1
|
Laliwala A, Pant A, Svechkarev D, Sadykov MR, Mohs AM. Advancements of paper-based sensors for antibiotic-resistant bacterial species identification. NPJ BIOSENSING 2024; 1:17. [PMID: 39678719 PMCID: PMC11645268 DOI: 10.1038/s44328-024-00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Present Address: Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ashruti Pant
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| | - Denis Svechkarev
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109 USA
| | - Marat R. Sadykov
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| |
Collapse
|
2
|
Fande S, Amreen K, Sriram D, Mateev V, Goel S. Electromicrofluidic Device for Interference-Free Rapid Antibiotic Susceptibility Testing of Escherichia coli from Real Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:9314. [PMID: 38067687 PMCID: PMC10708865 DOI: 10.3390/s23239314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Antimicrobial resistance (AMR) is a global health threat, progressively emerging as a significant public health issue. Therefore, an antibiotic susceptibility study is a powerful method for combating antimicrobial resistance. Antibiotic susceptibility study collectively helps in evaluating both genotypic and phenotypic resistance. However, current traditional antibiotic susceptibility study methods are time-consuming, laborious, and expensive. Hence, there is a pressing need to develop simple, rapid, miniature, and affordable devices to prevent antimicrobial resistance. Herein, a miniaturized, user-friendly device for the electrochemical antibiotic susceptibility study of Escherichia coli (E. coli) has been developed. In contrast to the traditional methods, the designed device has the rapid sensing ability to screen different antibiotics simultaneously, reducing the overall time of diagnosis. Screen-printed electrodes with integrated miniaturized reservoirs with a thermostat were developed. The designed device proffers simultaneous incubator-free culturing and detects antibiotic susceptibility within 6 h, seven times faster than the conventional method. Four antibiotics, namely amoxicillin-clavulanic acid, ciprofloxacin, ofloxacin, and cefpodoxime, were tested against E. coli. Tap water and synthetic urine samples were also tested for antibiotic susceptibility. The results show that the device could be used for antibiotic resistance susceptibility testing against E. coli with four antibiotics within six hours. The developed rapid, low-cost, user-friendly device will aid in antibiotic screening applications, enable the patient to receive the appropriate treatment, and help to lower the risk of anti-microbial resistance.
Collapse
Affiliation(s)
- Sonal Fande
- MEMS, Microfluidic and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 50078, India
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidic and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 50078, India
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - D. Sriram
- Department of Pharmacy, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Valentin Mateev
- Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria
| | - Sanket Goel
- MEMS, Microfluidic and Nanoelectronics Lab, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 50078, India
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India
| |
Collapse
|
3
|
Haghighian N, Kataky R. Rapid fingerprinting of bacterial species using nanocavities created on screen-printed electrodes modified by β-cyclodextrin. SENSORS & DIAGNOSTICS 2023; 2:1228-1235. [PMID: 38014404 PMCID: PMC10501327 DOI: 10.1039/d3sd00074e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 11/07/2023]
Abstract
Rapid and precise identification of infectious microorganisms is important across a range of applications where microbial contamination can cause serious issues ranging from microbial resistance to corrosion. In this paper a screen-printed, polymeric β-cyclodextrin (β-CD) modified electrode, affording nanocavities for inclusion of the analytes, is shown as a disposable sensor capable of identifying bacteria by their metabolites. Three bacterial species were tested: two from the Pseudomonas genus, Pseudomonas fluorescens (P. fluorescens) and Pseudomonas aeruginosa (P. aeruginosa), and Serratia marcescens (S. marcescens), a member of the family, Enterobacteriaceae. On biofilm formation each species gave distinct, reproducible, redox fingerprints with a detection limit of 4 × 10-8 M. Square wave adsorptive stripping voltammetry (SWAdSV) was used for detection. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were used to characterize the morphology and electrical conductivity of the modified electrode. In comparison to the bare screen-printed electrode, the modified electrode showed a considerably higher performance and offered an excellent sensitivity along with a relatively fast analysis time.
Collapse
Affiliation(s)
- Niloofar Haghighian
- Department of Chemistry, University of Durham Lower Mountjoy Durham DH1 3LE UK
| | - Ritu Kataky
- Department of Chemistry, University of Durham Lower Mountjoy Durham DH1 3LE UK
| |
Collapse
|
4
|
Zhang Y, Gholizadeh H, Young P, Traini D, Li M, Ong HX, Cheng S. Real-time in-situ electrochemical monitoring of Pseudomonas aeruginosa biofilms grown on air-liquid interface and its antibiotic susceptibility using a novel dual-chamber microfluidic device. Biotechnol Bioeng 2023; 120:702-714. [PMID: 36408870 DOI: 10.1002/bit.28288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air-liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Hanieh Gholizadeh
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Toyos-Rodríguez C, Valero-Calvo D, de la Escosura-Muñiz A. Advances in the screening of antimicrobial compounds using electrochemical biosensors: is there room for nanomaterials? Anal Bioanal Chem 2023; 415:1107-1121. [PMID: 36445455 PMCID: PMC9707421 DOI: 10.1007/s00216-022-04449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The abusive use of antimicrobial compounds and the associated appearance of antimicrobial resistant strains are a major threat to human health. An improved antimicrobial administration involves a faster diagnosis and detection of resistances. Antimicrobial susceptibility testing (AST) are the reference techniques for this purpose, relying mainly in the use of culture techniques. The long time required for analysis and the lack of reproducibility of these techniques have fostered the development of high-throughput AST methods, including electrochemical biosensors. In this review, recent electrochemical methods used in AST have been revised, with particular attention on those used for the evaluation of new drug candidates. The role of nanomaterials in these biosensing platforms has also been questioned, inferring that it is of minor importance compared to other applications.
Collapse
Affiliation(s)
- Celia Toyos-Rodríguez
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - David Valero-Calvo
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
- Biotechnology Institute of Asturias, University of Oviedo, Santiago Gascon Building, 33006, Oviedo, Spain.
| |
Collapse
|
6
|
Wolfson SJ, Hitchings R, Peregrina K, Cohen Z, Khan S, Yilmaz T, Malena M, Goluch ED, Augenlicht L, Kelly L. Bacterial hydrogen sulfide drives cryptic redox chemistry in gut microbial communities. Nat Metab 2022; 4:1260-1270. [PMID: 36266544 PMCID: PMC11328334 DOI: 10.1038/s42255-022-00656-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 01/20/2023]
Abstract
Microbial biochemistry contributes to a dynamic environment in the gut. Yet, how bacterial metabolites such as hydrogen sulfide (H2S) mechanistically alter the gut chemical landscape is poorly understood. Here we show that microbially generated H2S drives the abiotic reduction of azo (R-N = N-R') xenobiotics, which are commonly found in Western food dyes and drugs. This nonenzymatic reduction of azo compounds is demonstrated in Escherichia coli cultures, in human faecal microbial communities and in vivo in male mice. Changing dietary levels of the H2S xenobiotic redox partner Red 40 transiently decreases mouse faecal sulfide levels, demonstrating that a xenobiotic can attenuate sulfide concentration and alleviate H2S accumulation in vivo. Cryptic H2S redox chemistry thus can modulate sulfur homeostasis, alter the chemical landscape in the gut and contribute to azo food dye and drug metabolism. Interactions between chemicals derived from microbial communities may be a key feature shaping metabolism in the gut.
Collapse
Affiliation(s)
- Sarah J Wolfson
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Reese Hitchings
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karina Peregrina
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ziv Cohen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saad Khan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tugba Yilmaz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Marcel Malena
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Leonard Augenlicht
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Accelerated antibiotic susceptibility testing of pseudomonas aeruginosa by monitoring extracellular electron transfer on a 3-D paper-based cell culture platform. Biosens Bioelectron 2022; 216:114604. [DOI: 10.1016/j.bios.2022.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
|
8
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
McLean C, Tiller B, Mansour R, Brown K, Windmill J, Dennany L. Characterising the response of novel 3D printed CNT electrodes to the virulence factor pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ye Z, Silva DM, Traini D, Young P, Cheng S, Ong HX. An adaptable microreactor to investigate the influence of interfaces on Pseudomonas aeruginosa biofilm growth. Appl Microbiol Biotechnol 2022; 106:1067-1077. [PMID: 35015140 PMCID: PMC8817054 DOI: 10.1007/s00253-021-11746-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Abstract Biofilms are ubiquitous and notoriously difficult to eradicate and control, complicating human infections and industrial and agricultural biofouling. However, most of the study had used the biofilm model that attached to solid surface and developed in liquid submerged environments which generally have neglected the impact of interfaces. In our study, a reusable dual-chamber microreactor with interchangeable porous membranes was developed to establish multiple growth interfaces for biofilm culture and test. Protocol for culturing Pseudomonas aeruginosa (PAO1) on the air–liquid interface (ALI) and liquid–liquid interface (LLI) under static environmental conditions for 48 h was optimized using this novel device. This study shows that LLI model biofilms are more susceptible to physical disruption compared to ALI model biofilm. SEM images revealed a unique “dome-shaped” microcolonies morphological feature, which is more distinct on ALI biofilms than LLI. Furthermore, the study showed that ALI and LLI biofilms produced a similar amount of extracellular polymeric substances (EPS). As differences in biofilm structure and properties may lead to different outcomes when using the same eradication approaches, the antimicrobial effect of an antibiotic, ciprofloxacin (CIP), was chosen to test the susceptibility of a 48-h-old P. aeruginosa biofilms grown on ALI and LLI. Our results show that the minimum biofilm eradication concentration (MBEC) of 6-h CIP exposure for ALI and LLI biofilms is significantly different, which are 400 μg/mL and 200 μg/mL, respectively. These results highlight the importance of growth interface when developing more targeted biofilm management strategies, and our novel device provides a promising tool that enables manipulation of realistic biofilm growth. Key points • A novel dual-chamber microreactor device that enables the establishment of different interfaces for biofilm culture has been developed. • ALI model biofilms and LLI model biofilms show differences in resistance to physical disruption and antibiotic susceptibility.
Collapse
Affiliation(s)
- Zhang Ye
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, 2113, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Dina M Silva
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2113, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, 2113, Australia.
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, Australia.
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2113, Australia.
| |
Collapse
|
11
|
Di Bonaventura G, Pompilio A. In Vitro Antimicrobial Susceptibility Testing of Biofilm-Growing Bacteria: Current and Emerging Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:33-51. [PMID: 33963526 DOI: 10.1007/5584_2021_641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antibiotic susceptibility of bacterial pathogens is typically determined based on planktonic cells, as recommended by several international guidelines. However, most of chronic infections - such as those established in wounds, cystic fibrosis lung, and onto indwelling devices - are associated to the formation of biofilms, communities of clustered bacteria attached onto a surface, abiotic or biotic, and embedded in an extracellular matrix produced by the bacteria and complexed with molecules from the host. Sessile microorganisms show significantly increased tolerance/resistance to antibiotics compared with planktonic counterparts. Consequently, antibiotic concentrations used in standard antimicrobial susceptibility tests, although effective against planktonic bacteria in vitro, are not predictive of the concentrations required to eradicate biofilm-related infections, thus leading to treatment failure, chronicization and removal of material in patients with indwelling medical devices.Meeting the need for the in vitro evaluation of biofilm susceptibility to antibiotics, here we reviewed several methods proposed in literature highlighting their advantages and limitations to guide scientists towards an appropriate choice.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Laboratory of Clinical Microbiology, Chieti, Italy.
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Laboratory of Clinical Microbiology, Chieti, Italy
| |
Collapse
|
12
|
Qin N, Zhao P, Ho EA, Xin G, Ren CL. Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: Review and Perspective. ACS Sens 2021; 6:3-21. [PMID: 33337870 DOI: 10.1021/acssensors.0c02175] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A review on microfluidic technology for antibacterial resistance study and antibiotic susceptibility testing (AST) is presented here. Antibiotic resistance has become a global health crisis in recent decades, severely threatening public health, patient care, economic growth, and even national security. It is extremely urgent that antibiotic resistance be well looked into and aggressively combated in order for us to survive this crisis. AST has been routinely utilized in determining bacterial susceptibility to antibiotics and identifying potential resistance. Yet conventional methods for AST are increasingly incompetent due to unsatisfactory test speed, high cost, and deficient reliability. Microfluidics has emerged as a powerful and very promising platform technology that has proven capable of addressing the limitation of conventional methods and advancing AST to a new level. Besides, potential technical challenges that are likely to hinder the development of microfluidic technology aimed at AST are observed and discussed. To conclude, it is noted that (1) the translation of microfluidic innovations from laboratories to be ready AST platforms remains a lengthy journey and (2) ensuring all relevant parties engaged in a collaborative and unified mode is foundational to the successful incubation of commercial microfluidic platforms for AST.
Collapse
Affiliation(s)
- Ning Qin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pei Zhao
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emmanuel A. Ho
- School of Pharmacy, University of Waterloo, Kitchener, Ontario N2G 1C5, Canada
| | - Gongming Xin
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Carolyn L. Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. SENSORS 2020; 20:s20185218. [PMID: 32933125 PMCID: PMC7570525 DOI: 10.3390/s20185218] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA’s virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.
Collapse
Affiliation(s)
| | - Winnie E. Svendsen
- Department of Biomedicine and Bioengineering, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| |
Collapse
|
14
|
Gao Y, Ryu J, Liu L, Choi S. A simple, inexpensive, and rapid method to assess antibiotic effectiveness against exoelectrogenic bacteria. Biosens Bioelectron 2020; 168:112518. [PMID: 32862095 DOI: 10.1016/j.bios.2020.112518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
Abstract
A sufficiently fast and simple antimicrobial susceptibility testing (AST) is urgently required to guide effective antibiotic usages and to surveil the antimicrobial resistance rate. Here, we establish a rapid, quantitative, and high-throughput phenotypic AST by measuring electrons transferred from the interiors of microbial cells to external electrodes. Because the transferred electrons are based on microbial metabolic activities and are inversely proportional to the concentration of potential antibiotics, the changes in electrical outputs can be readily used as a transducing signal to efficiently monitor bacterial growth and antibiotic susceptibility. The sensing is performed by directly measuring the total energy, or all the accumulated microbial electricity, generated by microbial fuel cells (MFCs) arranged in a large-capacity disposable, paper-based testbed. A common Gram-negative pathogenic bacterium Pseudomonas aeruginosa wild-type PAO1 and first-line antibiotic gentamicin (GEN) are used in our experiments. The minimum inhibitory concentration (MIC) values generated from our technique are validated by the gold standard broth microdilution (BMD). Our new approach provides quantitative, actionable MIC results within just 5 h because it measures electricity produced by bacterial metabolism instead of the days needed for growth-observation methods. Moreover, as the equipment needed is simple, common, and inexpensive, our test has immense potential to be adopted in the field or resource-limited hospitals and labs to provide insightful assessments for research and clinical practices.
Collapse
Affiliation(s)
- Yang Gao
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Jihyun Ryu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
| |
Collapse
|
15
|
McEachern F, Harvey E, Merle G. Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnol J 2020; 15:e2000140. [PMID: 32388907 DOI: 10.1002/biot.202000140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Infections are a huge economic liability to the health care system, although real-time detection can allow early treatment protocols to avoid some of this cost and patient morbidity and mortality. Pseudomonas aeruginosa (PA) is a drug-resistant gram-negative bacterium found ubiquitously in clinical settings, accounting for up to 27% of hospital acquired infections. PA secretes a vast array of molecules, ranging from secondary metabolites to quorum sensing molecules, of which many can be exploited to monitor bacterial presence. In addition to electrochemical immunoassays to sense bacteria via antigen-antibody interactions, PA pertains a distinct redox-active virulence factor called pyocyanin (PYO), allowing a direct electrochemical detection of the bacteria. There has been a surge of publications relating to the electrochemical tracing of PA via a myriad of novel biosensing techniques, materials, and methodologies. In addition to indirect methods, research approaches where PYO has been sensitively detected using surface modified electrodes are reviewed and compared with conventional PA-sensing methodologies. This review aims at presenting indirect and direct electrochemical methods currently developed using various surface modified electrodes, materials, and electrochemical configurations on their electrocatalytic effects on sensing of PA and in particular PYO.
Collapse
Affiliation(s)
- Francis McEachern
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | - Edward Harvey
- Department of Surgery, Faculty of medicine, McGill University, Montreal, H3A 0C5, Canada
| | - Geraldine Merle
- Department of Chemical Engineering, Polytechnique Montreal, Polytechnique Montreal C.P. 6079, succ. Centre-ville, Montreal, H3C 3A7, Canada
| |
Collapse
|
16
|
Liu Y, Moore JH, Kolling GL, McGrath JS, Papin JA, Swami NS. Minimum Bactericidal Concentration of Ciprofloxacin to Pseudomonas aeruginosa Determined Rapidly Based on Pyocyanin Secretion. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 312:127936. [PMID: 32606491 PMCID: PMC7326315 DOI: 10.1016/j.snb.2020.127936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Collapse
Affiliation(s)
- Yi Liu
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John H. Moore
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Glynis L. Kolling
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - John S. McGrath
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jason A Papin
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S. Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Liu Y, McGrath JS, Moore JH, Kolling GL, Papin JA, Swami NS. Electrofabricated biomaterial-based capacitor on nanoporous gold for enhanced redox amplification. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Song JH, Lee SM, Park IH, Yong D, Lee KS, Shin JS, Yoo KH. Vertical capacitance aptasensors for real-time monitoring of bacterial growth and antibiotic susceptibility in blood. Biosens Bioelectron 2019; 143:111623. [PMID: 31472413 DOI: 10.1016/j.bios.2019.111623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/29/2023]
Abstract
For the treatment of bacteremia, early diagnosis and rapid antibiotic susceptibility tests (ASTs) are necessary because survival chances decrease significantly if the proper antibiotic administration is delayed. However, conventional methods require several days from blood collection to AST as it requires three overnight cultures, including blood culture, subculture, and AST culture. Herein, we report a more rapid method of sensing bacterial growth and AST in blood based on a vertical capacitance sensor functionalized with aptamers. Owing to their vertical structure, the influence of blood cells sunk by gravity on capacitance measurements were minimized. Thus, bacterial growth in blood at 100-103 CFU/mL was monitored in real-time by measuring changes in capacitance at f = 10 kHz. Moreover, real-time capacitance measurements at f = 0.5 kHz provided information on biofilm formation induced during blood cultures. Bacterial growth and biofilm formation are inhibited above the minimal inhibitory concentration of antibiotics; therefore, we also demonstrated that vertical capacitance aptasensors could be applied to rapid AST from positive blood cultures without a need for the subculture process.
Collapse
Affiliation(s)
- Jun Ho Song
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun-Mi Lee
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyo-Seok Lee
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Severance Biomedical Science Institute, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Mishra P, Singh D, Mishra K, Kaur G, Dhull N, Tomar M, Gupta V, Kumar B, Ganju L. Rapid antibiotic susceptibility testing by resazurin using thin film platinum as a bio-electrode. J Microbiol Methods 2019; 162:69-76. [DOI: 10.1016/j.mimet.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/24/2023]
|
20
|
Do H, Kwon SR, Fu K, Morales-Soto N, Shrout JD, Bohn PW. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7043-7049. [PMID: 31042392 PMCID: PMC8006532 DOI: 10.1021/acs.langmuir.9b00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pyocyanin (PYO) is one of many toxins secreted by the opportunistic human pathogenic bacterium Pseudomonas aeruginosa. Direct detection of PYO in biofilms is crucial because PYO can provide important information about infection-related virulence mechanisms in P. aeruginosa. Because PYO is both redox-active and Raman-active, we seek to simultaneously acquire both spectroscopic and redox state information about PYO. The combination of surface-enhanced Raman spectroscopy (SERS) and voltammetry is used here to provide insights into the molecular redox behavior of PYO while controlling the SERS and electrochemical (EC) response of PYO with external stimuli, such as pH and applied potential. Furthermore, PYO secretion from biofilms of different P. aeruginosa strains is compared. Both SERS spectra and EC behavior are observed to change with pH, and several pH-dependent bands are identified in the SERS spectra, which can potentially be used to probe the local environment. Comparison of the voltammetric behavior of wild-type and a PYO-deficient mutant unequivocally identifies PYO as a major component of the secretome. Spectroelectrochemical studies of the PYO standard reveal decreasing SERS intensities of PYO bands under reducing conditions. Extending these experiments to pellicle biofilms shows similar behavior with applied potential, and SERS imaging indicates that secreted PYO is localized in regions approximately the size of P. aeruginosa cells. The in situ spectroelectrochemical biofilm characterization approach developed here suggests that EC-SERS monitoring of secreted molecules can be used diagnostically and correlated with the progress of infection.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nydia Morales-Soto
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
| | - Joshua D. Shrout
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
- Department of Biological Sciences, University of
Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
- Corresponding Author
| |
Collapse
|
21
|
Khan ZA, Siddiqui MF, Park S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics (Basel) 2019; 9:E49. [PMID: 31058811 PMCID: PMC6627445 DOI: 10.3390/diagnostics9020049] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Antibiotic susceptibility testing (AST) specifies effective antibiotic dosage and formulates a profile of empirical therapy for the proper management of an individual patient's health against deadly infections. Therefore, rapid diagnostic plays a pivotal role in the treatment of bacterial infection. In this article, the authors review the socio-economic burden and emergence of antibiotic resistance. An overview of the phenotypic, genotypic, and emerging techniques for AST has been provided and discussed, highlighting the advantages and limitations of each. The historical perspective on conventional methods that have paved the way for modern AST like disk diffusion, Epsilometer test (Etest), and microdilution, is presented. Several emerging methods, such as microfluidic-based optical and electrochemical AST have been critically evaluated. Finally, the challenges related with AST and its outlook in the future are presented.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Korea.
| | - Mohd F Siddiqui
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Korea.
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Korea.
| |
Collapse
|
22
|
Khan ZA, Siddiqui MF, Park S. Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods. Biotechnol Lett 2018; 41:221-230. [PMID: 30542946 DOI: 10.1007/s10529-018-02638-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Antibiotic susceptibility test (AST) is an umbrella term for techniques to determine the susceptibility of bacteria to antibiotics. The antibiotic-resistant bacteria are a major threat to public health and a directed therapy based on accurate AST results is paramount in resistance control. Here we have briefly covered the progress of conventional, molecular, and automated AST tools and their limitations. Various aspects of microfluidic AST such as optical, electrochemical, colorimetric, and mechanical methods have been critically reviewed. We also address the future requirements of the microfluidic devices for AST. Cumulatively, we have outlined the overview of AST that can help to expand and improve the existing techniques and emphasize that microfluidics could be the future of AST and introduction of microtechnologies in AST will be extremely advantageous, especially for point-of-care testing.
Collapse
Affiliation(s)
- Zeeshan A Khan
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Mohd F Siddiqui
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, South Korea.
| |
Collapse
|
23
|
Sismaet HJ, Goluch ED. Electrochemical Probes of Microbial Community Behavior. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:441-461. [PMID: 29490192 DOI: 10.1146/annurev-anchem-061417-125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.
Collapse
Affiliation(s)
- Hunter J Sismaet
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Bioengineering, Department of Biology, and Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Doyle LE, Marsili E. Weak electricigens: A new avenue for bioelectrochemical research. BIORESOURCE TECHNOLOGY 2018; 258:354-364. [PMID: 29519634 DOI: 10.1016/j.biortech.2018.02.073] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 05/20/2023]
Abstract
Electroactivity appears to be a phylogenetically diverse trait independent of cell wall classification, with both Gram-negative and Gram-positive electricigens reported. While numerous electricigens have been observed, the majority of research focuses on a select group of highly electroactive species. Under favorable conditions, many microorganisms can be considered electroactive, either through their own mechanisms or exogenously-added mediators, producing a weak current. Such microbes should not be dismissed based on their modest electroactivity. Rather, they may be key to understanding what drives extracellular electron transfer in response to transient limitations of electron acceptor or donor, with implications for the study of pathogens and industrial bioprocesses. Due to their low electroactivity, such populations are difficult to grow in bioelectrochemical systems and characterise with electrochemistry. Here, a critical review of recent research on weak electricigens is provided, with a focus on the methodology and the overall relevance to microbial ecology and bioelectrochemical systems.
Collapse
Affiliation(s)
- Lucinda E Doyle
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
25
|
Robb AJ, Vinogradov S, Danell AS, Anderson E, Blackledge MS, Melander C, Hvastkovs EG. Electrochemical Detection of Small Molecule Induced Pseudomonas aeruginosa Biofilm Dispersion. Electrochim Acta 2018; 268:276-282. [PMID: 30504968 DOI: 10.1016/j.electacta.2018.02.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple electrochemical assay to monitor the dispersion of Pseudomonas aeruginosa PA01 biofilm is described. Pyrolytic graphite (PG) electrodes were modified with P. aeruginosa PA01 using layer-by-layer (LbL) methods. The presence of the bacteria on the electrodes was directly monitored using square wave voltammetry (SWV) via the electrochemical reduction of electroactive phenazine compounds expressed by the bacteria, which indicate the presence of biofilm. Upon treatment of bacteria-modified electrodes with a 2-aminoimidazole (2-AI) derivative with known Pseudomonas anti-biofilm properties, the bacteria-related electrochemical reduction peaks decreased in a concentration dependent manner, indicating dispersal of the biofilm on the electrode surface. A similar 2-AI compound with negligible anti-biofilm activity was used as a comparative control and produced muted electrochemical results. Electrochemical responses mirrored previously established bioassay-derived half maximal inhibition concentration (IC50) and half maximal effective concentration (EC50) values.. Biofilm dispersal detection via the electrochemical response was validated by monitoring crystal violet absorbance after its release from electrode confined P. aeruginosa biofilm. Mass spectrometry data showing multiple redox active phenazine compounds are presented to provide insight into the surface reaction complexity. Overall, we present a very simple assay to monitor the anti-biofilm activity of compounds of interest.
Collapse
Affiliation(s)
- Alex J Robb
- East Carolina University, Department of Chemistry
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
27
|
Sismaet HJ, Pinto AJ, Goluch ED. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens Bioelectron 2017; 97:65-69. [DOI: 10.1016/j.bios.2017.05.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
|
28
|
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;, ,
| |
Collapse
|
29
|
Buzid A, Reen FJ, Langsi VK, Muimhneacháin EÓ, O'Gara F, McGlacken GP, Luong JHT, Glennon JD. Direct and Rapid Electrochemical Detection ofPseudomonas aeruginosaQuorum Signaling Molecules in Bacterial Cultures and Cystic Fibrosis Sputum Samples through Cationic Surfactant-Assisted Membrane Disruption. ChemElectroChem 2017. [DOI: 10.1002/celc.201600590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology; University College Cork; College Road Cork T12 YN60 Ireland
| | - Victor K. Langsi
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Eoin Ó Muimhneacháin
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology; University College Cork; College Road Cork T12 YN60 Ireland
- School of Biomedical Sciences; Curtin Health Innovation Research Curtin University; Perth WA 6845 Australia
| | - Gerard P. McGlacken
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC); University College Cork, Western Road, Cork (Ireland)
- Department of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF); University College Cork; College Road Cork T12 YN60 Ireland
| |
Collapse
|
30
|
Dai J, Hamon M, Jambovane S. Microfluidics for Antibiotic Susceptibility and Toxicity Testing. Bioengineering (Basel) 2016; 3:bioengineering3040025. [PMID: 28952587 PMCID: PMC5597268 DOI: 10.3390/bioengineering3040025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA) bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.
Collapse
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Morgan Hamon
- Renal Regeneration Laboratory, VAGLAHS at Sepulveda, North Hills, CA 91343, USA.
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Sachin Jambovane
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99354, USA.
| |
Collapse
|
31
|
Biofouling and in situ electrochemical cleaning of a boron-doped diamond free chlorine sensor. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal Bioanal Chem 2016; 408:6361-7. [DOI: 10.1007/s00216-016-9749-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023]
|
33
|
Buzid A, Shang F, Reen FJ, Muimhneacháin EÓ, Clarke SL, Zhou L, Luong JHT, O'Gara F, McGlacken GP, Glennon JD. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode. Sci Rep 2016; 6:30001. [PMID: 27427496 PMCID: PMC4948026 DOI: 10.1038/srep30001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.
Collapse
Affiliation(s)
- Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fengjun Shang
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Eoin Ó Muimhneacháin
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Lin Zhou
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Jeremy D Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| |
Collapse
|
34
|
Sismaet HJ, Banerjee A, McNish S, Choi Y, Torralba M, Lucas S, Chan A, Shanmugam VK, Goluch ED. Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen 2016; 24:366-72. [PMID: 26815644 PMCID: PMC4853203 DOI: 10.1111/wrr.12414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/23/2016] [Indexed: 01/13/2023]
Abstract
In clinical practice, point-of-care diagnostic testing has progressed rapidly in the last decade. For the field of wound care, there is a compelling need to develop rapid alternatives for bacterial identification in the clinical setting, where it generally takes over 24 hours to receive a positive identification. Even new molecular and biochemical identification methods require an initial incubation period of several hours to obtain a sufficient number of cells prior to performing the analysis. Here we report the use of an inexpensive, disposable electrochemical sensor to detect pyocyanin, a unique, redox-active quorum sensing molecule released by Pseudomonas aeruginosa, in wound fluid from patients with chronic wounds enrolled in the WE-HEAL Study. By measuring the metabolite excreted by the cells, this electrochemical detection strategy eliminates sample preparation, takes less than a minute to complete, and requires only 7.5 μL of sample to complete the analysis. The electrochemical results were compared against 16S rRNA profiling using 454 pyrosequencing. Blind identification yielded 9 correct matches, 2 false negatives, and 3 false positives giving a sensitivity of 71% and specificity of 57% for detection of Pseudomonas. Ongoing enhancement and development of this approach with a view to develop a rapid point-of-care diagnostic tool is planned.
Collapse
Affiliation(s)
- Hunter J. Sismaet
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, 313 Snell Engineering, Boston, MA 02115 USA
| | - Anirban Banerjee
- Division of Rheumatology, Ideas to Health Laboratory, The George Washington University, School of Medicine and Health Sciences, 701 Ross Hall, 2300 Eye Street, NW, Washington, DC 20037
| | - Sean McNish
- Division of Rheumatology, Ideas to Health Laboratory, The George Washington University, School of Medicine and Health Sciences, 701 Ross Hall, 2300 Eye Street, NW, Washington, DC 20037
| | - Yongwook Choi
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850
| | - Manolito Torralba
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850
| | - Sarah Lucas
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850
| | - Agnes Chan
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, 20850
| | - Victoria K. Shanmugam
- Division of Rheumatology, Ideas to Health Laboratory, The George Washington University, School of Medicine and Health Sciences, 701 Ross Hall, 2300 Eye Street, NW, Washington, DC 20037
| | - Edgar D. Goluch
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, 313 Snell Engineering, Boston, MA 02115 USA
| |
Collapse
|