1
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Li X, Ren Y, Xue Y, Zhang Y, Liu Y. Nanofibrous scaffolds for the healing of the fibrocartilaginous enthesis: advances and prospects. NANOSCALE HORIZONS 2023; 8:1313-1332. [PMID: 37614124 DOI: 10.1039/d3nh00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|
3
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
4
|
Yang C, Teng Y, Geng B, Xiao H, Chen C, Chen R, Yang F, Xia Y. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol 2023; 11:1118468. [PMID: 36777256 PMCID: PMC9911882 DOI: 10.3389/fbioe.2023.1118468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, China
| | - Yuanjun Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China,The Second School of Clinical Medical, Lanzhou University, Lanzhou, China,*Correspondence: Yayi Xia,
| |
Collapse
|
5
|
Washington KS, Shemshaki NS, Laurencin CT. The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 7:440-449. [PMID: 35005215 DOI: 10.1007/s40883-020-00171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rotator cuff is a musculotendon unit responsible for movement in the shoulder. Rotator cuff tears represent a significant number of musculoskeletal injuries in the adult population. In addition, there is a high incidence of retear rates due to various complications within the complex anatomical structure and the lack of proper healing. Current clinical strategies for rotator cuff augmentation include surgical intervention with autograft tissue grafts and beneficial impacts have been shown, but challenges still exist because of limited supply. For decades, nanomaterials have been engineered for the repair of various tissue and organ systems. This review article provides a thorough summary of the role nanomaterials, stem cells and biological agents have played in rotator cuff repair to date and offers input on next generation approaches for regenerating this tissue.
Collapse
Affiliation(s)
- Kenyatta S Washington
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Machine learning to empower electrohydrodynamic processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112553. [DOI: 10.1016/j.msec.2021.112553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
|
7
|
Kim W, Gwon Y, Kim YK, Park S, Kang SJ, Park HK, Kim MS, Kim J. Plasma-assisted multiscale topographic scaffolds for soft and hard tissue regeneration. NPJ Regen Med 2021; 6:52. [PMID: 34504097 PMCID: PMC8429553 DOI: 10.1038/s41536-021-00162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The design of transplantable scaffolds for tissue regeneration requires gaining precise control of topographical properties. Here, we propose a methodology to fabricate hierarchical multiscale scaffolds with controlled hydrophilic and hydrophobic properties by employing capillary force lithography in combination with plasma modification. Using our method, we fabricated biodegradable biomaterial (i.e., polycaprolactone (PCL))-based nitrogen gas (N-FN) and oxygen gas plasma-assisted flexible multiscale nanotopographic (O-FMN) patches with natural extracellular matrix-like hierarchical structures along with flexible and controlled hydrophilic properties. In response to multiscale nanotopographic and chemically modified surface cues, the proliferation and osteogenic mineralization of cells were significantly promoted. Furthermore, the O-FMN patch enhanced regeneration of the mineralized fibrocartilage tissue of the tendon-bone interface and the calvarial bone tissue in vivo in rat models. Overall, the PCL-based O-FMN patches could accelerate soft- and hard-tissue regeneration. Thus, our proposed methodology was confirmed as an efficient approach for the design and manipulation of scaffolds having a multiscale topography with controlled hydrophilic property.
Collapse
Affiliation(s)
- Woochan Kim
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yang-Kyung Kim
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sunho Park
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ju Kang
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyeng-Kyu Park
- grid.411597.f0000 0004 0647 2471Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju, Republic of Korea
| | - Myung-Sun Kim
- grid.411597.f0000 0004 0647 2471Department of Orthopedics, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jangho Kim
- grid.14005.300000 0001 0356 9399Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea ,grid.14005.300000 0001 0356 9399Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea ,Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, 61008 Republic of Korea
| |
Collapse
|
8
|
Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021; 124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.
Collapse
|
9
|
Mao Z, Fan B, Wang X, Huang X, Guan J, Sun Z, Xu B, Yang M, Chen Z, Jiang D, Yu J. A Systematic Review of Tissue Engineering Scaffold in Tendon Bone Healing in vivo. Front Bioeng Biotechnol 2021; 9:621483. [PMID: 33791283 PMCID: PMC8005599 DOI: 10.3389/fbioe.2021.621483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tendon-bone healing is an important factor in determining the success of ligament reconstruction. With the development of biomaterials science, the tissue engineering scaffold plays an extremely important role in tendon-bone healing and bone tissue engineering. Materials and Methods: Electronic databases (PubMed, Embase, and the Web of Science) were systematically searched for relevant and qualitative studies published from 1 January 1990 to 31 December 2019. Only original articles that met eligibility criteria and evaluated the use of issue engineering scaffold especially biomaterials in tendon bone healing in vivo were selected for analysis. Results: The search strategy identified 506 articles, and 27 studies were included for full review including two human trials and 25 animal studies. Fifteen studies only used biomaterials like PLGA, collage, PCL, PLA, and PET as scaffolds to repair the tendon-bone defect, on this basis, the rest of the 11 studies using biological interventions like cells or cell factors to enhance the healing. The adverse events hardly ever occurred, and the tendon bone healing with tissue engineering scaffold was effective and superior, which could be enhanced by biological interventions. Conclusion: Although a number of tissue engineering scaffolds have been developed and applied in tendon bone healing, the researches are mainly focused on animal models which are with limitations in clinical application. Since the efficacy and safety of tissue engineering scaffold has been proved, and can be enhanced by biological interventions, substantial clinical trials remain to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical practice.
Collapse
Affiliation(s)
- Zimu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Baoshi Fan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xinjie Wang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ximeng Huang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jian Guan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Zewen Sun
- Qingdao University, Qingdao, China
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingbing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zeyi Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Dong Jiang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jiakuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
10
|
Wang L, Kang Y, Chen S, Mo X, Jiang J, Yan X, Zhu T, Zhao J. Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomater Sci Eng 2020; 7:904-915. [PMID: 33715366 DOI: 10.1021/acsbiomaterials.0c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The postoperative retear rate of direct repair of massive rotator cuff tear has risen up to 40% because of the dissatisfied tendon-to-bone healing and poor regenerative potential of remnant rotator cuff tissue. A biological scaffold that connects the remnant rotator cuff tissue and bone might be a promising substitute. In the present study, we have developed a macroporous three-dimensional scaffold poly(ester-urethane)urea (PEUU), with self-fitting capability employing thermally induced phase separation (TIPS) technique. The scaffold provides oriented connected macropores for cells migration, and promoted tendon-to-bone healing on the basis of surgical repair. The scaffolds were characterized by scanning electron microscopy, stress-strain test and cell biocompatibility study. In vitro studies exhibited that PEUU scaffold with suitable elastic mechanical properties can better support proliferation and migration of rabbit bone mesenchymal stem cells (RBMSCs). After three months postreconstruction of massive rotator cuff tear in a rabbit model using PEUU scaffold, there was complete regeneration of rotator cuff with physical tendon-to-bone interface and continuous tendon tissue, as observed from histological analysis. Further, biomechanical testing demonstrated that rotator cuff induced by PEUU scaffold had no significant difference as compared to normal rotator cuff. This macroporous, mechanically matched scaffold is potentially suitable for the application in massive rotator cuff repair. In conclusion, this study demonstrates the high efficiency of the macroporous 3D scaffold with self-fitting capability in facilitating rotator cuff regeneration.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Sihao Chen
- Multidisciplinary Center for Advanced Materials, Advanced Research Institute, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
11
|
Saveh-Shemshaki N, S.Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019; 94:64-81. [PMID: 31128319 DOI: 10.1016/j.actbio.2019.05.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.
Collapse
|
12
|
Bazrafshan Z, Stylios GK. Spinnability of collagen as a biomimetic material: A review. Int J Biol Macromol 2019; 129:693-705. [DOI: 10.1016/j.ijbiomac.2019.02.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
|
13
|
Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1963. [PMID: 30322082 PMCID: PMC6213815 DOI: 10.3390/ma11101963] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Tendon and ligament tissue regeneration and replacement are complex since scaffolds need to guarantee an adequate hierarchical structured morphology, and non-linear mechanical properties. Moreover, to guide the cells' proliferation and tissue re-growth, scaffolds must provide a fibrous texture mimicking the typical of the arrangement of the collagen in the extracellular matrix of these tissues. Among the different techniques to produce scaffolds, electrospinning is one of the most promising, thanks to its ability to produce fibers of nanometric size. This manuscript aims to provide an overview to researchers approaching the field of repair and regeneration of tendons and ligaments. To clarify the general requirements of electrospun scaffolds, the first part of this manuscript presents a general overview concerning tendons' and ligaments' structure and mechanical properties. The different types of polymers, blends and particles most frequently used for tendon and ligament tissue engineering are summarized. Furthermore, the focus of the review is on describing the different possible electrospinning setups and processes to obtain different nanofibrous structures, such as mats, bundles, yarns and more complex hierarchical assemblies. Finally, an overview concerning how these technologies are exploited to produce electrospun scaffolds for tendon and ligament tissue applications is reported together with the main findings and outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum-Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
14
|
Wu Y, Han Y, Wong YS, Fuh JYH. Fibre-based scaffolding techniques for tendon tissue engineering. J Tissue Eng Regen Med 2018; 12:1798-1821. [DOI: 10.1002/term.2701] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Wu
- Engineering Science and Mechanics Department; Penn State University; University Park PA USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park PA USA
| | - Yi Han
- Department of Preventive Medicine; USC Keck School of Medicine; Los Angeles CA USA
| | - Yoke San Wong
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering; National University of Singapore; Singapore Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park; Suzhou China
| |
Collapse
|
15
|
Chen E, Yang L, Ye C, Zhang W, Ran J, Xue D, Wang Z, Pan Z, Hu Q. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomater 2018; 73:377-387. [PMID: 29678676 DOI: 10.1016/j.actbio.2018.04.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
The poor healing capacity and typically incomplete regeneration of injured tendons has made tendon repair as a primary clinical concern. Several methods for repairing injured tendons have been developed in the last decade. Tendon regeneration using current tissue engineering techniques requires advanced biomaterials to satisfy both microstructural and mechanical criteria. In this study, a novel chitosan (CS)-based scaffold with asymmetric structure was fabricated using a self-deposition technique. The fabricated scaffolds were assessed with regard to the microstructural and mechanical demands of cell ingrowth and the prevention of peritendinous adhesion. In vitro studies showed that rat tendon stem/progenitor cells (TSPCs) seeded onto the CS scaffold displayed higher levels of tenogenic specific genes expression and protein production. Four and six weeks after the implantation of CS scaffolds on full-site Achilles tendon defects, in vivo tendon repair was evaluated by histology, immunohistochemistry, immunofluorescence, and mechanical measurements. The production of collagen I (COL1) and collagen III (COL3) demonstrated that the CS scaffolds were capable of inducing conspicuous tenogenic differentiation, higher tenomodulin (TNMD) production, and superior phenotypic maturity, compared with the empty defect group. The introduction of TSPCs into the CS scaffold resulted in a synergistic effect on tendon regeneration and yielded better-aligned collagen fibers with elongated, spindle-shaped cells. These findings indicated that the application of TSPC-seeded CS scaffolds would be a feasible approach for tendon repair. STATEMENT OF SIGNIFICANCE The poor healing capacity of injured tendons and inevitable peritendinous adhesion has made tendon regeneration a clinical priority. In this study, an asymmetric chitosan scaffold was developed to encapsulate rat tendon stem/progenitor cells (TSPCs), which could induce higher levels of tenogenic specific genes and protein expression. Remarkably, the introduction of TSPCs into the asymmetric chitosan scaffold generated a synergistic effect on in vivo tendon regeneration and lead to better-aligned collagen fibers compared with asymmetric chitosan scaffold alone. This work can provide new guidelines for the structure and property design of cell-seeded scaffolds for tendon regeneration.
Collapse
Affiliation(s)
- Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chenyi Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China
| | - Jisheng Ran
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China; Orthopedics Research Institute, Zhejiang University, Hangzhou 310000, China.
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Xu Y, Cui W, Zhang Y, Zhou P, Gu Y, Shen X, Li B, Chen L. Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration. Adv Healthc Mater 2017; 6. [PMID: 28407447 DOI: 10.1002/adhm.201601457] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/27/2017] [Indexed: 01/26/2023]
Abstract
Various biomimetic scaffolds with hierarchical micro/nanostructures are designed to closely mimic native extracellular matrix network and to guide cell behavior to promote structural tissue generation. However, it remains a challenge to fabricate hierarchical micro/nanoscaled fibrous scaffolds with different functional components that endow the scaffolds with both biochemical and physical features to exert different biological roles during the process of tissue healing. In this study, a biomimetic designed micro/nanoscaled scaffold with integrated hierarchical dual fibrillar components is fabricated in order to repair dura mater and prevent the formation of epidural scars via collagen molecule self-assembly, electrospinning, and biological interface crosslinking strategies. The fabricated biomimetic scaffolds display micro/nanofibers staggered hierarchical architecture with good mechanical properties and biocompatibility, and it has a more profound effect on attachment, proliferation, and differentiation of fibroblasts. Using a rabbit duraplasty model in vivo, the authors find that dural defects repaired with hierarchical micro/nanoscaled scaffold form a continuous neodura tissue similar to native dura mater; furthermore, the number of scar tissues decreases significantly in the laminectomy sites compared with conventional electrospun microfibrous scaffold. Taken together, these data suggest that the hierarchical micro/nanoscaled fibrous scaffolds with dual fibrillar components may act as a "true" dural substitutes for dual repair.
Collapse
Affiliation(s)
- Yun Xu
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou Jiangsu 215006 P. R. China
| | - Wenguo Cui
- Orthopaedic Institute; Soochow University; Suzhou Jiangsu 215007 P. R. China
| | - Yanxia Zhang
- Institute of Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital; Soochow University; Suzhou Jiangsu 215007 P. R. China
| | - Pinghui Zhou
- Orthopaedic Institute; Soochow University; Suzhou Jiangsu 215007 P. R. China
| | - Yong Gu
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou Jiangsu 215006 P. R. China
| | - Xiaofeng Shen
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou Jiangsu 215006 P. R. China
| | - Bin Li
- Orthopaedic Institute; Soochow University; Suzhou Jiangsu 215007 P. R. China
| | - Liang Chen
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Soochow University; Suzhou Jiangsu 215006 P. R. China
| |
Collapse
|
17
|
Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor. Colloids Surf B Biointerfaces 2016; 142:10-19. [DOI: 10.1016/j.colsurfb.2016.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022]
|
18
|
Chen H, Jia P, Kang H, Zhang H, Liu Y, Yang P, Yan Y, Zuo G, Guo L, Jiang M, Qi J, Liu Y, Cui W, Santos HA, Deng L. Upregulating Hif-1α by Hydrogel Nanofibrous Scaffolds for Rapidly Recruiting Angiogenesis Relative Cells in Diabetic Wound. Adv Healthc Mater 2016; 5:907-18. [PMID: 26891197 DOI: 10.1002/adhm.201501018] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/02/2016] [Indexed: 12/30/2022]
Abstract
Nonhealing chronic wounds on foot are one of the most dreaded complications of diabetes, and biomedical scaffolds remain an attractive option for repairing or regenerating tissues. Accelerating angiogenesis in the early stage after injury is critical to wound healing process; however, the scaffolds accelerate the angiogenesis in the beginning but with the acceleration of vessel network formation the scaffold network hinders the process. In this study, the water soluble drugs-loaded hydrogel nanofibrous scaffolds are designed for rapidly recruiting angiogenesis relative cells and promoting wound healing. The sustained release profile of desferrioxamine (DFO), which continues for about 72 h, leads to significantly increase of neovascularization. The majority of the scaffold is degraded in 14 d, leaving enough space for cell proliferation and vessel formation. The in vitro results show that the scaffolds upregulate the expression of Hif-1α and vascular endothelial growth factor, and enhance the interaction between fibroblasts and endothelial cells. The in vivo studies show a higher expression of angiogenesis related cytokines. This study demonstrates that the DFO released from hydrogel nanofibrous scaffolds of quick degradation can interfere with the required prolyl-hydroxylases cofactors by acting as Fe(2+) chelator and upregulate the expression of Hif-1α, leading to a significant increase of the neovascularization.
Collapse
Affiliation(s)
- Hao Chen
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Peng Jia
- Department of Orthopaedics; The Second Affiliated Hospital of Soochow University; 1055 Sanxiang Road Soochow Jiangsu 215004 P. R. China
| | - Hui Kang
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Helsinki FI-00014 Finland
- Harvard John A. Paulson School of Applied Science and Engineering; Harvard University; Cambridge MA 02138 USA
| | - Yi Liu
- Rapid Manufacturing Engineering Center of Shanghai University; 99 Shangda Road Shanghai 200444 P. R. China
| | - Peilang Yang
- Department of Burn and Plastic surgery; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yufei Yan
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Guilai Zuo
- Department of Orthopaedics; Qian Fo Shan Hospital; Shan Dong University; 16766 Jingshi Road Ji Nan Shandong 250014 P. R. China
| | - Lei Guo
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Min Jiang
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yuanyuan Liu
- Rapid Manufacturing Engineering Center of Shanghai University; 99 Shangda Road Shanghai 200444 P. R. China
| | - Wenguo Cui
- Department of Orthopedics; The First Affiliated Hospital of Soochow University; Orthopedic Institute; Soochow University; 708 Renmin Road Suzhou Jiangsu 215006 P. R. China
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Helsinki FI-00014 Finland
| | - Lianfu Deng
- Shanghai Institute of Traumatology and Orthopaedics; Shanghai Key Laboratory for Prevention and Treatmentof Bone and Joint Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
19
|
The influence of topography on tissue engineering perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:906-21. [DOI: 10.1016/j.msec.2015.12.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022]
|
20
|
Kuppan P, Sethuraman S, Krishnan UM. Fabrication and investigation of nanofibrous matrices as esophageal tissue scaffolds using human non-keratinized, stratified, squamous epithelial cells. RSC Adv 2016. [DOI: 10.1039/c5ra24303c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Clinical conditions of the esophagus are conventionally treated by autologous grafts and are generally associated with complications such as leakage, infection and stenosis necessitating an alternative synthetic graft with superior outcomes.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| | - Swaminathan Sethuraman
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| | - Uma Maheswari Krishnan
- Departments of Chemistry, Bioengineering & Pharmacy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613 401
| |
Collapse
|
21
|
Zhao X, Yuan Z, Yildirimer L, Zhao J, Lin ZYW, Cao Z, Pan G, Cui W. Tumor-Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4284-4291. [PMID: 26034038 DOI: 10.1002/smll.201500985] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 06/04/2023]
Abstract
A smart, tumor-trigged, controlled drug release using inorganic "caps" with CO3 (2-) functional groups in electrospun fibers is presented for inhibiting cancer relapse. When the drug-loaded intelligent electrospun fibers encounter pathological acidic environments, the inorganic gates react with the acids and produce CO2 gas, which enables water penetration into the core of the fibers to induce rapid drug release.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Ziming Yuan
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, P. R. China
| | - Lara Yildirimer
- Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, London, WC1E 6AU, UK
| | - Jingwen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhi Yuan William Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhi Cao
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Guoqing Pan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenguo Cui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|