, China Three Gorges University, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese Medicine (Approved by State Administration of Traditional Chinese Medicine of China, SATCM), China Three Gorges University, Yichang, China
| | - Wenxuan Ji
- Medical College, China Three Gorges University, Yichang, China
| | - Junxuan Sun
- Medical College, China Three Gorges University, Yichang, China
| | - Xingyue Liu
- Medical College, China Three Gorges University, Yichang, China
| | - Run Zhou
- Medical College, China Three Gorges University, Yichang, China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China.,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China.,Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Anthony AM, Murugan R, Subramanian R, Selvarangan GK, Pandurangan P, Dhanasekaran A, Sohrab A. Ultra-radiant photoluminescence of glutathione rigidified reduced carbon quantum dots (r-CQDs) derived from ice-biryani for in vitro and in vivo bioimaging applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Chandran N, Janardhanan P, Bayal M, Unniyampurath U, Pilankatta R, Nair SS. Label Free, Nontoxic Cu-GSH NCs as a Nanoplatform for Cancer Cell Imaging and Subcellular pH Monitoring Modulated by a Specific Inhibitor: Bafilomycin A1. ACS APPLIED BIO MATERIALS 2020; 3:1245-1257. [DOI: 10.1021/acsabm.9b01036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Neeli Chandran
- Department of Physics, Central University of Kerala, Periye, Kasaragod, Kerala, India 671320
| | - Prajit Janardhanan
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala, India 671320
| | - Manikanta Bayal
- Department of Physics, Central University of Kerala, Periye, Kasaragod, Kerala, India 671320
| | | | - Rajendra Pilankatta
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Periye, Kasaragod, Kerala, India 671320
| | - Swapna S. Nair
- Department of Physics, Central University of Kerala, Periye, Kasaragod, Kerala, India 671320
| |
Collapse
|
12
|
Chen Y, Sun X, Pan W, Yu G, Wang J. Fe 3+-Sensitive Carbon Dots for Detection of Fe 3+ in Aqueous Solution and Intracellular Imaging of Fe 3+ Inside Fungal Cells. Front Chem 2020; 7:911. [PMID: 32010664 PMCID: PMC6974440 DOI: 10.3389/fchem.2019.00911] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
In this article, the Fe3+-sensitive carbon dots were obtained by means of a microwave-assisted method using glutamic acid and ethylenediamine as reactants. The carbon dots exhibited selective response to Fe3+ ions in aqueous solution with a turn-off mode, and a good linear relationship was found between (F0-F)/F0 and the concentration of Fe3+ in the range of 8-80 μM. As a result, the as-synthesized carbon dots can be developed as a fluorescent chemosensor for Fe3+ in aqueous solution. Moreover, the carbon dots can be applied as a fluorescent agent for fungal bioimaging since the fungal cells stained by the carbon dots were brightly illuminated on a confocal microscopy excited at 405 nm. Furthermore, an increase in the concentration of intracellular Fe3+ could result in fluorescence quenching of the carbon dots in the fungal cells when incubated in the Tris-HCl buffer solution containing Fe3+. However, due to EDTA might hinder Fe(III) to enter the fungal cells, incubation in Fe(III)-EDTA complex solution exerted negligible effect on the fluorescence of fungal cells labeled by the carbon dots. Therefore, the carbon dots can serve as a potential probe for intracellular imaging of Fe3+ inside fungal cells.
Collapse
Affiliation(s)
| | | | | | | | - Jinping Wang
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Semeniuk M, Yi Z, Poursorkhabi V, Tjong J, Jaffer S, Lu ZH, Sain M. Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS NANO 2019; 13:6224-6255. [PMID: 31145587 DOI: 10.1021/acsnano.9b00688] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the span of the past decade, carbon dots (CDs) synthesized from renewable organic resources (organic CDs) have gathered a considerable amount of attention for their photoluminescent properties. This review will focus on organic CDs synthesized using clean chemistry and conventional synthetic chemistry from organic sources and their fluorescence mechanisms, such as quantum confinement effect and surface/edge defects, before outlining their performance in electronic applications, including organic photovoltaic devices, organic light-emitting devices, biosensors, supercapacitors, and batteries. The various organic resources and methods of organic CDs synthesis are briefly covered. Many challenges remain before the adoption of CDs can become widespread; their characterization, structure, functionality, and exact photoluminescent mechanism all require additional research. This review aims to summarize the current research outcomes and highlight the area where further research is needed to fully use these materials.
Collapse
Affiliation(s)
- Maria Semeniuk
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Zhihui Yi
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Vida Poursorkhabi
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Shaffiq Jaffer
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
| | - Zheng-Hong Lu
- Department of Material Science and Engineering , University of Toronto , 184 College Street , Toronto , Ontario M5S 3A1 , Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3B3 , Canada
- Department of Mechanical and Industrial Engineering , University of Toronto , 5 King's College Road , Toronto , Ontario M5S 3G8 , Canada
- Department of Mechanical Engineering , Beijing University of Chemical Technology (BUCT) , 100029 Beijing , P.R. China
| |
Collapse
|
14
|
Das T, Saikia BK, Dekaboruah H, Bordoloi M, Neog D, Bora JJ, Lahkar J, Narzary B, Roy S, Ramaiah D. Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:1-11. [DOI: 10.1016/j.jphotobiol.2019.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
|
15
|
Bhandari S, Mondal D, Nataraj SK, Balakrishna RG. Biomolecule-derived quantum dots for sustainable optoelectronics. NANOSCALE ADVANCES 2019; 1:913-936. [PMID: 36133200 PMCID: PMC9473190 DOI: 10.1039/c8na00332g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 05/06/2023]
Abstract
The diverse chemical functionalities and wide availability of biomolecules make them essential and cost-effective resources for the fabrication of zero-dimensional quantum dots (QDs, also known as bio-dots) with extraordinary properties, such as high photoluminescence quantum yield, tunable emission, photo and chemical stability, excellent aqueous solubility, scalability, and biocompatibility. The additional advantages of scalability, tunable optical features and presence of heteroatoms make them suitable alternatives to conventional metal-based semiconductor QDs in the field of bioimaging, biosensing, drug delivery, solar cells, photocatalysis, and light-emitting devices. Furthermore, a recent focus of the scientific community has been on QD-based sustainable optoelectronics due to the primary concern of partially mitigating the current energy demand without affecting the environment. Hence, it is noteworthy to focus on the sustainable optoelectronic applications of biomolecule-derived QDs, which have tunable optical features, biocompatibility and the scope of scalability. This review addresses the recent advances in the synthesis, properties, and optoelectronic applications of biomolecule-derived QDs (especially, carbon- and graphene-based QDs (C-QDs and G-QDs, respectively)) and discloses their merits and disadvantages, challenges and future prospects in the field of sustainable optoelectronics. In brief, the current review focuses on two major issues: (i) the advantages of two families of carbon nanomaterials (i.e. C-QDs and G-QDs) derived from biomolecules of various categories, for instance (a) plant extracts including fruits, flowers, leaves, seeds, peels, and vegetables; (b) simple sugars and polysaccharides; (c) different amino acids and proteins; (d) nucleic acids, bacteria and fungi; and (e) biomasses and their waste and (ii) their applications as light-emitting diodes (LEDs), display systems, solar cells, photocatalysts and photo detectors. This review will not only bring a new paradigm towards the construction of advanced, sustainable and environment-friendly optoelectronic devices using natural resources and waste, but also provides critical insights to inspire researchers ranging from material chemists and chemical engineers to biotechnologists to search for exciting developments of this field and consequently make an advance step towards future bio-optoelectronics.
Collapse
Affiliation(s)
- Satyapriya Bhandari
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - Dibyendu Mondal
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - S K Nataraj
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| |
Collapse
|
16
|
Bioactive carbon dots lights up microtubules and destabilises cell cytoskeletal framework – A robust imaging agent with therapeutic activity. Colloids Surf B Biointerfaces 2017; 159:662-672. [DOI: 10.1016/j.colsurfb.2017.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023]
|
17
|
Hu Y, Li Y, Wang D, Zhou W, Dong X, Zhou S, Wang C, Yang Z. Highly flexible polymer-carbon dot-ferric ion nanocomposite hydrogels displaying super stretchability, ultrahigh toughness, good self-recovery and shape memory performance. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:856-864. [DOI: 10.1016/j.msec.2017.03.178] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
19
|
Hill S, Galan MC. Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem 2017; 13:675-693. [PMID: 28503203 PMCID: PMC5405683 DOI: 10.3762/bjoc.13.67] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
Fluorescent carbon dots (FCDs) are an emerging class of nanomaterials made from carbon sources that have been hailed as potential non-toxic replacements to traditional semiconductor quantum dots (QDs). Particularly in the areas of live imaging and drug delivery, due to their water solubility, low toxicity and photo- and chemical stability. Carbohydrates are readily available chiral biomolecules in nature which offer an attractive and cheap starting material from which to synthesise FCDs with distinct features and interesting applications. This mini-review article will cover the progress in the development of FCDs prepared from carbohydrate sources with an emphasis on their synthesis, functionalization and technical applications, including discussions on current challenges.
Collapse
Affiliation(s)
- Stephen Hill
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
20
|
Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 2016; 151:100-105. [PMID: 26946015 DOI: 10.1016/j.talanta.2016.01.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/23/2022]
Abstract
The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples.
Collapse
|