1
|
Borek-Dorosz A, Pieczara A, Czamara K, Stojak M, Matuszyk E, Majzner K, Brzozowski K, Bresci A, Polli D, Baranska M. What is the ability of inflamed endothelium to uptake exogenous saturated fatty acids? A proof-of-concept study using spontaneous Raman, SRS and CARS microscopy. Cell Mol Life Sci 2022; 79:593. [PMID: 36380212 PMCID: PMC9666316 DOI: 10.1007/s00018-022-04616-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Endothelial cells (EC) in vivo buffer and regulate the transfer of plasma fatty acid (FA) to the underlying tissues. We hypothesize that inflammation could alter the functionality of the EC, i.e., their capacity and uptake of different FA. The aim of this work is to verify the functionality of inflamed cells by analyzing their ability to uptake and accumulate exogenous saturated FA. Control and inflammatory human microvascular endothelial cells stimulated in vitro with two deuterium-labeled saturated FA (D-FA), i.e., palmitic (D31-PA) and myristic (D27-MA) acids. Cells were measured both by spontaneous and stimulated Raman imaging to extract detailed information about uptaken FA, whereas coherent anti-Stokes Raman scattering and fluorescence imaging showed the global content of FA in cells. Additionally, we employed atomic force microscopy to obtain a morphological image of the cells. The results indicate that the uptake of D-FA in inflamed cells is dependent on their concentration and type. Cells accumulated D-FA when treated with a low concentration, and the effect was more pronounced for D27-MA, in normal cells, but even more so, in inflamed cells. In the case of D31-PA, a slightly increased uptake was observed for inflamed cells when administered at higher concentration. The results provide a better understanding of the EC inflammation and indicate the impact of the pathological state of the EC on their capacity to buffer fat. All the microscopic methods used showed complementarity in the analysis of FA uptake by EC, but each method recognized this process from a different perspective.
Collapse
Affiliation(s)
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Arianna Bresci
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Dario Polli
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy ,Institute for Photonics and Nanotechnology at CNR (CNR-IFN), Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
2
|
Reczyńska K, Khanal D, Pielichowska K, Pamuła E, Chrzanowski W. Distinct Influence of Saturated Fatty Acids on Malignant and Nonmalignant Human Lung Epithelial Cells. Lipids 2020; 55:117-126. [PMID: 31970788 DOI: 10.1002/lipd.12216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023]
Abstract
The impact of saturated fatty acids (FA) on viability and properties of malignant and nonmalignant cells has not been studied in detail so far. The present study was aimed at evaluation of the influence of saturated FA (10:0-18:0) on malignant (A459) and nonmalignant (BEAS-2B) human lung epithelial cells. FA strongly affected A549 cells, but not BEAS-2B cells. Viability of A549 cells incubated with 14:0-18:0 was decreased by 53-91% as compared to untreated cells. Cell membrane stiffness in those cells as measured by atomic force microscopy was also reduced. Median value of apparent Young's modulus of untreated A549 cell membrane was 16.9 kPa and it decreased to 8.9 kPa for cells incubated with 14:0. Viability and mechanical properties of BEAS-2B cells were not altered by presence of FA. Those surprising discrepancies can be related to the differences in FA uptake rate. A549 cells were found to incorporate higher amount of FA and this corresponded to decrease in cell membrane stiffness and reduced cell viability. The performed studies showed that saturated FA have distinct influence on various types of cells, which may be exploited in development of the advanced lipid drug delivery systems.
Collapse
Affiliation(s)
- Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.,Faculty of Pharmacy, University of Sydney, Pharmacy Building A15, Sydney, New South Wales, 2006, Australia
| | - Dipesh Khanal
- Faculty of Pharmacy, University of Sydney, Pharmacy Building A15, Sydney, New South Wales, 2006, Australia
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.,Faculty of Pharmacy, University of Sydney, Pharmacy Building A15, Sydney, New South Wales, 2006, Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy, University of Sydney, Pharmacy Building A15, Sydney, New South Wales, 2006, Australia.,The University of Sydney Nano Institute, Physics Road, New South Wales, 2006, Sydney, Australia
| |
Collapse
|
3
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
4
|
Khanal D, Zhang F, Song Y, Hau H, Gautam A, Yamaguchi S, Uertz J, Mills S, Kondyurin A, Knowles JC, Georgiou G, Ramzan I, Cai W, Ng KW, Chrzanowski W. Biological impact of nanodiamond particles - label free, high-resolution methods for nanotoxicity assessment. Nanotoxicology 2019; 13:1210-1226. [PMID: 31522585 DOI: 10.1080/17435390.2019.1650970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current methods for the assessment of nanoparticle safety that are based on 2D cell culture models and fluorescence-based assays show limited sensitivity and they lack biomimicry. Consequently, the health risks associated with the use of many nanoparticles have not yet been established. There is a need to develop in vitro models that mimic physiology more accurately and enable high throughput assessment. There is also a need to set up new assays that offer high sensitivity and are label-free. Here we developed 'mini-liver' models using scaffold-free bioprinting and used these models together with label-free nanoscale techniques for the assessment of toxicity of nanodiamond produced by laser-assisted technology. Results showed that NDs induced cytotoxicity in a concentration and exposure-time dependent manner. The loss of cell function was confirmed by increased cell stiffness, decreased cell membrane barrier integrity and reduced cells mobility. We further showed that NDs elevated the production of reactive oxygen species and reduced cell viability. Our approach that combined mini-liver models with label-free high-resolution techniques showed improved sensitivity in toxicity assessment. Notably, this approach allowed for label-free semi-high throughput measurements of nanoparticle-cell interactions, thus could be considered as a complementary approach to currently used methods.
Collapse
Affiliation(s)
- Dipesh Khanal
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Fan Zhang
- Brigham & Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales , Sydney , Australia
| | - Herman Hau
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Archana Gautam
- School of Materials Science and Engineering, Nanyang Technological University , Singapore City , Singapore
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University , Kasugai , Japan
| | | | | | - Alexey Kondyurin
- School of Physics, The University of Sydney , Sydney , Australia
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London , UK.,The Discoveries Centre for Regenerative and Precision Medicine , UCL Campus , London , UK.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan , Korea
| | - George Georgiou
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London , UK
| | - Iqbal Ramzan
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| | - Weidong Cai
- School of Computer Science, The University of Sydney , Sydney , Australia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University , Singapore City , Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney , Australia
| |
Collapse
|
5
|
Majzner K, Tott S, Roussille L, Deckert V, Chlopicki S, Baranska M. Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst 2019; 143:970-980. [PMID: 29372724 DOI: 10.1039/c7an01043e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, confocal Raman imaging was used to study the formation of lipid droplets (LDs) in vitro in a single endothelial cell upon incubation with polyunsaturated fatty acids (10 or 25 μM) including arachidonic acid (AA) and its deuterated analog (AA-d8), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Based on the Raman spectra obtained from a single endothelial cell, it was possible to investigate biochemical changes induced by addition of polyunsaturated fatty acids. In particular, the content of lipids in the formed LDs and the unsaturation degree were identified by Raman spectroscopy by marker bands at 1660 cm-1 due to the C[double bond, length as m-dash]C stretching and at ∼3015 cm-1 due to the stretching mode of [double bond, length as m-dash]C-H associated with C[double bond, length as m-dash]C double bonds (except for a deuterated form where these bands are shifted respectively). To establish if the exogenous fatty acid was taken up by the cell and stored in LDs, a deuterium labelled polyunsaturated fatty acid was used. AA-d8 shows characteristic bands at around 2200-2300 cm-1 assigned to the [double bond, length as m-dash]C-D stretching modes. We established the uptake of AA and the accumulation of EPA into newly formed LDs in the endothelial cells. In contrast, no accumulation of DHA in LDs was observed even though LDs were formed upon DHA incubation. Furthermore, using AFM we demonstrated that the presence of LDs in the endothelium affected endothelial stiffness which could have pathophysiological significance. In summary, the results suggest that the formation of LDs in the endothelium involves exogenous and endogenous polyunsaturated fatty acids, and their relative contribution to the LD formation seems distinct for AA, EPA and DHA.
Collapse
Affiliation(s)
- Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
6
|
Jaffar J, Yang SH, Kim SY, Kim HW, Faiz A, Chrzanowski W, Burgess JK. Greater cellular stiffness in fibroblasts from patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29516782 DOI: 10.1152/ajplung.00030.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease involving degenerative breathing capacity. Fibrotic disease is driven by dysregulation in mechanical forces at the organ, tissue, and cellular level. While it is known that, in certain pathologies, diseased cells are stiffer than healthy cells, it is not known if fibroblasts derived from patients with IPF are stiffer than their normal counterparts. Using IPF patient-derived cell cultures, we measured the stiffness of individual lung fibroblasts via high-resolution force maps using atomic force microscopy. Fibroblasts from patients with IPF were stiffer and had an augmented cytoskeletal response to transforming growth factor-β1 compared with fibroblasts from donors without IPF. The results from this novel study indicate that the increased stiffness of lung fibroblasts of IPF patients may contribute to the increased rigidity of fibrotic lung tissue.
Collapse
Affiliation(s)
- Jade Jaffar
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital , Melbourne , Australia.,Department of Immunology and Pathology, Monash University , Melbourne , Australia
| | - Soung-Hee Yang
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering and College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Sally Yunsun Kim
- Faculty of Pharmacy, The University of Sydney Nano Institute, The University of Sydney , Sydney , Australia
| | - Hae-Won Kim
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering and College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Alen Faiz
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,The University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Wojciech Chrzanowski
- Department of Nanobiomedical Science and Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Faculty of Pharmacy, The University of Sydney Nano Institute, The University of Sydney , Sydney , Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Austrailia.,The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Discipline of Pharmacology, The University of Sydney , Sydney , Australia
| |
Collapse
|
7
|
Preedy EC, Perni S, Prokopovich P. Cobalt and titanium nanoparticles influence on mesenchymal stem cell elasticity and turgidity. Colloids Surf B Biointerfaces 2017; 157:146-156. [PMID: 28586727 DOI: 10.1016/j.colsurfb.2017.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Bone cells are damaged by wear particles originating from total joint replacement implants. We investigated Mesenchymal stem cells (MSCs) nanomechanical properties when exposed to cobalt and titanium nanoparticles (resembling wear debris) of different sizes for up to 3days using AFM nanoindentation; along with flow-cytometry and MTT assay. The results demonstrated that cells exposed to increasing concentrations of nanoparticles had a lower value of elasticity and spring constant without significant effect on cell metabolic activity and viability but some morphological alteration (bleeping). Cobalt induced greater effects than titanium and this is consistent with the general knowledge of cyto-compatibility of the later. This work demonstrates for the first time that metal nanoparticles do not only influence MSCs enzymes activity but also cell structure; however, they do not result in full membrane damage. Furthermore, the mechanical changes are concentration and particles composition dependent but little influenced by the particle size.
Collapse
Affiliation(s)
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Kim SY, Burgess JK, Wang Y, Kable EP, Weiss DJ, Chan HK, Chrzanowski W. Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury. J Aerosol Med Pulm Drug Deliv 2016; 29:514-524. [DOI: 10.1089/jamp.2016.1289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sally Yunsun Kim
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Janette K. Burgess
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- Discipline of Pharmacology, The University of Sydney, Sydney, Australia
| | - Yiwei Wang
- ANZAC Research Institute, The University of Sydney, Concord, Australia
| | - Eleanor P.W. Kable
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, Australia
| | - Daniel J. Weiss
- College of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
- Australian Institute of Nanoscale Science and Technology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Ghadiri M, Mamlouk M, Spicer P, Jarolimek W, Grau GER, Young PM, Traini D. Effect of polyunsaturated fatty acids (PUFAs) on airway epithelial cells' tight junction. Pulm Pharmacol Ther 2016; 40:30-8. [PMID: 27453493 DOI: 10.1016/j.pupt.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, Australia
| | - Mariam Mamlouk
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, Australia
| | - Patrick Spicer
- Complex Fluids Research Groups, School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | | | - Georges E R Grau
- Vascular Immunology Unit, Sydney Medical School & Bosch Institute, University of Sydney, Camperdown, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, Australia.
| |
Collapse
|
10
|
Khanal D, Kondyurin A, Hau H, Knowles JC, Levinson O, Ramzan I, Fu D, Marcott C, Chrzanowski W. Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study. Anal Chem 2016; 88:7530-8. [DOI: 10.1021/acs.analchem.6b00665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dipesh Khanal
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Alexey Kondyurin
- School
of Physics, The University of Sydney, NSW 2006, Australia
| | - Herman Hau
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, U.K
| | | | - Iqbal Ramzan
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Dong Fu
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Curtis Marcott
- Light Light Solutions, P.O. Box 81486, Athens, Georgia 30608-1484, United States
| | - Wojciech Chrzanowski
- Faculty
of Pharmacy, The University of Sydney, NSW 2006, Australia
- Australian
Institute of Nanoscale Science and Technology, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Leung SL, Lu Y, Bluestein D, Slepian MJ. Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness. Ann Biomed Eng 2016; 44:903-13. [PMID: 26202677 PMCID: PMC4724345 DOI: 10.1007/s10439-015-1383-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023]
Abstract
Platelets, essential for hemostasis, are easily activated via biochemical and mechanical stimuli. Cell stiffness is a vital parameter modulating the mechano-transduction of exogenous mechanical stimuli. While methods exist to measure cell stiffness, no ready method exists for measuring platelet stiffness that is both minimally-contacting, imparting minimal exogenous force and non-activating. We developed a minimal-contact methodology capable of trapping and measuring the stiffness of individual platelets utilizing dielectrophoresis (DEP)-mediated electrodeformation. Parametric studies demonstrate a non-uniform electric field in the MHz frequency range (0.2-20 MHz) is required for generating effective DEP forces on platelets, suspended in isotonic buffer with conductivity ~100-200 μS/cm. A nano-Newton DEP force (0.125-4.5 nN) was demonstrated to be essential for platelet electrodeformation, which could be generated with an electric field with strength of 1.5-9 V/μm. Young's moduli of platelets were calculated using a Maxwell stress tensor model and stress-deformation relationship. Platelet stiffness was determined to be in the range of 3.5 ± 1.4 and 8.5 ± 1.5 kPa for resting and 0.4% paraformaldehyde-treated cells, respectively. The developed methodology fills a gap in approaches of measuring individual platelet stiffness, free of inadvertent platelet activation, which will facilitate further studies of mechanisms involved in mechanically-mediated platelet activation.
Collapse
Affiliation(s)
- Siu Ling Leung
- Departments of Medicine and Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
- Sarver Heart Center, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Yi Lu
- Departments of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, HSC T15-090, Stony Brook University, Stony Brook, NY, 11794-8151, USA
| | - Marvin J Slepian
- Departments of Medicine and Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Sarver Heart Center, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
- Department of Biomedical Engineering, HSC T15-090, Stony Brook University, Stony Brook, NY, 11794-8151, USA.
| |
Collapse
|
12
|
Khanal D, Dillon E, Hau H, Fu D, Ramzan I, Chrzanowski W. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:272. [PMID: 26518012 DOI: 10.1007/s10856-015-5605-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's.
Collapse
Affiliation(s)
- Dipesh Khanal
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Eoghan Dillon
- Anasys Instruments, 325 Chapala Street, Santa Barbara, CA, 93101, USA
| | - Herman Hau
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Iqbal Ramzan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Wojciech Chrzanowski
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|