1
|
Chen K, Chen Q, Zhu M. Fluorescent sensor based on collagen fiber-derived carbon quantum dots and carboxymethylated nanocellulose for Fe 3+ detection. Int J Biol Macromol 2025; 309:142926. [PMID: 40216123 DOI: 10.1016/j.ijbiomac.2025.142926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Detection of Fe3+ is essential for environmental and food safety monitoring. However, conventional detection methods often require costly equipment and lengthy processes, limiting their on-site applications. To address these challenges, a fluorescent sensor was developed using carboxymethylated nanocellulose (CMCNF) and collagen fiber-based carbon quantum dots (CCQDs). The CCQDs, with a fluorescence quantum yield of 25.04 %, were synthesized via a microwave hydrothermal method using secondary collagen fibers. A selective and sensitive CMCNF/CCQDs sensor was fabricated by incorporating CCQDs into a CMCNF matrix through a simple solution-casting method. The CMCNF matrix ensured uniform dispersion and stability of the CCQDs, optimizing sensor performance. The sensor exhibited a linear detection range for Fe3+ between 0 μM and 180 μM, with a corresponding linear equation of y=0.6496+0.3532xR2=0.9932. The limit of detection (LOD) for Fe3+ was determined to be 3.84 μM. Excellent detection performance was demonstrated in real water samples, achieving recoveries from 99.45 % to 105.23 % and an RSD below 2 %. The fluorescence quenching mechanism underlying CCQDs and Fe3+ interactions was systematically explored. This study provides a sustainable strategy for the high-value utilization of biomass waste and offers a portable approach for Fe3+ detection.
Collapse
Affiliation(s)
- Kexing Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qifeng Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Xintianli Holding Co., Ltd., Chaozhou 515638, China.
| | - Min Zhu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Xu K, Wang Z, Cui M, Jiang Y, Li C, Wang Z, Li L, Jia C, Zhang L, Wu F. Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411084. [PMID: 39853875 PMCID: PMC11923988 DOI: 10.1002/advs.202411084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Indexed: 01/26/2025]
Abstract
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria. Subsequently, fluorescein isothiocyanate (FITC) molecules are grafted onto BCDs to yield FITC-labeled BCDs (termed CDFs), which can selectively and rapidly (≤5 min) stain bacterial cell wall and particularly target the peptidoglycan component. Strikingly, CDFs achieve superselective visualization of Gram-positive bacteria even in the presence of mammalian cells and Gram-negative bacteria. Furthermore, protoporphyrin (PpIX) molecules are conjugated onto BCDs to yield PpIX-modified BCDs (termed CDPs), which can induce bacterial aggregation and in situ generate singlet oxygen for realizing enhanced antibacterial photodynamic therapy (PDT). At the minimum bactericidal concentration of CDPs (PpIX: 5 µg mL-1), CDP-mediated PDT disrupts bacterial structure and metabolism pathways, thereby affecting bacterial interactions to eradicate biofilms. Importantly, CDP-mediated PDT efficiently modulates antiinflammatory responses to promote wound healing in the bacteria-infected mice. This study underscores the significance of harnessing renewable and cost-effective biomass resources for preparing Gram-positive bacteria-targeting theranostic agents, which may find potential clinical applications in the future.
Collapse
Affiliation(s)
- Ke‐Fei Xu
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Zihao Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Macheng Cui
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Yuhan Jiang
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityLongmian Dadao RoadNanjing211189P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjing210037P. R. China
| | - Zi‐Xi Wang
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Ling‐Yi Li
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Chenyang Jia
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
| | - Lijie Zhang
- Department of UrologyZhongda HospitalSoutheast UniversityNanjingJiangsu210009P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Digital Medical EngineeringJiangsu Key Laboratory for Biomaterials and DevicesSchool of Biological Science and Medical EngineeringSoutheast University2 Southeast University RoadNanjing211189P. R. China
- Department of Obstetrics and GynecologyZhongda HospitalSoutheast University87 DingjiaqiaoNanjing210009P. R. China
| |
Collapse
|
3
|
Chen D, Guo X, Sun X, Feng X, Chen K, Zhang J, Zhu Z, Zhang X, Liu X, Liu M, Li L, Xu W. High-yield upcycling of feather wastes into solid-state ultra-long phosphorescence carbon dots for advanced anticounterfeiting and information encryption. EXPLORATION (BEIJING, CHINA) 2024; 4:20230166. [PMID: 39713209 PMCID: PMC11655309 DOI: 10.1002/exp.20230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 12/24/2024]
Abstract
Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.50 s is realized in the CDs synthesized by one-pot hydrothermal treatment of duck feather waste powder. To further enhance RTP lifetime, hydrogen bonding is introduced by employing polyols like polyvinyl alcohol (PVA) and phytic acid (PA), and a bimodal luminescent CDs/PVA/PA ink is exploited by mixing the CDs and polyols. Astonishingly, the CDs/PVA/PA ink screen-printed onto cellulosic substrates exhibits unprecedented green RTP with average lifetime of up to 1.97 s, and the afterglow lasts for more than 14 s after removing UV lamp. Such improvement on RTP is proposed to the populated excited triplet excitons stabilized by rigid chains. Furthermore, the CDs/PVA/PA ink demonstrates excellent potential in anticounterfeiting and information encryption. To the best of the authors' knowledge, this work is the first successful attempt to fabricate matrix-free ultra-long RTP CDs by reclamation of the feather wastes for environmental sustainability.
Collapse
Affiliation(s)
- Dongzhi Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xin Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xiang Feng
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Kailong Chen
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Zece Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
- School of Materials Science and EngineeringWuhan Textile UniversityWuhanHubeiP. R. China
| | - Min Liu
- Institute of Super‐Microstructure and Ultrafast Process in Advanced MaterialsSchool of Physics and ElectronicsCentral South UniversityChangshaHunanP. R. China
| | - Li Li
- School of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologyWuhan Textile UniversityWuhanHubeiP. R. China
| |
Collapse
|
4
|
Zhang D, Zhang Y, Wang S, Ma Y, Liao Y, Wang F, Liu H. Fabrication of fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots coupled with smartphone readout for tyramine determination in fermented meat products. Mikrochim Acta 2024; 191:436. [PMID: 38954059 DOI: 10.1007/s00604-024-06499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
5
|
Prabhu MPT, Chrungoo S, Sarkar N. Amine Group Surface-Functionalized Carbon Quantum Dots Exhibit Anti-amyloidogenic Effects Towards Hen Egg White Lysozyme by Inducing Formation of Nontoxic Spherical Aggregates. Protein J 2023; 42:728-740. [PMID: 37803220 DOI: 10.1007/s10930-023-10157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
The tendency of polypeptide chains to deviate from their conventional protein folding pathway and instead get trapped as off-pathway intermediates, has been a matter of great concern. These off-pathway intermediates eventually lead to the formation of insoluble, ordered fibrillar aggregates called amyloids, which are responsible for a host of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Type II diabetes. In spite of extensive research, development of an effective therapeutic strategy against amyloidosis still remains elusive. In recent times, carbon quantum dots (CQD) have grabbed the attention of researchers against amyloidogenesis due to their ease of preparation, aqueous soluble nature, unique optical properties, high surface to volume ratio, physio-chemical properties, semi-conducting nature and mainly biocompatible. In the current study, we have reported an easy-to-prepare procedure for synthesis of amine group surface functionalized CQDs from commonly available kitchen spices with anti-oxidant properties. The as-synthesized CQDs were evaluated for their anti-amyloidogenic properties towards Hen Egg White Lysozyme (HEWL). Our results clearly show that the surfaced functionalized CQDs were able to interact with HEWL, thereby forming a stable complex, which was resistant towards amyloid formation and instead lead to the formation of non-toxic globular aggregates.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Dubey P. An overview on animal/human biomass-derived carbon dots for optical sensing and bioimaging applications. RSC Adv 2023; 13:35088-35126. [PMID: 38046631 PMCID: PMC10690874 DOI: 10.1039/d3ra06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Over the past decade, carbon dots (CDs) have emerged as some of the extremely popular carbon nanostructures for diverse applications. The advantages of sustainable CDs, characterized by their exceptional photoluminescence (PL), high water solubility/dispersibility, non-toxicity, and biocompatibility, substantiate their potential for a wide range of applications in sensing and biology. Moreover, nature offers plant- and animal-derived precursors for the sustainable synthesis of CDs and their doped variants. These sources are not only readily accessible, inexpensive, and renewable but are also environmentally benign green biomass. This review article presents in detail the production of sustainable CDs from various animal and human biomass through bottom-up synthetic methods, including hydrothermal, microwave, microwave-hydrothermal, and pyrolysis methods. The resulting CDs exhibit a uniform size distribution, possibility of heteroatom doping, surface passivation, and remarkable excitation wavelength-dependent/independent emission and up-conversion PL characteristics. Consequently, these CDs have been successfully utilized in multiple applications, such as bioimaging and the detection of various analytes, including heavy metal ions. Finally, a comprehensive assessment is presented, highlighting the prospects and challenges associated with animal/human biomass-derived CDs for multifaceted applications.
Collapse
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
7
|
Sahana S, Gautam A, Singh R, Chandel S. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:51. [PMID: 37953431 PMCID: PMC10641086 DOI: 10.1007/s13659-023-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Natural resources are practically infinitely abundant in nature, which stimulates scientists to create new materials with inventive uses and minimal environmental impact. Due to the various benefits of natural carbon dots (NCDs) from them has received a lot of attention recently. Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials, showcasing exceptional properties and eco-friendly nature, which make them appealing for diverse applications in various fields such as biomedical, environmental sensing and monitoring, energy storage and conversion, optoelectronics and photonics, agriculture, quantum computing, nanomedicine and cancer therapy. Characterization techniques such as Photoinduced electron transfer, Aggregation-Induced-Emission (AIE), Absorbance, Fluorescence in UV-Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots (CDs). The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering, cancer treatment, bioimaging, sensing, drug delivery, photocatalysis, and promising remarkable advancements in these fields. In this review, we summarized the various synthesis methods, physical and optical properties, applications, challenges, future prospects of natural products-derived carbon dots etc. In this expanding sector, the difficulties and prospects for NCD-based materials research will also be explored.
Collapse
Affiliation(s)
- Soumitra Sahana
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Ghal-Kalan, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Singh P, Arpita, Kumar S, Kumar P, Kataria N, Bhankar V, Kumar K, Kumar R, Hsieh CT, Khoo KS. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. NANOSCALE 2023; 15:16241-16267. [PMID: 37439261 DOI: 10.1039/d3nr01966g] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Access to safe drinking water and a hygienic living environment are the basic necessities that encourage healthy living. However, the presence of various pollutants (especially toxic heavy metal ions) at high concentrations in water renders water unfit for drinking and domestic use. The presence of high concentrations of heavy-metal ions (e.g., Pb2+, Hg2+, Cr6+, Cd2+, or Cu2+) greater than their permissible limits adversely affects human health, and increases the risk of cancer of the kidneys, liver, skin, and central nervous system. Therefore, their detection in water is crucial. Due to the various benefits of "green"-synthesized carbon-dots (C-dots) over other materials, these materials are potential candidates for sensing of toxic heavy-metal ions in water sources. C-dots are very small carbon-based nanomaterials that show chemical stability, magnificent biocompatibility, excitation wavelength-dependent photoluminescence (PL), water solubility, simple preparation strategies, photoinduced electron transfer, and the opportunity for functionalization. A new family of C-dots called "carbon quantum dots" (CQDs) are fluorescent zero-dimensional carbon nanoparticles of size < 10 nm. The green synthesis of C-dots has numerous advantages over conventional chemical routes, such as utilization of inexpensive and non-poisonous materials, straightforward operations, rapid reactions, and renewable precursors. Natural sources, such as biomass and biomass wastes, are broadly accepted as green precursors for fabricating C-dots because these sources are economical, ecological, and readily/extensively accessible. Two main methods are available for C-dots production: top-down and bottom-up. Herein, this review article discusses the recent advancements in the green fabrication of C-dots: photostability; surface structure and functionalization; potential applications for the sensing of hazardous anions and toxic heavy-metal ions; binding of toxic ions with C-dots; probable mechanistic routes of PL-based sensing of toxic heavy-metal ions. The green production of C-dots and their promising applications in the sensing of hazardous ions discussed herein provides deep insights into the safety of human health and the environment. Nonetheless, this review article provides a resource for the conversion of low-value biomass and biomass waste into valuable materials (i.e., C-dots) for promising sensing applications.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Arpita
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Sandeep Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Parmod Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Navish Kataria
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Ravi Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| |
Collapse
|
9
|
Bhattacharya T, Do HA, Rhim JW, Shin GH, Kim JT. Facile Synthesis of Multifunctional Carbon Dots from Spent Gromwell Roots and Their Application as Coating Agents. Foods 2023; 12:foods12112165. [PMID: 37297412 DOI: 10.3390/foods12112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Spent Gromwell root-based multifunctional carbon dots (g-CDs) and sulfur-functionalized g-CDs (g-SCDs) were synthesized using a hydrothermal method. The mean particle size of g-CDs was confirmed to be 9.1 nm by TEM (transmission electron microscopy) analysis. The zeta potentials of g-CDs and g-SCDs were mostly negative with a value of -12.5 mV, indicating their stability in colloidal dispersion. Antioxidant activities were 76.9 ± 1.6% and 58.9 ± 0.8% for g-CDs, and 99.0 ± 0.1% and 62.5 ± 0.5% for g-SCDs by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging tests, respectively. In addition, the bathochromic shift of g-CDs is observed when their emission peaks appear at a higher wavelength than the excitation peaks. The prepared g-CDs and g-SCDs solutions were used as a coating agent for potato slices. The browning index of the control potato slices increased significantly from 5.0 to 33.5% during 24 to 72 h storage. However, the sample potato slices coated with g-CDs or g-SCDs suppressed the increase in the browning index. In particular, the browning index of the potato slices coated with g-SCDs ranged from 1.4 to 5.5%, whereas the potato slices coated with g-CDs had a browning index ranging from 3.5 to 26.1%. The g-SCDs were more effective in delaying oxidation or browning in foods. The g-CDs and g-SCDs also played a catalytic role in the Rhodamine B dye degradation activity. This activity will be useful in the future to break down toxins and adulterants in food commodities.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeon A Do
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
11
|
Energy-efficient Preparation of Amino and Sulfhydryl Functionalized Biomass Carbon Dots via a Reverse Microemulsion for Specific Recognition of Fe 3+ and L-cysteine. J Fluoresc 2022; 33:1111-1123. [PMID: 36580202 DOI: 10.1007/s10895-022-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 12/30/2022]
Abstract
Amino- and sulfhydryl- functionalized biomass carbon dots (BCDs) were prepared by one-pot reverse microemulsion for specific recognition of ferric ions (Fe3+) and L-cysteine (L-Cys). Green grapefruit peel was used as the carbon source while aminosilane and mercaptosilane were used as N- and S-supplier. Following the adsorption of Fe3+ on the surfaces of BCDs-NH2 and BCDs-SH, the fluorescence responses was quenched step by step, while adding L-Cys to the BCDs-NH2/Fe3+ system restored the fluorescence. The BCDs-NH2 and BCDs-SH system exhibited extremely low limits of detection for Fe3+ of 3.2 and 3.0 nM, respectively, within a wide linear ranges of 0.006-200 μM and 0.004-200 μM, respectively. The BCDs-NH2/Fe3+ systems were used as an optosensor for L-Cys in the concentration ranges of 0.08-30 and 30-1000 μM with a detection limit of 65 nM. Developed BCDs-NH2 and BCDs-SH were able to respond to Fe3+ in water samples with satisfactory recoveries of 100.1%-103.1% and 94.6%-108.5%, respectively, and the BCDs-NH2/Fe3+ system was also able to respond to BCDs-NH2/Fe3+ in actual lake water samples with recoveries from 87.3% to 98.8%. Meanwhile, The BCDs-NH2 exhibited good photoluminescence and stability, and the with a fluorescence quantum yield was as high as 25%. This work demonstrates the feasibility of using such materials to remove hazardous ions from water and employing the resulting complexes for optosensing in a sustainable manner.
Collapse
|
12
|
Jiang X, Liu X, Wu M, Ma Y, Xu X, Chen L, Niu N. Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Malavika JP, Shobana C, Sundarraj S, Ganeshbabu M, Kumar P, Selvan RK. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. BIOMATERIALS ADVANCES 2022; 136:212756. [PMID: 35929302 DOI: 10.1016/j.bioadv.2022.212756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 05/26/2023]
Abstract
Carbon quantum dots (CQDs) have gained significant growing attention in the recent past due to their peculiar characteristics including smaller size, high surface area, photoluminescence, chemical stability, facile synthesis and functionalization possibilities. They are carbon nanostructures having less than 10 nm size with fluorescent properties. In recent years, the scientific community is curiously adopting biomass precursors for the preparation of CQDs over the chemical compounds. These biomass sources are sustainable, eco-friendly, inexpensive, widely available and convert waste into valuable materials. Hence in our work the fundamental understating of diverse fabrication methodologies of CQDs, and the types of raw materials employed in recent times, are all examined and correlated comprehensively. Their unique combination of remarkable properties, together with the ease with which they can be fabricated, makes CQDs as promising materials for applications in diverse biomedical fields, in particular for bio-imaging, targeted drug delivery and phototherapy for cancer treatment. The mechanism for luminescence is of considerable significance for leading the synthesis of CQDs with tunable fluorescence emission. Therefore, it is aimed to explore and provide an updated review on (i) the recent progress on the different synthesis methods of biomass-derived CQDs, (ii) the contribution of surface states or functional groups on the luminescence origin and (iii) its potential application for cancer theranostics, concentrating on their fluorescence properties. Finally, we explored the challenges in modification for the synthesis of CQDs from biomass derivatives and the future scope of CQDs in phototherapy for cancer theranostics.
Collapse
Affiliation(s)
- Jalaja Prasad Malavika
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India
| | - Chellappan Shobana
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), G. N. Mills, Coimbatore 641 029, Tamil Nadu, India.
| | - Shenbagamoorthy Sundarraj
- Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India.
| | - Mariappan Ganeshbabu
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | |
Collapse
|
14
|
Magagula LP, Masemola CM, Ballim MA, Tetana ZN, Moloto N, Linganiso EC. Lignocellulosic Biomass Waste-Derived Cellulose Nanocrystals and Carbon Nanomaterials: A Review. Int J Mol Sci 2022; 23:ijms23084310. [PMID: 35457128 PMCID: PMC9025071 DOI: 10.3390/ijms23084310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid population and economic growth, excessive use of fossil fuels, and climate change have contributed to a serious turn towards environmental management and sustainability. The agricultural sector is a big contributor to (lignocellulosic) waste, which accumulates in landfills and ultimately gets burned, polluting the environment. In response to the current climate-change crisis, policymakers and researchers are, respectively, encouraging and seeking ways of creating value-added products from generated waste. Recently, agricultural waste has been regularly appearing in articles communicating the production of a range of carbon and polymeric materials worldwide. The extraction of cellulose nanocrystals (CNCs) and carbon quantum dots (CQDs) from biomass waste partially occupies some of the waste-recycling and management space. Further, the new materials generated from this waste promise to be effective and competitive in emerging markets. This short review summarizes recent work in the area of CNCs and CQDs synthesised from biomass waste. Synthesis methods, properties, and prospective application of these materials are summarized. Current challenges and the benefits of using biomass waste are also discussed.
Collapse
Affiliation(s)
- Lindokuhle Precious Magagula
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
| | - Clinton Michael Masemola
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Braamfontein 2050, South Africa
| | - Muhammed As’ad Ballim
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
| | - Zikhona Nobuntu Tetana
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Braamfontein 2050, South Africa
- Microscopy and Microanalysis Unit, University of the Witwatersrand, Braamfontein 2050, South Africa
| | - Nosipho Moloto
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
| | - Ella Cebisa Linganiso
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa; (L.P.M.); (C.M.M.); (M.A.B.); (Z.N.T.); (N.M.)
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Braamfontein 2050, South Africa
- Microscopy and Microanalysis Unit, University of the Witwatersrand, Braamfontein 2050, South Africa
- Department of Chemistry, Sefako Makgatho Health Science University, Medunsa 0204, South Africa
- Correspondence: or
| |
Collapse
|
15
|
Chen X, Zhu J, Song W, Xiao LP. Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Front Bioeng Biotechnol 2022; 9:803138. [PMID: 35004655 PMCID: PMC8733694 DOI: 10.3389/fbioe.2021.803138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum dots (CQDs) is proposed here via coupling catalytic hydrogenolysis and hydrothermal treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol (29.7 wt%) were identified as the two major phenolic products with 89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6% hemicellulose was also obtained simultaneously, which was further used for the synthesis of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent selectivity and detection limits for several heavy metal cations, especially for Fe3+ ions in an aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor in situ environmental analyses. These findings provide a promising path toward developing high-performance sensors on environmental monitoring and a new route for the high value-added utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Xue Chen
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Jiubin Zhu
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Wenlu Song
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.,Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Cui L, Ren X, Sun M, Liu H, Xia L. Carbon Dots: Synthesis, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3419. [PMID: 34947768 PMCID: PMC8705349 DOI: 10.3390/nano11123419] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are known as the rising star of carbon-based nanomaterials and, by virtue of their unique structure and fascinating properties, they have attracted considerable interest in different fields such as biological sensing, drug delivery, photodynamic therapy, photocatalysis, and solar cells in recent years. Particularly, the outstanding electronic and optical properties of the CDs have attracted increasing attention in biomedical and photocatalytic applications owing to their low toxicity, biocompatibility, excellent photostability, tunable fluorescence, outstanding efficient up-converted photoluminescence behavior, and photo-induced electron transfer ability. This article reviews recent progress on the synthesis routes and optical properties of CDs as well as biomedical and photocatalytic applications. Furthermore, we discuss an outlook on future and potential development of the CDs based biosensor, biological dye, biological vehicle, and photocatalysts in this booming research field.
Collapse
Affiliation(s)
- Lin Cui
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Yuanyang Branch Department, Beijing Jingshan School, Beijing 100040, China
| | - Xin Ren
- International Department, Beijing No. 12 High School, Beijing 100071, China;
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Lixin Xia
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| |
Collapse
|
17
|
Moradi M, Molaei R, Kousheh SA, T Guimarães J, McClements DJ. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Crit Rev Food Sci Nutr 2021; 63:1943-1959. [PMID: 34898337 DOI: 10.1080/10408398.2021.2015283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology is rapidly becoming a commercial reality for application in food packaging. In particular, the incorporation of nanoparticles into packaging materials is being used to increase the shelf life and safety of foods. Carbon dots (C-dots) have a diverse range of potential applications in food packaging. They can be synthesized from environmentally friendly sources such as microorganisms, food by-products, and waste streams, or they may be generated in foods during normal processing operations, such as cooking. These processes often produce nitrogen- and sulfur-rich heteroatom-doped C-dots, which are beneficial for certain applications. The incorporation of C-dots into food packaging materials can improve their mechanical, barrier, and preservative properties. Indeed, C-dots have been used as antioxidant, antimicrobial, photoluminescent, and UV-light blocker additives in food packaging materials to reduce the chemical deterioration and inhibit the growth of pathogenic and spoilage microorganisms in foods. This article reviews recent progress on the synthesis of C-dots from microorganisms and food by-products of animal origin. It then highlights their potential application for the development of active and intelligent food packaging materials. Finally, a discussion of current challenges and future trends is given.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys Chem 2021; 280:106714. [PMID: 34749221 DOI: 10.1016/j.bpc.2021.106714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/15/2023]
Abstract
Proteins, under certain circumstances such as defective quality control mechanism, mutations and altered environmental conditions, undergo misfolding and assemble into highly ordered beta-sheet structured fibrillar aggregates called amyloid fibrils. Formation of amyloid is seen in most of the protein linked degenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, Type II diabetes mellitus and many more. Amyloid fibril forms via intermediate state(s), and is known to follow a nucleated condensation polymerization mechanism. Though extensive research is being carried out towards finding a therapeutic solution to the amyloidosis, an effective treatment to these diseases still remains elusive and also the mechanism of amyloidogenesis largely remains unclear. In recent times, carbon quantum dots (CQDs) are gaining the attention of researchers due to their semi-conductive nature, excellent physio-chemical properties, high surface to volume ratio, optical properties and mainly bio-compatibility. In the current study, we have synthesized CQDs from commonly available kitchen spice mix and explored their role in amyloidogenesis using hen egg white lysozyme (HEWL) as a model protein. The results clearly demonstrate the amyloid inhibitory as well as disaggregation potential of CQD by forming a stable complex with HEWL and thereby increasing the energy barrier for the aggregation process.
Collapse
|
19
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Deng J, Hu J, Zhao J, An N, Liang K, Wang Q, Zhang Z, Wu R, Zhang F. Eco friendly synthesis of fluorescent carbon dots for the sensitive detection of ferric ions and cell imaging. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
21
|
Campalani C, Cattaruzza E, Zorzi S, Vomiero A, You S, Matthews L, Capron M, Mondelli C, Selva M, Perosa A. Biobased Carbon Dots: From Fish Scales to Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:524. [PMID: 33670807 PMCID: PMC7922425 DOI: 10.3390/nano11020524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/30/2022]
Abstract
The synthesis, characterization and photoreduction ability of a new class of carbon dots made from fish scales is here described. Fish scales are a waste material that contains mainly chitin, one of the most abundant natural biopolymers, and collagen. These components make the scales rich, not only in carbon, hydrogen and oxygen, but also in nitrogen. These self-nitrogen-doped carbonaceous nanostructured photocatalyst were synthesized from fish scales by a hydrothermal method in the absence of any other reagents. The morphology, structure and optical properties of these materials were investigated. Their photocatalytic activity was compared with the one of conventional nitrogen-doped carbon dots made from citric acid and diethylenetriamine in the photoreduction reaction of methyl viologen.
Collapse
Affiliation(s)
- Carlotta Campalani
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
| | - Elti Cattaruzza
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
| | - Sandro Zorzi
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
- Division of Material Science, Department of Engineering Sciences and Mathematichs, Luleå University of Technology, 971 87 Luleå, Sweden;
| | - Shujie You
- Division of Material Science, Department of Engineering Sciences and Mathematichs, Luleå University of Technology, 971 87 Luleå, Sweden;
| | - Lauren Matthews
- The European Synchrotron Radiation Facility, 38043 Grenoble CEDEX 9, France; (L.M.); (M.C.)
| | - Marie Capron
- The European Synchrotron Radiation Facility, 38043 Grenoble CEDEX 9, France; (L.M.); (M.C.)
- Partnership for Soft Condensed Matter PSCM, ESRF The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble CEDEX 9, France
| | - Claudia Mondelli
- CNR-IOM, Institut Laue Langevin, 71, Avenue des Martyrs, 38042 Grenoble CEDEX 9, France;
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
| | - Alvise Perosa
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia Mestre, Italy; (C.C.); (E.C.); (S.Z.); (A.V.); (M.S.)
| |
Collapse
|
22
|
Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, Ou J, Qin A, Li Z. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ying Lou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Xinyu Hao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Lei Liao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Ziyuan Li
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Jun Ou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Lai JY, Inoue N, Oo CW, Kawasaki H, Lim TS. One-step synthesis of M13 phage-based nanoparticles and their fluorescence properties. RSC Adv 2021; 11:1367-1375. [PMID: 35424103 PMCID: PMC8693608 DOI: 10.1039/d0ra02835e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorescent carbon nanoparticles have been gaining more attention in recent years for their excellent fluorescence properties and simple synthesis routes. Different carbon sources have been reported for fluorescent carbon nanoparticle synthesis but the use of virus particles as a carbon source is scarce. Herein, we report the utilization of M13 bacteriophage particles as the carbon source to synthesize phage-based nanoparticles through facile, one-step microwave heating. M13 bacteriophage is a nanosized filamentous virus particle with a single-stranded DNA genome encapsulated by a large number of coat proteins. These amino acid rich building blocks provide a substantial amount of carbon source for the synthesis of fluorescent nanoparticles. The resulting nanoparticles from M13 bacteriophage showed good water solubility and exhibited bright blue luminescence. The selectivity and sensitivity of the phage-based nanoparticles towards Fe(iii) ions showed a quenching effect with a linear correlation and a detection limit of 8.0 μM. This process highlights the potential application of virus particles as a source for the synthesis of fluorescent carbon nanoparticles and the sensing application.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Naoya Inoue
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita-shi Osaka 564-8680 Japan +60-6-6368-0979
| | - Chuan Wei Oo
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita-shi Osaka 564-8680 Japan +60-6-6368-0979
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
24
|
Liu L, Qin K, Yin S, Zheng X, Li H, Yan H, Song P, Ji X, Zhang Q, Wei Y, Zhao L. Bifunctional Carbon Dots Derived From an Anaerobic Bacterium of Porphyromonas gingivalis for Selective Detection of Fe 3+ and Bioimaging. Photochem Photobiol 2020; 97:574-581. [PMID: 33289104 DOI: 10.1111/php.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 12/30/2022]
Abstract
In this study, for the first time, Porphyromonas gingivalis, an anaerobic bacterium, was selected to synthesize carbon dots. The achieved P. gingivalis-carbon dots (Pg-CDs) exhibited strong fluorescence and high stability with capability for dual function as Fe3+ sensor and intracellular imaging agent. The detection limit for Fe3+ was as low as 1.85 µm. On the other hand, the prepared Pg-CDs were an excellent candidate for biosensor with high biocompatibility.
Collapse
Affiliation(s)
- Lijuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Shuang Yin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaodan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hongmei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hui Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Pengfei Song
- R&D Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Limin Zhao
- College of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
25
|
Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem 2020; 52:814-847. [PMID: 33054365 DOI: 10.1080/10408347.2020.1828029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature. In this review article, green chemistry strategies for carbon quantum dot synthesis is summarized and compared with conventional methods using methodologic and statistical data. Furthermore, a detailed discussion on sensor and bioimaging applications of carbon quantum dots produced with green synthesis approaches are presented with a special focus on the last decade.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
26
|
Batool M, Junaid HM, Tabassum S, Kanwal F, Abid K, Fatima Z, Shah AT. Metal Ion Detection by Carbon Dots-A Review. Crit Rev Anal Chem 2020; 52:756-767. [PMID: 32985228 DOI: 10.1080/10408347.2020.1824117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of economical, sensitive, selective and robust sensors for metal ion sensing is always fascinating for a chemist because traditional routs for their detection involve complicated instrumentation and critical sample preparation procedures. A large number of metal ion detectors including carbon dots (CDs) have been reported for sensitive and selective detection of metal ions. This review comprehensively explores the use of CDs as metallic cation sensors. CDs are being fabricated from variety of carbon sources by employing various synthetic channels. CDs are proved to be efficient colorimetric and fluorimetric detectors due to surface oxygen moieties which are responsible to co-ordinate with metal ions. Doping of CDs with hetero atom such as N, S, B etc. may further enhance their activity toward metal detection. Therefore, designing of CDs having selective sensing properties with low detection limits has gained significant interest.HighlightsCDs have gained much attention as chemical sensors due to their dynamic features i.e. less toxicity, stability, solubility in various solvents, absorption in UV/Vis. region, fluorescence and tunable physico-chemical properties.These are coast effective, sensitive and selective colorimetric and fluorimetric metal ion sensors.Detection of metal ions by CDs involves different mechanisms such as complexation, aggregation, electron transfer, inner filter effect etc.LOD data is an evidence of their greater efficiency.
Collapse
Affiliation(s)
- Madeeha Batool
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | | | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Farah Kanwal
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Kamran Abid
- Department of Electrical Engineering, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zara Fatima
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
27
|
Prabhu MPT, Sarkar N. Quantum Dots as Promising Theranostic Tools Against Amyloidosis: A Review. Protein Pept Lett 2019; 26:555-563. [PMID: 30543158 DOI: 10.2174/0929866526666181212113855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023]
Abstract
Amyloids are highly ordered beta sheet rich stable protein aggregates, which have been found to play a significant role in the onset of several degenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, Type II diabetes mellitus and so on. Aggregation of proteins leading to amyloid fibril formation via intermediate(s), is thought to be a nucleated condensation polymerization process associated with many pathological conditions. There has been extensive research to identify inhibitors of these disease oriented aggregation processes. In recent times, quantum dots, with their unique physico-chemical properties have grabbed the attention of scientific community due to its applications in medical sciences. Quantum dots are nano-particles usually made of semiconductor materials which emit fluorescence upon radiation. The wavelength of fluorescence emission varies with changes in size of quantum dots. Several studies have reported significant inhibitory effects of these quantum dots towards amyloidogenesis, thereby presenting themselves as promising candidates against amyloidosis. Further, studies have also revealed amyloid detection capacity of quantum dots with sensitivity and specificity better than conventional probes. In the current review, we will discuss the various effects of quantum dots on protein aggregation pathways, their mechanism of actions and their potentials as effective therapeutics against amyloidosis.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
28
|
Liu H, Ding J, Zhang K, Ding L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Thangaraj B, Solomon PR, Ranganathan S. Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review. Curr Pharm Des 2019; 25:1455-1476. [DOI: 10.2174/1381612825666190618154518] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Quantum dots (QDs) have received much attention due to their extraordinary optical application in
medical diagnostics, optoelectronics and in energy storage devices. The most conventional QDs are based on
semiconductors that comprise heavy metals whose applications are limited due to toxicity and potential environmental
hazard. Of late, researchers are focusing on carbon-based quantum dots, which have recently emerged as a
new family of zero-dimensional nanostructured materials. They are spherical in shape with a size below 10 nm
and exhibit excitation-wavelength-dependent photoluminescence (PL). Carbon quantum dots (CQDs) have
unique optical, photoluminescence and electrochemical properties. They are environment-friendly with low toxicity
as compared to toxic heavy metal quantum dots. Generally, CQDs are derived from chemical precursor materials,
but recently researchers have focused their attention on the production of CQDs from waste biomass materials
due to the economic and environmental exigency. In this review, recent advances in the synthesis of CQDs
from waste biomass materials, functionalization and modulation of CQDs and their potential application of biosensing
are focused. This review also brings out some challenges and future perspectives for developing smart
biosensing gadgets based on CQDs.
Collapse
Affiliation(s)
- Baskar Thangaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang -212013, Zhenjiang, China
| | - Pravin R. Solomon
- School of Chemical & Biotechnology, SASTRA-Deemed University, Thanjavur - 613401, Tamil Nadu, India
| | | |
Collapse
|
30
|
Shukla D, Pandey FP, Kumari P, Basu N, Tiwari MK, Lahiri J, Kharwar RN, Parmar AS. Label‐Free Fluorometric Detection of Adulterant Malachite Green Using Carbon Dots Derived from the Medicinal Plant Source
Ocimum tenuiflorum. ChemistrySelect 2019. [DOI: 10.1002/slct.201900530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Devyani Shukla
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Fanindra Pati Pandey
- Department of PhysicsInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Puja Kumari
- Department of BotanyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Nilanjan Basu
- Department of PhysicsUniversity of Hyderabad, Gachibowli, Hyderabad Telangana 500046, India
| | - Manish K. Tiwari
- Department of PhysicsInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Jayeeta Lahiri
- Department of PhysicsUniversity of Hyderabad, Gachibowli, Hyderabad Telangana 500046, India
| | - Ravindra N. Kharwar
- Department of BotanyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Avanish S. Parmar
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
31
|
Bhandari S, Mondal D, Nataraj SK, Balakrishna RG. Biomolecule-derived quantum dots for sustainable optoelectronics. NANOSCALE ADVANCES 2019; 1:913-936. [PMID: 36133200 PMCID: PMC9473190 DOI: 10.1039/c8na00332g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 05/06/2023]
Abstract
The diverse chemical functionalities and wide availability of biomolecules make them essential and cost-effective resources for the fabrication of zero-dimensional quantum dots (QDs, also known as bio-dots) with extraordinary properties, such as high photoluminescence quantum yield, tunable emission, photo and chemical stability, excellent aqueous solubility, scalability, and biocompatibility. The additional advantages of scalability, tunable optical features and presence of heteroatoms make them suitable alternatives to conventional metal-based semiconductor QDs in the field of bioimaging, biosensing, drug delivery, solar cells, photocatalysis, and light-emitting devices. Furthermore, a recent focus of the scientific community has been on QD-based sustainable optoelectronics due to the primary concern of partially mitigating the current energy demand without affecting the environment. Hence, it is noteworthy to focus on the sustainable optoelectronic applications of biomolecule-derived QDs, which have tunable optical features, biocompatibility and the scope of scalability. This review addresses the recent advances in the synthesis, properties, and optoelectronic applications of biomolecule-derived QDs (especially, carbon- and graphene-based QDs (C-QDs and G-QDs, respectively)) and discloses their merits and disadvantages, challenges and future prospects in the field of sustainable optoelectronics. In brief, the current review focuses on two major issues: (i) the advantages of two families of carbon nanomaterials (i.e. C-QDs and G-QDs) derived from biomolecules of various categories, for instance (a) plant extracts including fruits, flowers, leaves, seeds, peels, and vegetables; (b) simple sugars and polysaccharides; (c) different amino acids and proteins; (d) nucleic acids, bacteria and fungi; and (e) biomasses and their waste and (ii) their applications as light-emitting diodes (LEDs), display systems, solar cells, photocatalysts and photo detectors. This review will not only bring a new paradigm towards the construction of advanced, sustainable and environment-friendly optoelectronic devices using natural resources and waste, but also provides critical insights to inspire researchers ranging from material chemists and chemical engineers to biotechnologists to search for exciting developments of this field and consequently make an advance step towards future bio-optoelectronics.
Collapse
Affiliation(s)
- Satyapriya Bhandari
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - Dibyendu Mondal
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - S K Nataraj
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| |
Collapse
|
32
|
High-fluorescent carbon dots (CDs) originated from China grass carp scales (CGCS) for effective detection of Hg(II) ions. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Jayaweera S, Yin K, Hu X, Ng WJ. Facile preparation of fluorescent carbon dots for label-free detection of Fe3+. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R. Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 2019; 48:4791-4822. [DOI: 10.1039/c8cs00543e] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The waste-to-wealth concept aims to promote a future sustainable lifestyle where waste valorization is seen not only for its intrinsic benefits to the environment but also to develop new technologies, livelihoods and jobs.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P. R. China
| | | | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi
- Universita Ca Foscari
- Venezia Mestre
- Italy
- Departamento de Quimica Organica
| | - Zahra Issaabadi
- Department of Chemistry
- Faculty of Science
- University of Qom
- Qom 3716146611
- Iran
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Cordoba
- Spain
- Peoples Friendship University of Russia (RUDN University)
| |
Collapse
|
35
|
Wang X, Xu XC, Yang M, Jiang P, Zhao J, Jiang FL, Liu Y. Concentration-tuned multicolor carbon dots: microwave-assisted synthesis, characterization, mechanism and applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj01233h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and simple way to obtain multicolor-emission carbon dots and an exploration of their mechanism and applications.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xue-Chen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Mian Yang
- Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials
- School of Chemistry and Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- P. R. China
| | - Peng Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Jie Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Feng-Lei Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
36
|
Zhao DL, Chung TS. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. WATER RESEARCH 2018; 147:43-49. [PMID: 30296608 DOI: 10.1016/j.watres.2018.09.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
Carbon quantum dots (CQDs), which are a fascinating class of nanostructured carbons, have recently attracted extensive attention in the field of membrane technologies for their applications in separation processes. This is because they possess two unique advantages. Their productions are facile and inexpensive, while their physicochemical properties such as ultra-small sizes, good biocompatibility, high chemical inertness, tunable hydrophilicity, rich surface functional groups and antifouling characteristics are highly desirable. Leveraging on these, researchers have explored their utilizations in various membrane designs for reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), forward osmosis (FO), pressure retarded osmosis (PRO), membrane distillation (MD), and organic solvent nanofiltration (OSN) processes. In particular, CQDs have especially stimulated exploration in the field of water treatment by membrane technologies since biocompatibility of membrane materials is of utmost importance to ensure safety of drinking water. In addition, CQDs are in a favorable position for achieving unprecedented performance of membrane separation processes in water treatment, in the light of substantial efficiency enhancement and antifouling propensity as discovered in recent studies. In this article, we will review the progress in the development of CQD incorporated membranes with discussions on their challenges and perspectives.
Collapse
Affiliation(s)
- Die Ling Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
37
|
Qi H, Teng M, Liu M, Liu S, Li J, Yu H, Teng C, Huang Z, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe 3+ ions and tetracyclines. J Colloid Interface Sci 2018; 539:332-341. [PMID: 30594008 DOI: 10.1016/j.jcis.2018.12.047] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) were successfully synthesized using rice residue and glycine as carbon and nitrogen sources by one-step hydrothermal method. High quantum yield (23.48%) originated from the effective combination of nitrogen with various functional groups (CO, NH, CN, COOH and COC). The N-CQDs showed a fluorescence with the wavelength varied from 420 to 500 nm and the maximum emission wavelength being at 440 nm. N-CQDs have been importantly applied as probe to detect Fe3+ and tetracycline (TCs) antibiotics with remarkable performance. Using the linear relationship between fluorescence intensity and Fe3+ concentration, the N-CQDs could be employed as a simple, efficient sensor for ultrasensitive Fe3+ detection ranging from 3.32 to 32.26 µM, with a limit of detection (LOD) of 0.7462 µM. The N-CQDs showed the applicability to detect TCs. The detection limits of tetracycline, terramycin and chlortetracycline were 0.2367, 0.3739 and 0.2791 µM, respectively. The results of TC by fluorescence method in real water samples were in good agreement with standard Ultraviolet-visible (UV-vis) method. The N-CQDs have various potential applications including sensitive and selective detection of Fe3+ and TCs, and cellular imaging with low cytotoxicity, good biocompatibility and high permeability.
Collapse
Affiliation(s)
- Houjuan Qi
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Min Teng
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Miao Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Haipeng Yu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhanhua Huang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Hu Liu
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ahmad Umar
- Department of Chemistry, Faculty of Sciences and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Qiang Gao
- Department of Heterogeneous Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
38
|
Chan KK, Yap SHK, Yong KT. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. NANO-MICRO LETTERS 2018; 10:72. [PMID: 30417004 PMCID: PMC6208800 DOI: 10.1007/s40820-018-0223-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage, and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties, as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them. Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers, nitroaromatic explosives, pollutants, vitamins, and drugs. Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.
Collapse
Affiliation(s)
- Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Stephanie Hui Kit Yap
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
39
|
Quick Microwave Assisted Synthesis and In Vitro Imaging Application of Oxygen Doped Fluorescent Carbon Dots. J Fluoresc 2018; 28:959-966. [PMID: 29968047 DOI: 10.1007/s10895-018-2259-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
In this paper, a fast and simplest one-pot tactic was used to synthesis fluorescent oxygen doped carbon dots from Tween-20 (TTO-CDs) is reported. The TTO-CDs were microwavically synthesized by using Tween-20 as both the carbon precursor and the oxygen dopant as well. The surface morphology, crystalline and/or amorphous nature, composition and optical assets of synthesized TTO-CDs were studied by means of existing techniques. From the results, it was confirmed that the as-synthesized TTO-CDs are amorphous in nature, monodispersed, sphere-shaped and the typical particle size range is 5 ± 1.5 nm. The synthesized TTO-CDs emits strong blue fluorescence at 390 nm under excitation of 335 nm. Most interestingly, the excitation dependent emission property of synthesized TTO-CDs was exposed from fluorescence results. The synthesized TTO-CDs have quantum yield of about 14% against quinine sulfate as reference standard. The biotoxicity of synthesized TTO-CDs on HeLa cells was assessed through cytotoxicity assay. These results implied that the fluorescent TTO-CDs showed less biotoxicity, and further which was efficaciously applied as a multicolor staining and bioimaging probe for the confocal imaging of HeLa cells.
Collapse
|
40
|
Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Zhang X, Jiang M, Niu N, Chen Z, Li S, Liu S, Li J. Natural-Product-Derived Carbon Dots: From Natural Products to Functional Materials. CHEMSUSCHEM 2018; 11:11-24. [PMID: 29072348 DOI: 10.1002/cssc.201701847] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/24/2017] [Indexed: 05/06/2023]
Abstract
Nature provides an almost limitless supply of sources that inspire scientists to develop new materials with novel applications and less of an environmental impact. Recently, much attention has been focused on preparing natural-product-derived carbon dots (NCDs), because natural products have several advantages. First, natural products are renewable and have good biocompatibility. Second, natural products contain heteroatoms, which facilitate the fabrication of heteroatom-doped NCDs without the addition of an external heteroatom source. Finally, some natural products can be used to prepare NCDs in ways that are very green and simple relative to traditional methods for the preparation of carbon dots from man-made carbon sources. NCDs have shown tremendous potential in many fields, including biosensing, bioimaging, optoelectronics, and photocatalysis. This Review addresses recent progress in the synthesis, properties, and applications of NCDs. The challenges and future direction of research on NCD-based materials in this booming field are also discussed.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Mingyue Jiang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Na Niu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
- College of Science, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150040, P.R. China
| |
Collapse
|
42
|
Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr Polym 2017; 161:253-260. [DOI: 10.1016/j.carbpol.2017.01.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/21/2023]
|
43
|
Ye Q, Yan F, Luo Y, Wang Y, Zhou X, Chen L. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:854-862. [PMID: 27816885 DOI: 10.1016/j.saa.2016.10.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 05/15/2023]
Abstract
Biomass is regarded as an excellent candidate for the preparation of heteroatom-doped carbon nanomaterials. We have developed a simple and facile one-pot synthesis of nitrogen and sulfur codoped fluorescent carbon dots from pigeon feathers, egg and manure via the pyrolysis carbonization method. The as-prepared four PCDs have high fluorescence quantum yield about 24.87% (PCDs-f), 17.48% (PCDs-w), 16.34% (PCDs-y), 33.50% (PCDs-m), respectively, which is higher than the other carbon dots preparing from biomass. We found that the preparation of PCDs-m with pigeon manure has no favourable selectively with heavy metal ions. However, other PCDs exhibit highly sensitive and selective detection behavior of Hg2+/Fe3+ ions with a low detection limit of 10.3 and 60.9nM. They were applied to imaging of human umbilical vein endothelial cells, showing low cytotoxicity and good biocompatibility.
Collapse
Affiliation(s)
- Qianghua Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Yunmei Luo
- Department of Pharmacology, Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, China
| | - Yinyin Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Xuguang Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
44
|
Li JY, Liu Y, Shu QW, Liang JM, Zhang F, Chen XP, Deng XY, Swihart MT, Tan KJ. One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up- and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1043-1050. [PMID: 28064483 DOI: 10.1021/acs.langmuir.6b04225] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Blue luminescent carbon dots (CDs) with a high photoluminescence (PL) quantum yield (48.3 ± 5.3%) were prepared by the one-pot hydrothermal reaction of citric acid with poly(ethylenimine) (PEI). The CDs display bright PL, narrow emission spectra, pH-dependent PL intensity, high photostability, and up-converted luminescence. The CDs exhibit a quenching of both down- and up-conversion PL in the presence of morin and thus serve as useful probes for morin detection. Both down- and up-conversion measurements allow the quantification of concentrations from 0 to 300 μmol/L with a detection limit of 0.6 μmol/L, and this dual-mode detection increases the reliability of the measurement. The proposed method of determination is simple, sensitive, and cost-effective, with potential applications in clinical and biochemical assays.
Collapse
Affiliation(s)
- Jia-Yu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Yang Liu
- Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York , Buffalo, New York 14260-4200, United States
| | - Qun-Wei Shu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
- College of Chemical Engineering, Guizhou University of Engineering Science , Guizhou 551700, China
| | - Jia-Man Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Fang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Xian-Ping Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Xiao-Yan Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York , Buffalo, New York 14260-4200, United States
| | - Ke-Jun Tan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| |
Collapse
|
45
|
Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 2017; 5:8904-8924. [DOI: 10.1039/c7tb02484c] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review article highlights recent progress in use of green precursors for synthesis of carbon-dots and their applications in fluorescence-based sensing and bioimaging.
Collapse
Affiliation(s)
- Vinay Sharma
- Center for Biosciences and Bio-Medical Engineering
- Simrol
- Indore 453552
- India
| | - Pranav Tiwari
- Discipline of Metallurgy Engineering and Materials Science
- Simrol
- Indore 453552
- India
| | - Shaikh M. Mobin
- Center for Biosciences and Bio-Medical Engineering
- Simrol
- Indore 453552
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|
46
|
Hu Y, Al Awak MM, Yang F, Yan S, Xiong Q, Wang P, Tang Y, Yang L, LeCroy GE, Hou X, Bunker CE, Xu L, Tomlinson N, Sun YP. Photoexcited State Properties of Carbon Dots from Thermally Induced Functionalization of Carbon Nanoparticles. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:10554-10561. [PMID: 27933162 PMCID: PMC5138105 DOI: 10.1039/c6tc03666j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon dots are small carbon nanoparticles with various surface passivation schemes, in which more effective has been the deliberate chemical functionalization of the nanoparticles for brighter fluorescence emissions, though the synthesis method is more tedious and subject to some limitations in the selection of functionalization molecules. Another more popular synthesis method has been the carbonization of organic species, with the method being more efficient and versatile, but less controllable in the synthesis and for the desired dot structure and performance. In this work, a hybrid approach combining the advantageous characteristics of the two synthesis methods was applied to the preparation of carbon dots with polyethyleneimine (PEI) for surface passivation, where pre-processed and selected small carbon nanoparticles were functionalized with PEI in microwave-induced thermal reactions. The optical absorption and fluorescence emission properties were evaluated, and the results suggested that the carbon dots thus prepared shared the same photoexcited state characteristics with those from the deliberate chemical functionalization, including comparable fluorescence colors and other properties. A further demonstration on the similarity in photoexcited state properties was based on the same visible light-activated bactericidal functions of the PEI-carbon dots as those found in carbon dots from the deliberate chemical functionalization. The advantages and potential limitations of the hybrid approach for more controllable yet versatile and efficient syntheses of carbon dots are highlighted and discussed.
Collapse
Affiliation(s)
- Yin Hu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Mohamad M. Al Awak
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Fan Yang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Sijia Yan
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Qingwu Xiong
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Gregory E. LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Xiaofang Hou
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Christopher E. Bunker
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Linxi Xu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas Tomlinson
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
47
|
Wang L, Bi Y, Hou J, Li H, Xu Y, Wang B, Ding H, Ding L. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect. Talanta 2016; 160:268-275. [PMID: 27591613 DOI: 10.1016/j.talanta.2016.07.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In this work, we reported a green route for the fabrication of fluorescent carbon dots (CDs). Wool, a kind of nontoxic and natural raw material, was chosen as the precursor to prepare CDs via a one-step microwave-assisted pyrolysis process. Compared with previously reported methods for preparation of CDs based on biomass materials, this method was simple, facile and free of any additives, such as acids, bases, or salts, which avoid the complicated post-treatment process to purify the CDs. The CDs have a high quantum yield (16.3%) and their fluorescence could be quenched by silver nanoparticles (AgNPs) based on inner filter effect (IFE). The presence of glyphosate could induce the aggregation of AgNPs and thus result in the fluorescence recovery of the quenched CDs. Based on this phenomenon, we constructed a fluorescence system (CDs/AgNPs) for determination of glyphosate. Under the optimized conditions, the fluorescence intensity of the CDs/AgNPs system was proportional to the concentration of glyphosate in the range of 0.025-2.5μgmL(-1), with a detection limit of 12ngmL(-1). Furthermore, the established method has been successfully used for glyphosate detection in the cereal samples with satisfactory results.
Collapse
Affiliation(s)
- Long Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yidan Bi
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Juan Hou
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Huiyu Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yuan Xu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Bo Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Hong Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
48
|
Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:154-61. [PMID: 27236237 DOI: 10.1016/j.jphotobiol.2016.05.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
A fast and facile microwave approach for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is reported. The N-CDs were hydrothermally synthesized using l-ascorbic acid (AA) and β-alanine (BA) as the carbon precursor and the nitrogen dopant, respectively. The morphology of synthesized N-CDs was characterized by high resolution transmission electron microscopy (HR-TEM) and the elemental composition was analyzed using elemental mapping method. The crystallinity and graphitation of N-CDs were examined by X-ray diffraction (XRD) and Raman spectroscopy. The doping of nitrogen over the carbon dots (CDs) was revealed by attenuated total reflection conjunction with Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photo electron spectroscopy (XPS). The optical properties of synthesized N-CDs were examined by UV-Visible (UV-Vis) and fluorescence spectroscopy. The synthesized N-CDs emit strong blue fluorescence at 401nm under excitation of 325nm. The excitation dependent emission property of synthesized N-CDs was exposed from fluorescence results. The quantum yield of synthesized N-CDs is about 14% against the reference quinine sulfate. The cytotoxicity of synthesized N-CDs on Madin-Darby Canine Kidney (MDCK) and HeLa cells were evaluated through Cell Counting Kit-8 (CCK-8) cytotoxicity assay. The results implied that the fluorescent N-CDs showed less cytotoxicity, further which was successfully applied as a staining probe for the confocal imaging of MDCK and HeLa cells.
Collapse
|
50
|
Liu S, Liu R, Xing X, Yang C, Xu Y, Wu D. Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(iii) ion. RSC Adv 2016. [DOI: 10.1039/c5ra26521e] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrothermal strategy towards nitrogen-rich carbon dots with a high quantum yield of ∼42% has been successfully developed by using melamine and citric acid as the precursors.
Collapse
Affiliation(s)
- Shaoqing Liu
- Department of Chemical Engineering
- School of Environment and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Ruili Liu
- Department of Electronic Engineering
- National Engineering Lab for TFT-LCD Materials and Technologies
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xia Xing
- Department of Chemical Engineering
- School of Environment and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Chongqing Yang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yi Xu
- Department of Chemical Engineering
- School of Environment and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|