1
|
Vasileiadis T, Schöttle M, Theis M, Retsch M, Fytas G, Graczykowski B. Elasticity Mapping of Colloidal Glasses Reveals the Interplay between Mesoscopic Order and Granular Mechanics. SMALL METHODS 2025; 9:e2400855. [PMID: 39139008 PMCID: PMC11926515 DOI: 10.1002/smtd.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 08/15/2024]
Abstract
Colloidal glasses (CGs) made of polymer (polymethylmethacrylate) nanoparticles are promising metamaterials for light and sound manipulation, but fabrication imperfections and fragility can limit their functionality and applications. Here, the vibrational mechanical modes of nanoparticles are probed to evaluate the nanomechanical and morphological properties of various CGs architectures. Utilizing the scanning micro-Brillouin light scattering (µ-BLS), the effective elastic constants and nanoparticles' sizes is determined as a function of position in a remote and non-destructive manner. This method is applied to CG mesostructures with different spatial distributions of their particle size and degree of order. These include CGs with single-sized systems, binary mixtures, bilayer structures, continuous gradient structures, and gradient mixtures. The microenvironments govern the local mechanical properties and highlight how the granular mesostructure can be used to develop durable functional polymer colloids. A size effect is revealed on the effective elastic constant, with the smallest particles and ordered assemblies forming robust structures, and classify the various types of mesoscale order in terms of their mechanical stiffness. The work establishes scanning µ-BLS as a tool for mapping elasticity, particle size, and local structure in complex nanostructures.
Collapse
Affiliation(s)
- Thomas Vasileiadis
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - Marius Schöttle
- Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Maximilian Theis
- Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Markus Retsch
- Department of Chemistry, Physical Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
- Bavarian Center for Battery Technology (BayBatt), Weiherstraße 26, 95448, Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Bayreuth Center for Colloids and Interfaces (BZKG), Universitätsstraße 30, 95447, Bayreuth, Germany
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion, 70013, Greece
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Hoy RS. Generating Ultradense Jammed Ellipse Packings Using Biased SWAP. J Phys Chem B 2025; 129:763-770. [PMID: 39739335 DOI: 10.1021/acs.jpcb.4c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Using a Lubachevsky-Stillinger-like growth algorithm combined with biased SWAP Monte Carlo and transient degrees of freedom, we generate ultradense disordered jammed ellipse packings. For all aspect ratios α, these packings exhibit significantly smaller intermediate-wavelength density fluctuations and greater local nematic order than their less-dense counterparts. The densest packings are disordered despite having packing fractions ϕJ(α) that are within less than 0.5% of that of the monodisperse-ellipse crystal [ϕxtal = π/(2√3) ≃ 0.9069] over the range 1.2 ≲ α ≲ 1.45 and coordination numbers ZJ(α) that are within less than 0.5% of isostaticity [Ziso = 6] over the range 1.2 ≲ α ≲ 2.6. Lower-α packings are strongly fractionated and consist of polycrystals of intermediate-size particles, with the largest and smallest particles isolated at the grain boundaries. Higher-α packings are also fractionated, but in a qualitatively different fashion; they are composed─of increasingly large locally nematic domains─reminiscent of liquid glasses.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Meng Z, Yan H, Wang Y. Granular metamaterials with dynamic bond reconfiguration. SCIENCE ADVANCES 2024; 10:eadq7933. [PMID: 39630910 PMCID: PMC11616718 DOI: 10.1126/sciadv.adq7933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Biological materials dynamically reconfigure their underlying structures in response to stimuli, achieving adaptability and multifunctionality. Conversely, mechanical metamaterials have fixed interunit connections that restrict adaptability and reconfiguration. This study introduces granular metamaterials composed of discrete bimaterial structured particles that transition between assembled and unassembled states through mechanical compression and thermal stimuli. These materials enable dynamic bond reconfiguration, allowing reversible bond breaking and formation, similar to natural systems. Leveraging their discrete nature, these materials can adaptively reconfigure their shape and respond dynamically to varying conditions. Our investigations reveal that these granular metamaterials can substantially alter their mechanical properties, like compression, shearing, and bending, offering tunable mechanical characteristics across different states. Furthermore, they exhibit collective behaviors like directional movement, object capture, transportation, and gap crossing, showcasing their potential for reprogrammable functionalities. This work highlights the dynamic reconfigurability and robust adaptability of granular metamaterials, expanding their potential in responsive architecture and autonomous robotics.
Collapse
Affiliation(s)
- Zhiqiang Meng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hujie Yan
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
4
|
Yang H, Li X, Zhang J, Hu Z, Li S. The Distributions and Dependences of 3D Particle Morphology Characteristics for Crushed and Natural Sands by X-Ray uCT Investigations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5805. [PMID: 39685241 DOI: 10.3390/ma17235805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The morphology of an individual particulate refers to its shape characteristics and size properties, which both play important roles for granular matter in physics, mechanics, chemistry, and biology. In this study, ellipsoidality is defined as a 3D shape index for evaluating particle roundness, and an explicit calculation method is applied. The dependences of 3D shape characteristics (aspect ratios, sphericity, and ellipsoidal degree) on particle size (ranges from 0.063 mm to 5.0 mm) are adequately investigated with the X-ray micro-computed microtomography (uCT) imaging for hundreds of thousands of particles of crushed and natural sands. This study focuses on comparing and evaluating the specific surface area and equivalent diameter, suggesting that particle segregation and changes in surface area may explain the strong dependence of particle shape on size. The correlation between different shape metrics was analyzed by comparing crushed sand with natural sand to provide theoretical support for material filling and mechanical behaviour. The significant differences in the microscale particle size indexes of different sands by single grading are used to provide data references for further analyses of the effect of material microscale on material properties in future discrete element particle simulations.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xu Li
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Junhui Zhang
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhengbo Hu
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shengnan Li
- Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China
- School of Architectural Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| |
Collapse
|
5
|
Yi Q, Liu L, Xie G. Recent Advances of Stimuli-Responsive Liquid-Liquid Interfaces Stabilized by Nanoparticles. ACS NANO 2024; 18:32364-32385. [PMID: 39545824 DOI: 10.1021/acsnano.4c11387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Liquid-liquid interfaces offer highly controlled, flexible, and adaptable platforms for precise molecular assemblies, enabling the construction of sophisticated functional materials. Interfacial assemblies of specific nanoparticles (NPs) and ligands can alter their physicochemical states under external stimuli, leading to macroscopic dynamic transformations at the interface. This Review summarizes and analyzes the recent advances of the assembly and disassembly behaviors of various stimuli-responsive nanoparticle surfactants (NPSs) at liquid-liquid interfaces, focusing on their responsive behaviors when exposed to external stimuli and the interaction forces between interfacial molecules. Additionally, we outline recent advancements in applications such as reconfigurable all-liquid devices, all-liquid 3D printing, and chemical reaction platforms. Finally, we discuss current challenges and future prospects for the development of applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Qinpiao Yi
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liang Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ganhua Xie
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Kakiuchi R, Sakurai Y, Manabe H, Yamaguchi J, Hirai T, Nakamura Y, Fujii S. Pickering Emulsions Stabilized with Millimeter-Sized Polymer Plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39564963 DOI: 10.1021/acs.langmuir.4c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Hexagonal polymer plates of (sub)millimeter size that were uniform in shape and size were used as a stabilizer for emulsions, and the correlations of plate size, oil polarity, and plate dispersing media before emulsification with the formability, type, and droplet shape of emulsions were studied. The formability of the emulsions was improved by decreasing the plate size. The lower the oil polarity was, the more preferably O/W-type emulsions were formed, and as the oil polarity increased, the formability of W/O-type emulsions increased, whereas too high of an oil polarity resulted in no emulsion formation or macrophase separation of the oil dispersion of the plates and water. Furthermore, when the plate dispersing medium before emulsification was oil, the plates tended to be lipophilic compared with those dispersed in water before emulsification. In addition, we confirmed that there was a correlation between the droplet/stabilizer size ratio and droplet shape: when the droplet/plate size ratios are >2, droplets with near-spherical shapes are formed; when the size ratios are between 1 and 2, droplets with polyhedral shapes (e.g., hexahedral and tetrahedral shapes) are formed; and when the size ratios are <1, sandwich-shaped droplets are formed. Droplets with similar structures tended to form if the droplet/plate size ratios were close, even though the sizes of the plate and droplet were different.
Collapse
Affiliation(s)
- Rina Kakiuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuri Sakurai
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hikaru Manabe
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Jun Yamaguchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka, 535-8585, Japan
| |
Collapse
|
7
|
Ghaffarkhah A, Hashemi SA, Isari AA, Panahi-Sarmad M, Jiang F, Russell TP, Rojas OJ, Arjmand M. Chemistry, applications, and future prospects of structured liquids. Chem Soc Rev 2024; 53:9652-9717. [PMID: 39189110 DOI: 10.1039/d4cs00549j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Structured liquids are emerging functional soft materials that combine liquid flowability with solid-like structural stability and spatial organization. Here, we delve into the chemistry and underlying principles of structured liquids, ranging from nanoparticle surfactants (NPSs) to supramolecular assemblies and interfacial jamming. We then highlight recent advancements related to the design of intricate all-liquid 3D structures and examine their reconfigurability. Additionally, we demonstrate the versatility of these soft functional materials through innovative applications, such as all-liquid microfluidic devices and liquid microreactors. We envision that in the future, the vast potential of the liquid-liquid interface combined with human creativity will pave the way for innovative platforms, exemplified by current developments like liquid batteries and circuits. Although still in its nascent stages, the field of structured liquids holds immense promise, with future applications across various sectors poised to harness their transformative capabilities.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
8
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Tran TD, Nezamabadi S, Bayle JP, Amarsid L, Radjai F. Contact networks and force transmission in aggregates of hexapod-shaped particles. SOFT MATTER 2024; 20:3411-3424. [PMID: 38506840 DOI: 10.1039/d3sm01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Hexapods, consisting of three mutually orthogonal arms, have been utilized as a representative nonconvex shape to demonstrate the impact of interlocking on the strength properties of granular materials. Nevertheless, the microstructural characteristics of hexapod packings, which underlie their strength, have remained insufficiently characterized. We use particle dynamics simulations to build isotropically-packed aggregates of hexapods and we analyze the effects of aspect ratio and interparticle friction on the microstructure and force transmission. We find that the packing fraction is an unmonotonic function of aspect ratio due to competition between steric exclusions and interlocking. Interestingly, the contact coordination number declines considerably with friction coefficient, showing the stronger effect of friction on the stability of hexapod packings as compared with sphere packings. The pair distribution functions show that local ordering due to steric exclusions disappears beyond the aspect ratio 3 and the hexapods touch their second neighbors. Remarkably, hexapods of aspect ratio 3 tend to align with their neighbors and form locally ordered structures, implying a contact coordination number which is highly sensitive to the confining pressure. We also show that the probability density function of forces between hexapods is similar to that of sphere packings but with broadening exponential fall-off of strong forces as aspect ratio increases. Finally, the elastic bulk modulus of the aggregates is found to increase considerably with aspect ratio as a consequence of the rapid increase of contact density and the number of contacts with second neighbors.
Collapse
Affiliation(s)
- Trieu-Duy Tran
- LMGC, University of Montpellier, CNRS, Montpellier, France
- CEA/ISEC/DMRC, University of Montpellier, Marcoule F-30207 Bagnols sur Cèze cedex, France
| | | | - Jean-Philippe Bayle
- CEA/ISEC/DMRC, University of Montpellier, Marcoule F-30207 Bagnols sur Cèze cedex, France
| | - Lhassan Amarsid
- CEA, DES, IRESNE, DEC, Cadarache F-13108 Saint-Paul-lez-Durance, France
| | - Farhang Radjai
- LMGC, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
10
|
Saintyves B, Spenko M, Jaeger HM. A self-organizing robotic aggregate using solid and liquid-like collective states. Sci Robot 2024; 9:eadh4130. [PMID: 38266100 DOI: 10.1126/scirobotics.adh4130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Designing robotic systems that can change their physical form factor as well as their compliance to adapt to environmental constraints remains a major conceptual and technical challenge. To address this, we introduce the Granulobot, a modular system that blurs the distinction between soft, modular, and swarm robotics. The system consists of gear-like units that each contain a single actuator such that units can self-assemble into larger, granular aggregates using magnetic coupling. These aggregates can reconfigure dynamically and also split into subsystems that might later recombine. Aggregates can self-organize into collective states with solid- and liquid-like properties, thus displaying widely differing compliance. These states can be perturbed locally via actuators or externally via mechanical feedback from the environment to produce adaptive shape-shifting in a decentralized manner. This, in turn, can generate locomotion strategies adapted to different conditions. Aggregates can move over obstacles without using external sensors or coordinates to maintain a steady gait over different surfaces without electronic communication among units. The modular design highlights a physical, morphological form of control that advances the development of resilient robotic systems with the ability to morph and adapt to different functions and conditions.
Collapse
Affiliation(s)
| | - Matthew Spenko
- Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Heinrich M Jaeger
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Liu Z, Xu L, Sui X, Wu T, Chen G. Kinematics, dynamics and control of stiffness-tunable soft robots. BIOINSPIRATION & BIOMIMETICS 2024; 19:026003. [PMID: 38194701 DOI: 10.1088/1748-3190/ad1c87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Modeling and control methods for stiffness-tunable soft robots (STSRs) have received less attention compared to standard soft robots. A major challenge in controlling STSRs is their infinite degrees of freedom, similar to standard soft robots. In this paper, demonstrate a novel STSR by combing a soft-rigid hybrid spine-mimicking actuator with a stiffness-tunable module. Additionally, we introduce a new kinematic and dynamic modeling methodology for the proposed STSR. Based on the STSR characteristics, we model it as a series of PRP segments, each composed of two prismatic joints(P) and one revolute joint(R). This method is simpler, more generalizable, and more computationally efficient than existing approaches. We also design a multi-input multi-output (MIMO) controller that directly adjusts the pressure of the STSR's three pneumatic chambers to precisely control its posture. Both the novel modeling methodology and MIMO control system are implemented and validated on the proposed STSR prototype.
Collapse
Affiliation(s)
- Zhipeng Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Linsen Xu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, People's Republic of China
- Changzhou Key Laboratory of Intelligent Manufacturing Technology and Equipment, Changzhou, People's Republic of China
- Suzhou Research Institute of Hohai University, Suzhou, People's Republic of China
| | - Xiang Sui
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tao Wu
- Wuhan Second Ship Design and Research Institute, Wuhan 430205, People's Republic of China
| | - Gen Chen
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, People's Republic of China
| |
Collapse
|
12
|
Hou J, Xu HN. Ejected microcrystals probe jammed states of droplets in cyclodextrin-based emulsions. Carbohydr Polym 2024; 324:121455. [PMID: 37985074 DOI: 10.1016/j.carbpol.2023.121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
The cyclodextrin (CD)-based emulsions exhibit complex instability behaviors such as rapid flocculation and creaming, and how to capture droplet dispersion states of the emulsions remains a great challenge. Here we prepare the CD-based emulsions with different oil-water volume ratios and CD concentrations by using high-pressure homogenization, and characterize the emulsion droplets by using optical microscopy and confocal laser scanning microscopy. We evaluate the effects of homogenization pressure on the stability of the emulsions, identify armored droplets with different surface features, measure interfacial concentrations of adsorbed ICs microcrystals, and observe ejection of the oil/CD inclusion complexes (ICs) microcrystals from the droplet surface. The droplet dispersion states are sensitive to the dynamic buildup and evolving morphologies of the interfacial microcrystals, and there are clear correlations between the properties of the ejected microcrystals and the characteristics of the emulsions. We ascribe the subsequent ejection of ICs microcrystals from the droplet surface to consolidation and deformation of the films formed between neighboring droplets. The ejection of the ICs microcrystals affords a simple method to detect the droplet-droplet interactions and phase transitions in the CD-based emulsions, which might be a generic feature in the broader context of the creaming processes of emulsions.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
13
|
Bhat MI, Sharma P, Sitharam TG, Murthy TG. Force transmission during repose of flexible granular chains. SOFT MATTER 2023; 19:8493-8506. [PMID: 37723876 DOI: 10.1039/d3sm00526g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
We study the mechanics of standing columns formed during the repose of flexible granular chains. It is one of the many intriguing behaviours exhibited by granular materials when links capable of transmitting tension exist between particles. We develop and calibrate a discrete element method contact model to simulate the mechanics of the macroscopic flexible granular chains and conduct simulations of the angle of repose experiments of these chains by extracting a chain-filled cylinder and allowing the material to flow out under gravity and repose. We evaluate various micro-mechanical, topological and macroscopic parameters to elucidate the mechanics of the repose behaviour of chain ensembles. It is the ability of the links connecting the individual particles to transmit tensile forces along the chain backbone that provides lateral stability to the column, enabling them to stand. In particular, the contact force rearrangement inside the columns generates a self-confining radial stress near the base of the columns, which provides an important stabilizing stress.
Collapse
|
14
|
Baule A, Kurban E, Liu K, Makse HA. Machine learning approaches for the optimization of packing densities in granular matter. SOFT MATTER 2023; 19:6875-6884. [PMID: 37501593 DOI: 10.1039/d2sm01430k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The fundamental question of how densely granular matter can pack and how this density depends on the shape of the constituent particles has been a longstanding scientific problem. Previous work has mainly focused on empirical approaches based on simulations or mean-field theory to investigate the effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods can support the search for optimally dense packing shapes in a high-dimensional shape space. We apply dimensional reduction and regression techniques based on random forests and neural networks to find novel dense packing shapes by numerical optimization. Moreover, an investigation of the regression function in the dimensionally reduced shape representation allows us to identify directions in the packing density landscape that lead to a strongly non-monotonic variation of the packing density. The predictions obtained by machine learning are compared with packing simulations. Our approach can be more widely applied to optimize the properties of granular matter by varying the shape of its constituent particles.
Collapse
Affiliation(s)
- Adrian Baule
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Esma Kurban
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Kuang Liu
- Levich Institute and Physics Department, The City College of New York, NY 10031, USA
| | - Hernán A Makse
- Levich Institute and Physics Department, The City College of New York, NY 10031, USA
| |
Collapse
|
15
|
Lu Y, Kamkar M, Guo S, Niu X, Wan Z, Xu J, Su X, Fan Y, Bai L, Rojas OJ. Super-Macroporous Lightweight Materials Templated from Bicontinuous Intra-Phase Jammed Emulsion Gels Based on Nanochitin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300686. [PMID: 37147774 DOI: 10.1002/smll.202300686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Non-equilibrium multiphase systems are formed by mixing two immiscible nanoparticle dispersions, leading to bicontinuous emulsions that template cryogels with interconnected, tortuous channels. Herein, a renewable, rod-like biocolloid (chitin nanocrystals, ChNC) is used to kinetically arrest bicontinuous morphologies. Specifically, it is found that ChNC stabilizes intra-phase jammed bicontinuous systems at an ultra-low particle concentration (as low as 0.6 wt.%), leading to tailorable morphologies. The synergistic effects of ChNC high aspect ratio, intrinsic stiffness, and interparticle interactions produce hydrogelation and, upon drying, lead to open channels bearing dual characteristic sizes, suitably integrated into robust bicontinuous ultra-lightweight solids. Overall, it demonstrates the successful formation of ChNC-jammed bicontinuous emulsions and a facile emulsion templating route to synthesize chitin cryogels that form unique super-macroporous networks.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Milad Kamkar
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Shasha Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Xun Niu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Junhua Xu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No.159 Longpan Road, 210037, Nanjing, China
| | - Xiaoya Su
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, No.159 Longpan Road, 210037, Nanjing, China
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2385 Agronomy Rd & East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
16
|
Yardimci S, Gibaud T, Schwenger W, Sartucci M, Olmsted P, Urbach J, Dogic Z. Bonded straight and helical flagellar filaments form ultra-low-density glasses. Proc Natl Acad Sci U S A 2023; 120:e2215766120. [PMID: 37068256 PMCID: PMC10151462 DOI: 10.1073/pnas.2215766120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
We study how the three-dimensional shape of rigid filaments determines the microscopic dynamics and macroscopic rheology of entangled semidilute Brownian suspensions. To control the filament shape we use bacterial flagella, which are microns-long helical or straight filaments assembled from flagellin monomers. We compare the dynamics of straight rods, helical filaments, and shape-diblock copolymers composed of seamlessly joined straight and helical segments. Caged by their neighbors, straight rods preferentially diffuse along their long axis, but exhibit significantly suppressed rotational diffusion. Entangled helical filaments escape their confining tube by corkscrewing through the dense obstacles created by other filaments. By comparison, the adjoining segments of the rod-helix shape-diblocks suppress both the translation and the corkscrewing dynamics. Consequently, the shape-diblock filaments become permanently jammed at exceedingly low densities. We also measure the rheological properties of semidilute suspensions and relate their mechanical properties to the microscopic dynamics of constituent filaments. In particular, rheology shows that an entangled suspension of shape rod-helix copolymers forms a low-density glass whose elastic modulus can be estimated by accounting for how shear deformations reduce the entropic degrees of freedom of constrained filaments. Our results demonstrate that the three-dimensional shape of rigid filaments can be used to design rheological properties of semidilute fibrous suspensions.
Collapse
Affiliation(s)
- Sevim Yardimci
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute,NW1 1ATLondon, UK
| | - Thomas Gibaud
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,F-69342Lyon, France
| | - Walter Schwenger
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
| | - Matthew R. Sartucci
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Peter D. Olmsted
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Jeffrey S. Urbach
- Department of Physics Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Zvonimir Dogic
- The Martin Fisher School of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA93106
- Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
17
|
Huang Z, Deng W, Zhang S, Li S. Optimal shapes of disk assembly in saturated random packings. SOFT MATTER 2023; 19:3325-3336. [PMID: 37096323 DOI: 10.1039/d3sm00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Particle morphology is one of the most significant factors influencing the packing structures of granular materials. With certain targeted properties or optimization criteria, inverse packing problems have drawn extensive attention in terms of their adaptability to many material design tasks. An important question hard to answer is which particle shape, especially within given shape families, forms the densest (loosest) random packing? In this paper, we address this issue for the disk assembly model in two dimensions with an infinite variety of shapes, which are simulated in the random sequential adsorption process to suppress crystallization. Via a unique shape representation method, particle shapes are transformed into genotype sequences in the continuous shape space where we utilize the genetic algorithm as an efficient shape optimizer. Specifically, we consider three representative species of disk assembly, i.e., congruent tangent disks, incongruent tangent disks, and congruent overlapping disks, and carry out shape optimization on their packing densities in the saturated random state. We numerically search optimal shapes in the three species with a variable number of constituent disks which yield the maximal and minimal packing densities. We obtain an isosceles circulo-triangle and an unclosed ring for the maximal and minimal packing density in saturated random packings, respectively. The perfect sno-cone and isosceles circulo-triangle are also specifically investigated which give remarkably high packing densities of around 0.6, much denser than those of ellipses. This study is beneficial for guiding the design of particle shapes as well as the inverse design of granular materials.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixuan Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Sakurai Y, Kakiuchi R, Hirai T, Nakamura Y, Fujii S. Aqueous Bubbles Stabilized with Millimeter-Sized Polymer Plates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3800-3809. [PMID: 36853615 DOI: 10.1021/acs.langmuir.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
(Sub)millimeter-sized hexagonal polymer plates that were monodisperse in shape and size were utilized as stabilizers for aqueous bubbles, and the effects of the hydrophilic-hydrophobic property, size, and solid concentration of the plates on the formability, stability, and shape and structure of aqueous bubbles were investigated. The formability and stability of the bubbles were improved by increasing the hydrophobicity of the plate surface, decreasing the plate size, and increasing the solid concentration of the plates. For plates with suitable water wettability, three-dimensional bubbles with nearly spherical and polyhedral shapes were formed by the adsorption of plates to the bare air bubbles introduced into the continuous water phase by air-water mixing. On the contrary, two-dimensional bubbles with accordion-type structures consisting of alternating layers of plates and entrapped air bubbles were formed by the transfer of multiple plates with poor wettability from the air phase to the water phase by air-water mixing. Furthermore, a correlation was found between the bubble/stabilizer size ratio and bubble shape for plates with the suitable wettability: bubbles with nearly spherical shapes were formed when the bubble/plate size ratios were >2, bubbles with hexahedral, pentahedral, and tetrahedral shapes were formed when the size ratios were approximately 1, and bubbles with triangular and sandwich shapes were formed when the size ratios were <0.8. Additionally, bubbles with similar shapes were formed when the bubble/plate size ratios were close, even when the sizes of the plates and bubbles were different.
Collapse
Affiliation(s)
- Yuri Sakurai
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Rina Kakiuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
19
|
Jamming to unjamming: Phase transition in cyclodextrin-based emulsions mediated by sodium casein. J Colloid Interface Sci 2023; 640:540-548. [PMID: 36878071 DOI: 10.1016/j.jcis.2023.02.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
HYPOTHESIS Cyclodextrin (CD) can spontaneously build up the solid particle membrane with CD-oil inclusion complexes (ICs) by a self-assembly process. Sodium casein (SC) is expected to preferentially adsorb at the interface to transform the type of interfacial film. The high-pressure homogenization can increase interfacial contact opportunities of the components, which promote the phase transition of the interfacial film. EXPERIMENTS We added SC by sequential and simultaneous orders to mediate the assembly model of the CD-based films, examined the patterns in which the films adopt phase transitions to retard emulsion flocculation, and studied the physic-chemical properties of the emulsions and films from the structural arrest, interface tension, interfacial rheology, linear rheology, and nonlinear viscoelasticities through Fourier transform (FT)-rheology and Lissajous-Bowditch plots. FINDINGS The interfacial and large amplitude oscillatory shear (LAOS) rheological results showed that the films changed from jammed to unjammed. We divide the unjammed films into two types: one is SC dominated liquid-like film, which is fragile and related to droplet coalescence; the other is cohesive SC-CD film, which helps droplet rearrangement and retards droplet flocculation. Our results highlight the potential of mediating phase transformation of interfacial films to improve emulsion stability.
Collapse
|
20
|
Kou X, Zhang X, Ke Q, Meng Q. Pickering emulsions stabilized by β-CD microcrystals: Construction and interfacial assembly mechanism. Front Nutr 2023; 10:1161232. [PMID: 37032777 PMCID: PMC10073450 DOI: 10.3389/fnut.2023.1161232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
β-Cyclodextrin (β-CD) can combine with oil and other guest molecules to form amphiphilic inclusion complexes (ICs), which can be adsorbed on the oil-water interface to reduce the interfacial tension and stabilize Pickering emulsions. However, the subtle change of β-CD in the process of emulsion preparation is easily ignored. In this study, β-CD and ginger oil (GO) were used to prepare the Pickering emulsion by high-speed shearing homogenization without an exogenous emulsifier. The stability of the emulsion was characterized by microscopic observation, staining analysis, and creaming index (CI). Results showed that the flocculation of the obtained Pickering emulsion was serious, and the surface of the droplets was rough with lamellar particles. In order to elucidate the formation process of the layered particles, the GO/β-CD ICs were further prepared by ball milling method, and the X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and interfacial tension analyses found that β-CD and GO first formed amphiphilic nanoscale small particles (ICs) through the host-guest interaction, and the formed small particles were further self-assembled into lamellar micron-scale amphiphilic ICs microcrystals. These amphiphilic ICs and microcrystals aggregated at the oil-water interface and finally formed the Pickering emulsion. In this study, by exploring the formation process and evolution of GO/β-CD self-assembly, the formation process and stabilization mechanism of the β-CD-stabilized GO Pickering emulsion were clarified preliminarily, with the aim of providing a theoretical basis for the development of high-performance CD-stabilized Pickering emulsions.
Collapse
Affiliation(s)
- Xingran Kou
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Xinping Zhang
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- *Correspondence: Qinfei Ke
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavor and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance and Flavour Industry), Shanghai Institute of Technology, Shanghai, China
- Qingran Meng
| |
Collapse
|
21
|
Abstract
In addition to high compliance to unstructured environments, soft robots can be further improved to gain the advantages of rigid robots by increasing stiffness. Indeed, realizing the adjustable stiffness of soft continuum robots can provide safer interactions with objects and greatly expand their application range. To address the above situation, we propose a tubular stiffening segment based on layer jamming. It can temporarily increase the stiffness of the soft robot in a desired configuration. Furthermore, we also present a spine-inspired soft robot that can provide support in tubular segments to prevent buckling. Theoretical analysis was conducted to predict the stiffness variation of the robot at different vacuum levels. Finally, we integrated the spine-inspired soft robot and tubular stiffening segment to obtain the tuneable-stiffness soft continuum robot (TSCR). Experimental tests were performed to evaluate the robot’s shape control and stiffness tuning effectiveness. Experimental results showed that the bending stiffness of the initial TSCR increased by more than 15× at 0°, 30× at 90°, and 60× in compressive stiffness.
Collapse
|
22
|
Agashe C, Varshney R, Sangwan R, Gill AK, Alam M, Patra D. Anisotropic Compartmentalization of the Liquid-Liquid Interface using Dynamic Imine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8296-8303. [PMID: 35762368 DOI: 10.1021/acs.langmuir.2c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid-liquid interface offers a fascinating avenue for generating hierarchical compartments. Herein, the dynamic imine chemistry is employed at the oil-water interface to investigate the effect of dynamic covalent bonds for modulating the droplet shape. The imine bond formation between oil-soluble aromatic aldehydes and water-soluble polyethyleneimine greatly stabilized the oil-water interface by substantially lowering the interfacial tension. The successful jamming of imine-mediated assemblies was observed when a compressive force was applied to the droplet. Thus, the anisotropic compartmentalization of the liquid-liquid interface was created, and it was later altered by changing the pH of the surrounding environment. Finally, a proof-of-concept demonstration of a pH-triggered cargo release across the interfacial membrane confirmed the feasibility of stimuli-responsive behavior of dynamic imine assemblies.
Collapse
Affiliation(s)
- Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rohit Varshney
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Arshdeep K Gill
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Manauli, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
23
|
Bhosale Y, Weiner N, Butler A, Kim SH, Gazzola M, King H. Micromechanical Origin of Plasticity and Hysteresis in Nestlike Packings. PHYSICAL REVIEW LETTERS 2022; 128:198003. [PMID: 35622032 DOI: 10.1103/physrevlett.128.198003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Disordered packings of unbonded, semiflexible fibers represent a class of materials spanning contexts and scales. From twig-based bird nests to unwoven textiles, bulk mechanics of disparate systems emerge from the bending of constituent slender elements about impermanent contacts. In experimental and computational packings of wooden sticks, we identify prominent features of their response to cyclic oedometric compression: nonlinear stiffness, transient plasticity, and eventually repeatable velocity-independent hysteresis. We trace these features to their micromechanic origins, identified in characteristic appearance, disappearance, and displacement of internal contacts.
Collapse
Affiliation(s)
- Yashraj Bhosale
- Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Weiner
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Alex Butler
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Seung Hyun Kim
- Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mattia Gazzola
- Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hunter King
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, USA
- Department of Biology, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
24
|
Bakarich SE, Miller R, Mrozek RA, O'Neill MR, Slipher GA, Shepherd RF. Pump Up the Jam: Granular Media as a Quasi-Hydraulic Fluid for Independent Control Over Isometric and Isotonic Actuation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104402. [PMID: 35343110 PMCID: PMC9131430 DOI: 10.1002/advs.202104402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Elastomer-granule composites have been used to switch between soft and stiff states by applying negative pressure differentials that cause the membrane to squeeze the internal grains, inducing dilation and jamming. Applications of this phenomenon have ranged from universal gripping to adaptive mobility. Previously, the combination of this jamming phenomenon with the ability to transport grains across multiple soft actuators for shape morphing has not yet been demonstrated. In this paper, the authors demonstrate the use of hollow glass spheres as granular media that functions as a jammable "quasi-hydraulic" fluid in a fluidic elastomeric actuator that better mimics a key featur of animal musculature: independent control over i) isotonic actuation for motion; and ii) isometric actuation for stiffening without shape change. To best implement the quasi-hydraulic fluid, the authors design and build a fluidic device. Leveraging this combination of physical properties creates a new option for fluidic actuation that allows higher specific stiffness actuators using lower volumetric flow rates in addition to independent control over shape and stiffness. These features are showcased in a robotic catcher's mitt by stiffening the fluid in the glove's open configuration for catching, unjamming the media, then pumping additional fluid to the mitt to inflate and grasp.
Collapse
Affiliation(s)
- Shannon E. Bakarich
- Autonomous Systems DivisionDEVCOM U.S. Army Research LaboratoryAberdeen Proving GroundMD21005USA
- Department of Mechanical and Aerospace EngineeringCornell University124 Hoy RoadIthacaNY14850USA
| | - Rachel Miller
- Department of Materials Science and EngineeringCornell University214 Bard HallIthacaNY14850USA
| | - Randy A. Mrozek
- Weapons and Materials Research DirectorateDEVCOM U.S. Army Research LaboratoryAberdeen Proving GroundMD21005USA
| | - Maura R. O'Neill
- Department of Mechanical and Aerospace EngineeringCornell University124 Hoy RoadIthacaNY14850USA
| | - Geoffrey A. Slipher
- Autonomous Systems DivisionDEVCOM U.S. Army Research LaboratoryAberdeen Proving GroundMD21005USA
| | - Robert F. Shepherd
- Department of Mechanical and Aerospace EngineeringCornell University124 Hoy RoadIthacaNY14850USA
| |
Collapse
|
25
|
Karimi MA, Alizadehyazdi V, Jaeger HM, Spenko M. A Self-Reconfigurable Variable-Stiffness Soft Robot Based on Boundary-Constrained Modular Units. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3106830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Kadulkar S, Sherman ZM, Ganesan V, Truskett TM. Machine Learning-Assisted Design of Material Properties. Annu Rev Chem Biomol Eng 2022; 13:235-254. [PMID: 35300515 DOI: 10.1146/annurev-chembioeng-092220-024340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designing functional materials requires a deep search through multidimensional spaces for system parameters that yield desirable material properties. For cases where conventional parameter sweeps or trial-and-error sampling are impractical, inverse methods that frame design as a constrained optimization problem present an attractive alternative. However, even efficient algorithms require time- and resource-intensive characterization of material properties many times during optimization, imposing a design bottleneck. Approaches that incorporate machine learning can help address this limitation and accelerate the discovery of materials with targeted properties. In this article, we review how to leverage machine learning to reduce dimensionality in order to effectively explore design space, accelerate property evaluation, and generate unconventional material structures with optimal properties. We also discuss promising future directions, including integration of machine learning into multiple stages of a design algorithm and interpretation of machine learning models to understand how design parameters relate to material properties. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sanket Kadulkar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Zachary M Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Physics, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Dissipation behaviors of suspended granular balls in a vibrated closed container. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Liu T, Yin Y, Yang Y, Russell TP, Shi S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105386. [PMID: 34796557 DOI: 10.1002/adma.202105386] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/17/2021] [Indexed: 05/19/2023]
Abstract
Enzyme immobilization in the confines of microfluidic chips, that promote enzyme activity and stability, has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, based on a newly developed all-liquid microfluidic chip, fabricated by the interfacial assembly of nanoparticle surfactants (NPSs) in a biphasic system, a layer-by-layer assembly strategy to generate polysaccharide multilayers on the surface of a microchannel, greatly enhancing the mechanical properties of the microchannel and offering a biocompatible microenvironment for enzyme immobilization, is presented. Using horseradish peroxidase and glucose oxidase as model enzymes, all-liquid microfluidic enzymatic and cascade reactors have been constructed and the crucial role of polysaccharide multilayers on enhancing the enzyme loading and catalytic efficiency is demonstrated.
Collapse
Affiliation(s)
- Tan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yixuan Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Tramsen HT, Heepe L, Gorb SN. Bioinspired Granular Media Friction Pad: A Universal System for Friction Enhancement on Variety of Substrates. Biomimetics (Basel) 2022; 7:biomimetics7010009. [PMID: 35076467 PMCID: PMC8788473 DOI: 10.3390/biomimetics7010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022] Open
Abstract
The granular media friction pad (GMFP) inspired by the biological smooth attachment pads of cockroaches and grasshoppers employs passive jamming, to create high friction forces on a large variety of substrates. The granular medium inside the pad is encased by a flexible membrane which at contact formation greatly adapts to the substrate profile. Upon applying load, the granular medium undergoes the jamming transition and changes from fluid-like to solid-like properties. The jammed granular medium, in combination with the deformation of the encasing elastic membrane, results in high friction forces on a multitude of substrate topographies. Here we explore the effect of elasticity variation on the generation of friction by varying granular media filling quantity as well as membrane modulus and thickness. We systematically investigate contact area and robustness against substrate contamination, and we also determine friction coefficients for various loading forces and substrates. Depending on the substrate topography and loading forces, a low filling quantity and a thin, elastic membrane can be favorable, in order to generate the highest friction forces.
Collapse
|
30
|
Dierichs K, Menges A. Designing architectural materials: from granular form to functional granular material. BIOINSPIRATION & BIOMIMETICS 2021; 16:065010. [PMID: 34555826 DOI: 10.1088/1748-3190/ac2987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Designed granular materials are a novel class of architectural material system. Following one of the key paradigms of designed matter, material form and material function are closely interrelated in these systems. In this context, the article aims to contribute a parametric particle design model as an interface for this interrelation. A granular material is understood as an aggregation of large numbers of individual particles between which only short-range repulsive contact forces are acting. Granular materials are highly pertinent material systems for architecture. Due to the fact that they can act both as a solid and a liquid, they can be recycled and reconfigured multiple times and are thus highly sustainable. Designed granular materials have the added potential that the function of the granular material can be calibrated through the definition of the particles' form. Research on the design of granular materials in architecture is nascent. In physics they have been explored mainly with respect to different particle shapes. However, no coherent parametric particle design model of designed particle shapes for granular material systems in architecture has yet been established which considers both fabrication constraints and simulation requirements. The parametric particle design model proposed in this article has been based on a design system which has been developed through feasibility tests and simulations conducted in research and teaching. Based on this design system the parametric particle design model is developed integrating both fabrication constraints for architecture-scale particle systems and the geometric requirements of established simulation methods for granular materials. Initially the design system and related feasibility tests are presented. The parametric particle design model resulting from that is then described in detail. Directions of further research are discussed especially with respect to the integration of the parametric particle design model in 'inverse' design methods.
Collapse
Affiliation(s)
- Karola Dierichs
- Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPICI), Potsdam, Germany
- weißensee school of art and design berlin (khb), Berlin, Germany
- Cluster of Excellence Matters of Activity (MoA), Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim Menges
- Institute for Computational Design and Construction (ICD), University of Stuttgart, Stuttgart, Germany
- Cluster of Excellence Integrative Computational Design and Construction for Architecture (IntCDC), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
31
|
Varshney R, Agashe C, Gill AK, Alam M, Joseph R, Patra D. Modulation of liquid structure and controlling molecular diffusion using supramolecular constructs. Chem Commun (Camb) 2021; 57:10604-10607. [PMID: 34569581 DOI: 10.1039/d1cc04417f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The non-equilibrium liquid structure was achieved by interfacial jamming of pillar[5]arene carboxylic acid (P[5]AA) mediated by hydrogen bonding interactions. The assembly was reversibly modulated via jamming to unjamming transition thus dynamically shaping the liquid droplets. Interestingly, these supramolecular constructs showed pH-switchable gated diffusion of encapsulants, hence showcasing a next generation smart release system.
Collapse
Affiliation(s)
- Rohit Varshney
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Chinmayee Agashe
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Roymon Joseph
- Department of Chemistry, University of Calicut, Calicut, Kerala, 673635, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| |
Collapse
|
32
|
Formulation engineering of food systems for 3D-printing applications - A review. Food Res Int 2021; 148:110585. [PMID: 34507730 DOI: 10.1016/j.foodres.2021.110585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
The efficient development of extrusion-based 3D-printing requires flexibility in both formulation- and process design. This task requires a fundamental understanding of the influence of material rheological properties on the extrusion process. Within this review, a qualitative toolbox for food extrusion is presented which provides guidelines for the formulation and engineering of extrusion processes in general and 3D-printing in particular. The toolbox is based on current knowledge of highly viscous food systems and the influence of individual components on the overall rheology. It includes the efficiency of particle packing, microstructure and the influence of shear rate, as well as the formation of self-supporting structures by gelation of the liquid phase and crowding of particles. Physical laws and semi-empirical equations are discussed to describe the rheology and relate relevant theory to the extrusion process. Practical information is presented, including examples of extrusion and 3D-printing of food and non-food systems. The qualitative extrusion toolbox provides a general framework for the emerging field of extrusion-based 3D-printing of food products. It can be used to identify which specific material and process parameters can be changed and how they may be altered to optimize the 3D-printing process. The general framework will assist researchers, as well as industry.
Collapse
|
33
|
Structured fabrics with tunable mechanical properties. Nature 2021; 596:238-243. [PMID: 34381233 DOI: 10.1038/s41586-021-03698-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Structured fabrics, such as woven sheets or chain mail armours, derive their properties both from the constitutive materials and their geometry1,2. Their design can target desirable characteristics, such as high impact resistance, thermal regulation, or electrical conductivity3-5. Once realized, however, the fabrics' properties are usually fixed. Here we demonstrate structured fabrics with tunable bending modulus, consisting of three-dimensional particles arranged into layered chain mails. The chain mails conform to complex shapes2, but when pressure is exerted at their boundaries, the particles interlock and the chain mails jam. We show that, with small external pressure (about 93 kilopascals), the sheets become more than 25 times stiffer than in their relaxed configuration. This dramatic increase in bending resistance arises because the interlocking particles have high tensile resistance, unlike what is found for loose granular media. We use discrete-element simulations to relate the chain mail's micro-structure to macroscale properties and to interpret experimental measurements. We find that chain mails, consisting of different non-convex granular particles, undergo a jamming phase transition that is described by a characteristic power-law function akin to the behaviour of conventional convex media. Our work provides routes towards lightweight, tunable and adaptive fabrics, with potential applications in wearable exoskeletons, haptic architectures and reconfigurable medical supports.
Collapse
|
34
|
Fujiwara J, Yokoyama A, Seike M, Vogel N, Rey M, Oyama K, Hirai T, Nakamura Y, Fujii S. Boxes fabricated from plate-stabilized liquid marbles. MATERIALS ADVANCES 2021; 2:4604-4609. [PMID: 34355189 PMCID: PMC8290327 DOI: 10.1039/d1ma00398d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Polyhedral liquid marbles were fabricated using hydrophobic polymer plates in the shape of a circle, a heart and a star as a stabilizer and water as an inner liquid phase. Boxes could be fabricated by the evaporation of the inner water from the liquid marbles. The fabrication efficiency and stability of these boxes as a function of the plate shape were investigated. Functional materials such as polymers and colloidal particles were successfully introduced into the boxes.
Collapse
Affiliation(s)
- Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Ai Yokoyama
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 Erlangen 91058 Germany
| | - Marcel Rey
- Department of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road Edinburgh EH9 3FD UK
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
35
|
Shape effects on mechanical properties of maximally random jammed packings of intersecting spherocylinders. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Berressem F, Nikoubashman A. BoltzmaNN: Predicting effective pair potentials and equations of state using neural networks. J Chem Phys 2021; 154:124123. [PMID: 33810691 DOI: 10.1063/5.0045441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neural networks (NNs) are employed to predict equations of state from a given isotropic pair potential using the virial expansion of the pressure. The NNs are trained with data from molecular dynamics simulations of monoatomic gases and liquids, sampled in the NVT ensemble at various densities. We find that the NNs provide much more accurate results compared to the analytic low-density limit estimate of the second virial coefficient and the Carnahan-Starling equation of state for hard sphere liquids. Furthermore, we design and train NNs for computing (effective) pair potentials from radial pair distribution functions, g(r), a task that is often performed for inverse design and coarse-graining. Providing the NNs with additional information on the forces greatly improves the accuracy of the predictions since more correlations are taken into account; the predicted potentials become smoother, are significantly closer to the target potentials, and are more transferable as a result.
Collapse
Affiliation(s)
- Fabian Berressem
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
37
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
38
|
Gu P, Zhou F, Xie G, Kim PY, Chai Y, Hu Q, Shi S, Xu Q, Liu F, Lu J, Russell TP. Visualizing Interfacial Jamming Using an Aggregation‐Induced‐Emission Molecular Reporter. Angew Chem Int Ed Engl 2021; 60:8694-8699. [DOI: 10.1002/anie.202016217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Pei‐Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Ganhua Xie
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Paul Y. Kim
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Yu Chai
- Department of Physics City University of Hong Kong Kowloon China
| | - Qin Hu
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- School of Microelectronics University of Science and Technology of China Hefei Anhui 230026 China
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Qing‐Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Feng Liu
- Department of Physics and Astronomy Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiaotong University Shanghai 200240 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Thomas P. Russell
- Materials Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Polymer Science and Engineering Department University of Massachusetts Amherst MA 01003 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
39
|
Jadhav S, Majit MRA, Shih B, Schulze JP, Tolley MT. Variable Stiffness Devices Using Fiber Jamming for Application in Soft Robotics and Wearable Haptics. Soft Robot 2021; 9:173-186. [PMID: 33571060 DOI: 10.1089/soro.2019.0203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Variable stiffness actuation has applications in a wide range of fields, including wearable haptics, soft robots, and minimally invasive surgical devices. There have been numerous design approaches to control and tune stiffness and rigidity; however, most have relatively low specific load-carrying capacities (especially for flexural loads) in the most rigid state that restricts their use in small or slender devices. In this article, we present an approach to the design of slender, high flexural stiffness modules based on the principle of fiber jamming. The proposed fiber jamming modules (FJMs) consist of axially packed fibers in an airtight envelope that transition from a flexible to a rigid beam when a vacuum is created inside the envelope. This FJM can provide the flexural stiffness of up to eight times that of a particle jamming module in the rigid state. Unlike layer jamming modules, the design of FJMs further allows them to control stiffness while bending in space. We present an analytical model to guide the parameter choices for the design of fiber jamming devices. Finally, we demonstrate applications of FJMs, including as a versatile tool, as part of a kinesthetic force feedback haptic glove and as a programmable structure.
Collapse
Affiliation(s)
- Saurabh Jadhav
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| | - Mohamad Ramzi Abdul Majit
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| | - Benjamin Shih
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| | - Jürgen P Schulze
- Department of Computer Science and Engineering, California Institute of Telecommunications and Information Technology, University of California, San Diego, La Jolla, California, USA
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
40
|
Hafez A, Liu Q, Finkbeiner T, Alouhali RA, Moellendick TE, Santamarina JC. The effect of particle shape on discharge and clogging. Sci Rep 2021; 11:3309. [PMID: 33558548 PMCID: PMC7870973 DOI: 10.1038/s41598-021-82744-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Granular flow is common across different fields from energy resource recovery and mineral processing to grain transport and traffic flow. Migrating particles may jam and form arches that span constrictions and hinder particle flow. Most studies have investigated the migration and clogging of spherical particles, however, natural particles are rarely spherical, but exhibit eccentricity, angularity and roughness. New experiments explore the discharge of cubes, 2D crosses, 3D crosses and spheres under dry conditions and during particle-laden fluid flow. Variables include orifice-to-particle size ratio and solidity. Cubes and 3D crosses are the most prone to clogging because of their ability to interlock or the development of face-to-face contacts that can resist torque and enhance bridging. Spheres arriving to the orifice must be correctly positioned to create stable bridges, while flat 2D crosses orient their longest axes in the direction of flowlines across the orifice and favor flow. Intermittent clogging causes kinetic retardation in particle-laden flow even in the absence of inertial effects; the gradual increase in the local particle solidity above the constriction enhances particle interactions and the probability of clogging. The discharge volume before clogging is a Poisson process for small orifice-to-particle size ratio; however, the clogging probability becomes history-dependent for non-spherical particles at large orifice-to-particle size ratio and high solidities, i.e., when particle–particle interactions and interlocking gain significance.
Collapse
Affiliation(s)
- Ahmed Hafez
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Qi Liu
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Finkbeiner
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | | | | | | |
Collapse
|
41
|
Quintela Matos I, Escobedo F. Congruent phase behavior of a binary compound crystal of colloidal spheres and dimpled cubes. J Chem Phys 2020; 153:214503. [DOI: 10.1063/5.0030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabela Quintela Matos
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Fernando Escobedo
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
42
|
Zhao Y, Barés J, Socolar JES. Yielding, rigidity, and tensile stress in sheared columns of hexapod granules. Phys Rev E 2020; 101:062903. [PMID: 32688601 DOI: 10.1103/physreve.101.062903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022]
Abstract
Granular packings of nonconvex or elongated particles can form freestanding structures like walls or arches. For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins of rigidity for noninterlocking particles remains unclear. We report on experiments and numerical simulations of sheared columns of "hexapods," particles consisting of three mutually orthogonal sphero-cylinders whose centers coincide. We vary the length-to-diameter aspect ratio, α, of the sphero-cylinders and subject the packings to quasistatic direct shear. For small α, we observe a finite yield stress. For large α, however, the column becomes rigid when sheared, supporting stresses that increase sharply with increasing strain. Analysis of x-ray microcomputed tomography (micro-CT) data collected during the shear reveals that the stiffening is associated with a tilted, oblate cluster of hexapods near the nominal shear plane in which particle deformation and average contact number both increase. Simulation results show that the particles are collectively under tension along one direction, even though they do not interlock pairwise. These tensions comes from contact forces carrying large torques, and they are perpendicular to the compressive stresses in the packing. They counteract the tendency to dilate, thus stabilizing the particle cluster.
Collapse
Affiliation(s)
- Yuchen Zhao
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, UMR 5508, CNRS-University Montpellier, 34095 Montpellier, France
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
43
|
Yuan Y, Deng W, Li S. Structural universality in disordered packings with size and shape polydispersity. SOFT MATTER 2020; 16:4528-4539. [PMID: 32356543 DOI: 10.1039/d0sm00110d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We numerically investigate disordered jammed packings with both size and shape polydispersity, using frictionless superellipsoidal particles. We implement the set Voronoi tessellation technique to evaluate the local specific volume, i.e., the ratio of cell volume over particle volume, for each individual particle. We focus on the average structural properties for different types of particles binned by their sizes and shapes. We generalize the basic observation that the larger particles are locally packed more densely than the smaller ones in a polydisperse-sized packing into systems with coupled particle shape dispersity. For this purpose, we define the normalized free volume vf to measure the local compactness of a particle and study its dependency on the normalized particle size A. The definition of vf relies on the calibrated monodisperse specific volume for a certain particle shape. For packings with shape dispersity, we apply the previously introduced concept of equivalent diameter for a non-spherical particle to define A properly. We consider three systems: (A) linear superposition states of mixed-shape packings, (B) merely polydisperse-sized packings, and (C) packings with coupled size and shape polydispersity. For (A), the packing is simply considered as a mixture of different subsystems corresponding to monodisperse packings for different shape components, leading to A = 1, and vf = 1 by definition. We propose a concise model to estimate the shape-dependent factor αc, which defines the equivalent diameter for a certain particle. For (B), vf collapses as a function of A, independent of specific particle shape and size polydispersity. Such structural universality is further validated by a mean-field approximation. For (C), we find that the master curve vf(A) is preserved when particles possess similar αc in a packing. Otherwise, the dispersity of αc among different particles causes the deviation from vf(A). These findings show that a polydisperse packing can be estimated as the combination of various building blocks, i.e., bin components, with a universal relation vf(A).
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
44
|
Sun H, Li L, Russell TP, Shi S. Photoresponsive Structured Liquids Enabled by Molecular Recognition at Liquid–Liquid Interfaces. J Am Chem Soc 2020; 142:8591-8595. [DOI: 10.1021/jacs.0c02555] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huilou Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lianshun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
45
|
Sherman ZM, Howard MP, Lindquist BA, Jadrich RB, Truskett TM. Inverse methods for design of soft materials. J Chem Phys 2020; 152:140902. [DOI: 10.1063/1.5145177] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Zachary M. Sherman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael P. Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Beth A. Lindquist
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ryan B. Jadrich
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
46
|
VanderWerf K, Boromand A, Shattuck MD, O'Hern CS. Pressure Dependent Shear Response of Jammed Packings of Frictionless Spherical Particles. PHYSICAL REVIEW LETTERS 2020; 124:038004. [PMID: 32031840 PMCID: PMC9128574 DOI: 10.1103/physrevlett.124.038004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 05/09/2023]
Abstract
The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure p, the ensemble-averaged static shear modulus ⟨G-G_{0}⟩ scales with p^{α}, where α≈1, but above a characteristic pressure p^{**}, ⟨G-G_{0}⟩∼p^{β}, where β≈0.5. However, we find that the shear modulus G^{i} for an individual packing typically decreases linearly with p along a geometrical family where the contact network does not change. We resolve this discrepancy by showing that, while the shear modulus does decrease linearly within geometrical families, ⟨G⟩ also depends on a contribution from discontinuous jumps in ⟨G⟩ that occur at the transitions between geometrical families. For p>p^{**}, geometrical-family and rearrangement contributions to ⟨G⟩ are of opposite signs and remain comparable for all system sizes. ⟨G⟩ can be described by a scaling function that smoothly transitions between two power-law exponents α and β. We also demonstrate the phenomenon of compression unjamming, where a jammed packing unjams via isotropic compression.
Collapse
Affiliation(s)
- Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Arman Boromand
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
47
|
Jia X, Minami K, Uto K, Chang AC, Hill JP, Nakanishi J, Ariga K. Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905942. [PMID: 31814174 DOI: 10.1002/adma.201905942] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/30/2019] [Indexed: 05/06/2023]
Abstract
There is a growing interest in the development of dynamic adaptive biomaterials for regulation of cellular functions. However, existing materials are limited to two-state switching of the presentation and removal of cell-adhesive bioactive motifs that cannot emulate the native extracellular matrix (ECM) in vivo with continuously adjustable characteristics. Here, tunable adaptive materials composed of a protein monolayer assembled at a liquid-liquid interface are demonstrated, which adapt dynamically to cell traction forces. An ultrastructure transition from protein monolayer to hierarchical fiber occurs through interfacial jamming. Elongated fibronectin fibers promote formation of elongated focal adhesion structures, increase focal adhesion kinase activation, and enhance neuronal differentiation of stem cells. Cell traction force results in spatial rearrangement of ECM proteins, which feeds back to alter stem cell fate. The reported biomimetic adaptive liquid interface enables dynamic control of stem cell behavior and has potential translational applications.
Collapse
Affiliation(s)
- Xiaofang Jia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kosuke Minami
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koichiro Uto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Alice Chinghsuan Chang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
48
|
Yuan Y, VanderWerf K, Shattuck MD, O'Hern CS. Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering. SOFT MATTER 2019; 15:9751-9761. [PMID: 31742301 PMCID: PMC6902436 DOI: 10.1039/c9sm01932d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial dimensions. We consider more than 200 different particle shapes by varying the three shape parameters that define superellipsoids. We characterize the structural and mechanical properties of both disordered and ordered packings using two packing-generation protocols. We perform athermal quasi-static compression simulations starting from either random, dilute configurations (Protocol 1) or thermalized, dense configurations (Protocol 2), which allows us to tune the orientational order of the packings. In general, we find that superellipsoid packings are hypostatic, with coordination number zJ < ziso, where ziso = 2df and df = 5 or 6 depending on whether the particles are axi-symmetric or not. Over the full range of orientational order, we find that the number of quartic modes of the dynamical matrix for the packings always matches the number of missing contacts relative to the isostatic value. This result suggests that there are no mechanically redundant contacts for ordered, yet hypostatic packings of superellipsoidal particles. Additionally, we find that the packing fraction at jamming onset for disordered packings of superellipsoidal depends on at least two particle shape parameters, e.g. the asphericity A and reduced aspect ratio β of the particles.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
49
|
Kumar R, Coli GM, Dijkstra M, Sastry S. Inverse design of charged colloidal particle interactions for self assembly into specified crystal structures. J Chem Phys 2019; 151:084109. [DOI: 10.1063/1.5111492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rajneesh Kumar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Gabriele M. Coli
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
50
|
Griffith AD, Hoy RS. Densest versus jammed packings of bent-core trimers. Phys Rev E 2019; 100:022903. [PMID: 31574635 DOI: 10.1103/physreve.100.022903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
We identify putatively maximally dense packings of tangent-sphere trimers with fixed bond angles (θ=θ_{0}), and contrast them to the disordered jammed states they form under quasistatic and dynamic athermal compression. Incommensurability of θ_{0} with three-dimensional (3D) close packing does not by itself inhibit formation of dense 3D crystals; all θ_{0} allow formation of crystals with ϕ_{max}(θ_{0})>0.97ϕ_{cp}. Trimers are always able to arrange into periodic structures composed of close-packed bilayers or trilayers of triangular-lattice planes, separated by "gap layers" that accommodate the incommensurability. All systems have ϕ_{J} significantly below the monomeric value, indicating that trimers' quenched bond-length and bond-angle constraints always act to promote jamming. ϕ_{J} varies strongly with θ_{0}; straight (θ_{0}=0) trimers minimize ϕ_{J} while closed (θ_{0}=120^{∘}) trimers maximize it. Marginally jammed states of trimers with lower ϕ_{J}(θ_{0}) exhibit quantifiably greater disorder, and the lower ϕ_{J} for small θ_{0} is apparently caused by trimers' decreasing effective configurational freedom as they approach linearity.
Collapse
Affiliation(s)
- Austin D Griffith
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|