1
|
Lin CW, Canonica F, Wüthrich S, Fettelschoss-Gabriel A, Schlapbach R, Nanni P. m-nitrobenzyl alcohol supercharging reagent enhances the chromatographic separation and the charging of disulfide bond linked and His-tag peptides. J Chromatogr A 2024; 1722:464828. [PMID: 38581973 DOI: 10.1016/j.chroma.2024.464828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
The linkages of disulfide bond (DSB) play important roles in protein stability and activity. Mass spectrometry-based (MS-based) techniques become accepted tools for DSB analysis in the recent decade. In the bottom-up approach, after enzyme digestion, the neighbouring amino acids of cysteines have great impacts on the physicochemical properties of resulting disulfide bond peptides, determining their retention behaviour on liquid chromatography (LC) and their MS ionization efficiency. In this study, the addition of supercharging reagent in LC mobile phase was used to examine the impact of supercharging reagent on the charge states of disulfide-bond peptides. The results showed that 0.1 % m-nitrobenzyl alcohol (m-NBA) in LC mobile phase increased the sensitivity and charge states of DSB peptides from our model protein, equine Interleukin-5 (eIL5), as well as the resolution of reversed-phase chromatography. Notably, also the sensitivity of C-terminal peptide with His-tag significantly improved. Our findings highlight the effectiveness of employing m-NBA as a supercharging reagent when investigating disulfide-linked peptides and the C-terminal peptide with a His-tag through nano-liquid chromatography mass spectrometry.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland.
| | - Fabia Canonica
- Department of Dermatology, University of Zürich, 8952 Schlieren, Switzerland
| | - Simone Wüthrich
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | | | - Ralph Schlapbach
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Lee J, Im D, Liu Y, Fang J, Tian X, Kim M, Zhang WB, Seo J. Distinguishing Protein Chemical Topologies Using Supercharging Ion Mobility Spectrometry-Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202314980. [PMID: 37937859 DOI: 10.1002/anie.202314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM ) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Dahye Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Minsu Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Gyeonsangbuk-do (Republic of, Korea
| |
Collapse
|
3
|
Chen CJ, Williams ER. Variable Mixing with Theta Emitter Mass Spectrometry: Changing Solution Flow Rates with Emitter Position. Anal Chem 2023; 95:14777-14786. [PMID: 37729435 DOI: 10.1021/acs.analchem.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Two solutions can be rapidly mixed using theta glass emitters, with products measured using electrospray ionization mass spectrometry. The relative flow rates of the two emitter channels can be measured using different calibration compounds in each channel, or the flow rates are often assumed to be the same. The relative flow rates of each channel can be essentially the same when the emitters are positioned directly in front of the capillary entrance of a mass spectrometer, but the relative flow rates can be varied by up to 3 orders of magnitude by moving the position of the emitter tip ±1 cm in a direction that is perpendicular to the inner divider. Results of the emitter position on the different concentrations of reagents in the initially formed electrospray droplets are demonstrated through protein denaturation using a supercharging reagent as well as two different bimolecular reactions. The average charge state of myoglobin changed from +7.8 to +13.8 when 2.5% sulfolane was mixed with a 200 mM ammonium acetate solution containing the protein when the position of the emitter was scanned in front of the mass spectrometer inlet. The conversion ratio of a bimolecular reaction was changed from 0.98 to 0.04 with varying emitter positions. These results show that the relative flow rates must be carefully monitored because the droplet composition depends strongly on the position of the theta glass emitters. This method can be used to measure the dependence of reaction kinetics on different solution concentrations by using a single emitter and only two solutions.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Panda A, Brown C, Gupta K. Studying Membrane Protein-Lipid Specificity through Direct Native Mass Spectrometric Analysis from Tunable Proteoliposomes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1917-1927. [PMID: 37432128 PMCID: PMC10932607 DOI: 10.1021/jasms.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Native mass spectrometry (nMS) has emerged as a key analytical tool to study the organizational states of proteins and their complexes with both endogenous and exogenous ligands. Specifically, for membrane proteins, it provides a key analytical dimension to determine the identity of bound lipids and to decipher their effects on the observed structural assembly. We recently developed an approach to study membrane proteins directly from intact and tunable lipid membranes where both the biophysical properties of the membrane and its lipid compositions can be customized. Extending this, we use our liposome-nMS platform to decipher the lipid specificity of membrane proteins through their multiorganelle trafficking pathways. To demonstrate this, we used VAMP2 and reconstituted it in the endoplasmic reticulum (ER), Golgi, synaptic vesicle (SV), and plasma membrane (PM) mimicking liposomes. By directly studying VAMP2 from these customized liposomes, we show how the same transmembrane protein can bind to different sets of lipids in different organellar-mimicking membranes. Considering that the cellular trafficking pathway of most eukaryotic integral membrane proteins involves residence in multiple organellar membranes, this study highlights how the lipid-specificity of the same integral membrane protein may change depending on the membrane context. Further, leveraging the capability of the platform to study membrane proteins from liposomes with curated biophysical properties, we show how we can disentangle chemical versus biophysical properties, of individual lipids in regulating membrane protein assembly.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Panda A, Giska F, Duncan AL, Welch AJ, Brown C, McAllister R, Hariharan P, Goder JND, Coleman J, Ramakrishnan S, Pincet F, Guan L, Krishnakumar S, Rothman JE, Gupta K. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nat Methods 2023; 20:891-897. [PMID: 37106230 PMCID: PMC10932606 DOI: 10.1038/s41592-023-01864-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Fabian Giska
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jean N D Goder
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Frédéric Pincet
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université Paris-Cité, Paris, France
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Shyam Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
de Kleijne VH, Heijboer AC, de Jonge R, Ackermans MT. Supercharging reagents in LC-MS/MS hormone analyses: Enhancing ionization, not limit of quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123337. [PMID: 35709668 DOI: 10.1016/j.jchromb.2022.123337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
One of the critical steps during LC-MS/MS hormone analyses that affects the sensitivity of the assay is the ionization process. Enhancing ionization efficiencies by the addition of supercharging reagents might be one way to improve sensitivity and reduce the limit of quantification (LOQ). Therefore, we investigated whether the addition of the supercharging reagents m-nitrobenzyl alcohol (m-NBA), sulfolane, propylene carbonate, and o-nitroanisole (o-NA) increased ionization efficiency and improved assay LOQ of insulin, oxytocin, sex steroids, and corticosteroids in test solutions. Additionally, the influence of the supercharging reagents was tested in serum samples after sample pretreatment to determine whether ionization would be enhanced similarly in routine analyses and, subsequently, lead to improved sensitivity. The screening experiments showed that the impact of the supercharging reagents varied for each hormone; although the addition of m-NBA increased the signal of all hormones, the other reagents only enhanced ionization efficiencies for some hormones. While the addition of 0.05 v/v% m-NBA and 0.05 v/v% o-NA did result in an increase in peak area in both test solutions and serum samples, it did not significantly improve the signal-to-noise ratio, as a simultaneous increase in noise was observed. In conclusion, even though supercharging reagents can enhance ionization efficiencies of hormones significantly, the addition of these reagents does not result in an improved LOQ for hormone measurements with LC-MS/MS.
Collapse
Affiliation(s)
- Vera H de Kleijne
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| | - Annemieke C Heijboer
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Mariëtte T Ackermans
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Källsten M, Visanu D, Pijnappel M, Lehmann F, Bergquist J, Lind SB, Kovac L. Potential Use of Supercharging Agents for Improved Mass Spectrometric Analysis of Monoclonal Antibodies and Antibody-Drug Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1161-1167. [PMID: 35704800 DOI: 10.1021/jasms.2c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The addition of supercharging (SC) reagents in electrospray ionization coupled mass spectrometry (ESI-MS) has demonstrated several advantages for protein analysis such as reduced required mass range of the instrument, narrowed charge-state distribution, increased sensitivity, and adduct suppression. The potential use of SC reagents to improve analyses of larger and complex protein molecules such as monoclonal antibodies and antibody-drug conjugates (ADCs) has not been previously reported. In this study, the effect of seven SC reagents (meta-nitrobenzyl alcohol (m-NBA), dimethyl sulfoxide (DMSO), ortho-nitroanisole (o-NA), propane sultone (PS), ethylene carbonate (EC), propylene carbonate (PC), and sulfolane) on ESI-MS acquired spectra of deglycosylated, intact, and reduced trastuzumab and a vcMMAE-trastuzumab ADC was investigated under denaturing conditions. The addition of any of the SC reagents resulted in a higher average charge state observed for all tested reagents for both trastuzumab and the ADC and a narrower charge-state envelope for o-NA and 1% sulfolane for trastuzumab. However, improved peak shapes or increased sensitivity was observed for several reagents, overall increasing the spectra quality. Finally, it was shown that SC reagents can be safely used for ADC analysis without impacting the obtained drug-to-antibody (DAR) values, as all DAR values were within 0.1 from the control sample.
Collapse
Affiliation(s)
- Malin Källsten
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| | - Diana Visanu
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| | | | | | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
| | - Sara Bergström Lind
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
| | - Lucia Kovac
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
9
|
Santos IC, Brodbelt JS. Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1370-1379. [PMID: 33683877 PMCID: PMC8377746 DOI: 10.1021/jasms.1c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous mass spectrometry-based strategies ranging from hydrogen-deuterium exchange to ion mobility to native mass spectrometry have been developed to advance biophysical and structural characterization of protein conformations and determination of protein-ligand interactions. In this study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been the target of countless thermodynamic and kinetic studies owing to its well-characterized active site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis of variations in fragmentation of hCAII versus hCAII-arylsulfonamide complexes, particularly focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein sequence, a supercharging agent was added to the solutions to increase the charge states of the complexes. The three arylsulfonamides examined in this study largely shift the fragmentation patterns in similar ways, despite their differences in binding affinities.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Yang Y, Niu C, Bobst CE, Kaltashov IA. Charge Manipulation Using Solution and Gas-Phase Chemistry to Facilitate Analysis of Highly Heterogeneous Protein Complexes in Native Mass Spectrometry. Anal Chem 2021; 93:3337-3342. [PMID: 33566581 PMCID: PMC8514162 DOI: 10.1021/acs.analchem.0c05249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | | | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
11
|
Abaye DA, Agbo IA, Nielsen BV. Current perspectives on supercharging reagents in electrospray ionization mass spectrometry. RSC Adv 2021; 11:20355-20369. [PMID: 35479879 PMCID: PMC9033978 DOI: 10.1039/d1ra00745a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
In electrospray ionization mass spectrometry (ESI-MS), analytes are introduced into the mass spectrometer in typically aqueous-organic solvent mixtures, including pH modifiers. One mechanism for improving the signal intensity and simultaneously increasing the generation of higher charge-state ions is the inclusion of small amounts (approx. <0.5% v/v mobile phase solution) of charge-inducing or supercharging reagents, such as m-nitrobenzyl alcohol, o-nitrobenzyl alcohol, m-nitrobenzonitrile, m-(trifluoromethyl)-benzyl alcohol and sulfolane. We explore the direct and indirect (colligative properties) that have been proposed as responsible for their modes of action during ESI. Of the many theorized mechanisms of ESI, we re-visit the three most popular and highlight how they are impacted by supercharging observations on small ions to large molecules including proteins. We then provide a comprehensive list of 34 supercharging reagents that have been demonstrated in ESI experiments. We include an additional 19 potential candidate isomers as supercharging reagents and comment on their broad physico-chemical properties. It is becoming increasingly obvious that advances in technology and improved ion source design, analyzers e.g. the use of ion mobility, ion trap, circular dichroism (CD) spectroscopy, together with computer modeling are increasing the knowledge base and, together with the untested isomers and yet-to-be unearthed ones, offer opportunities for further research and application in other areas of polymer research. A simple illustration of the positive electrospray ionization (ESI) environment.![]()
Collapse
Affiliation(s)
- Daniel A. Abaye
- Department of Basic Sciences
- School of Basic and Biomedical Sciences
- University of Health and Allied Sciences
- Ho
- Ghana
| | - Irene A. Agbo
- Department of Basic Sciences
- School of Basic and Biomedical Sciences
- University of Health and Allied Sciences
- Ho
- Ghana
| | - Birthe V. Nielsen
- School of Science
- Faculty of Engineering and Science
- University of Greenwich
- Kent
- UK
| |
Collapse
|
12
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
13
|
Yin Z, Huang J, Miao H, Hu O, Li H. High-Pressure Electrospray Ionization Yields Supercharged Protein Complexes from Native Solutions While Preserving Noncovalent Interactions. Anal Chem 2020; 92:12312-12321. [DOI: 10.1021/acs.analchem.0c01965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhibin Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
14
|
Gault J, Liko I, Landreh M, Shutin D, Bolla JR, Jefferies D, Agasid M, Yen HY, Ladds MJGW, Lane DP, Khalid S, Mullen C, Remes PM, Huguet R, McAlister G, Goodwin M, Viner R, Syka JEP, Robinson CV. Combining native and 'omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat Methods 2020; 17:505-508. [PMID: 32371966 PMCID: PMC7332344 DOI: 10.1038/s41592-020-0821-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
Abstract
Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.
Collapse
Affiliation(s)
- Joseph Gault
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Idlir Liko
- Department of Chemistry, University of Oxford, Oxford, UK
- OMass Therapeutics, Oxford, UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Denis Shutin
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Mark Agasid
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Marcus J G W Ladds
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | | | | | | | | | | | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | | | | |
Collapse
|
15
|
Persaud RR, Dieke NE, Jing X, Lambert S, Parsa N, Hartmann E, Vincent JB, Cassady CJ, Dixon DA. Mechanistic Study of Enhanced Protonation by Chromium(III) in Electrospray Ionization: A Superacid Bound to a Peptide. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:308-318. [PMID: 32031389 DOI: 10.1021/jasms.9b00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Addition of trivalent chromium, Cr(III), to solutions undergoing electrospray ionization (ESI) enhances protonation and leads to formation of [M + 2H]2+ for peptides that normally produce [M + H]+. This effect is explored using electronic structure calculations at the density functional theory (DFT) level to predict the energetics of various species that are potentially important to the mechanism. Gas- and solution-phase reaction free energies for glycine and its anion reacting with [Cr(III)(H2O)6]3+ and for dehydration of these species have been predicted, where glycine is used as a simple model for a peptide. For comparison, calculations were also performed with Fe(III), Al(III), Sc(III), Y(III), and La(III). Removal of water from these complexes, as would occur during the ESI desolvation process, results in species that are highly acidic. The calculated pKa of Cr(III) with a single solvation shell is -10.8, making [Cr(III)(H2O)6]3+ a superacid that is more acidic than sulfuric acid (pKa = -8.8). Binding to glycine requires removal of two aqua ligands, which gives [Cr(III)(H2O)4]3+ that has an extremely acidic pKa of -28.8. Removal of additional water further enhances acidity, reaching a pKa of -84.7 for [Cr(III)(H2O)]3+. A mechanism for enhanced protonation is proposed that incorporates computational and experiment results, as well as information on the known chemistry of Cr(III), which is substitutionally inert. The initial step involves binding of [Cr(III)(H2O)4]3+ to the deprotonated C-terminus of a peptide. As the drying process during ESI strips water from the complex, the resulting superacid transfers protons to the bound peptide, eventually leading to formation of [M + 2H]2+.
Collapse
Affiliation(s)
- Rudradatt R Persaud
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Nnenna E Dieke
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Xinyao Jing
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Skyler Lambert
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Nicholas Parsa
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Elizabeth Hartmann
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - John B Vincent
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Carolyn J Cassady
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - David A Dixon
- Department of Chemistry & Biochemistry , The University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| |
Collapse
|
16
|
Overcharging Effect in Electrospray Ionization Mass Spectra of Daunomycin-Tuftsin Bioconjugates. Molecules 2019; 24:molecules24162981. [PMID: 31426442 PMCID: PMC6720970 DOI: 10.3390/molecules24162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. “Overprotonation” can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.
Collapse
|
17
|
Vallejo DD, Polasky DA, Kurulugama RT, Eschweiler JD, Fjeldsted JC, Ruotolo BT. A Modified Drift Tube Ion Mobility-Mass Spectrometer for Charge-Multiplexed Collision-Induced Unfolding. Anal Chem 2019; 91:8137-8146. [PMID: 31194508 DOI: 10.1021/acs.analchem.9b00427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collision-induced unfolding (CIU) of protein ions and their noncovalent complexes offers relatively rapid access to a rich portfolio of biophysical information, without the need to tag or purify proteins prior to analysis. Such assays have been characterized extensively for a range of therapeutic proteins, proving exquisitely sensitive to alterations in protein sequence, structure, and post-translational modification state. Despite advantages over traditional probes of protein stability, improving the throughput and information content of gas-phase protein unfolding assays remains a challenge for current instrument platforms. In this report, we describe modifications to an Agilent 6560 drift tube ion mobility-mass spectrometer in order to perform robust, simultaneous CIU across all precursor ions detected. This approach dramatically increases the speed associated with typical CIU assays, which typically involve mass selection of narrow m/ z regions prior to collisional activation, and thus their development requires a comprehensive assessment of charge-stripping reactions that can unintentionally pollute CIU data with chemical noise when more than one precursor ion is allowed to undergo simultaneous activation. By studying the unfolding and dissociation of intact antibody ions, a key analyte class associated with biotherapeutics, we reveal a predictive relationship between the precursor charge state, the amount of buffer components bound to the ions of interest, and the amount of charge stripping detected. We then utilize our knowledge of antibody charge stripping to rapidly capture CIU data for a range of antibody subclasses and subtypes across all charge states simultaneously, demonstrating a strong charge state dependence on the information content of CIU. Finally, we demonstrate that CIU data collection times can be further reduced by scanning fewer voltage steps, enabling us to optimize the throughput of our improved CIU methods and confidently differentiate antibody variant ions using ∼20% of the data typically collected during CIU. Taken together, our results characterize a new instrument platform for biotherapeutic stability measurements with dramatically improved throughput and information content.
Collapse
Affiliation(s)
- Daniel D Vallejo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Daniel A Polasky
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | | | - Joseph D Eschweiler
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States.,AbbVie , North Chicago , Illinois 60064 , United States
| | - John C Fjeldsted
- Agilent Technologies , Santa Clara , California 95051 , United States
| | - Brandon T Ruotolo
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
18
|
Assessing mixtures of supercharging agents to increase the abundance of a specific charge state of Neuromedin U. Talanta 2019; 198:206-214. [PMID: 30876551 DOI: 10.1016/j.talanta.2019.01.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/24/2022]
Abstract
With increasing evidence of the important role of peptides in pathophysiological processes, a trend towards the development of highly sensitive bioanalytical methods is ongoing. Inherent to the electrospray ionization process of peptides and proteins is the production of multiple charge states which may hamper proper and sensitive method development. Supercharging agents allow modifying the maximal charge state and the corresponding distribution of charges, thereby potentially increasing the number of ions reaching the detector in selected reaction monitoring mode. In this study, the use of mixtures of charge state modifying additives, i.e. m-nitrobenzylalcohol (mNBA), sulfolane and dimethyl sulfoxide (DMSO), to specifically increase the abundance of one charge state of interest has been investigated. Screening experiments were performed to define an experimental domain, which was then further investigated via a response surface design to predict the optimal combination and concentration of superchargers. Using a combination of mNBA and DMSO (0.008% and 0.5% m/v respectively), we were able to increase the abundance of the +4 charge state of the investigated peptide neuromedin U from 64% to 87%. Unfortunately, charge state coalescence did not result in repeatable sensitivity improvements in this case study. However, it remains an attractive approach during method development of peptide bioanalytical methods, as coalescence to a particular intermediate charge state is difficult to obtain by using only one supercharging agent.
Collapse
|
19
|
Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ, Deodhar BS, Pemberton JE, Prell JS, Marty MT. Chemical Additives Enable Native Mass Spectrometry Measurement of Membrane Protein Oligomeric State within Intact Nanodiscs. J Am Chem Soc 2019; 141:1054-1061. [PMID: 30586296 DOI: 10.1021/jacs.8b11529] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins play critical biochemical roles but remain challenging to study. Recently, native or nondenaturing mass spectrometry (MS) has made great strides in characterizing membrane protein interactions. However, conventional native MS relies on detergent micelles, which may disrupt natural interactions. Lipoprotein nanodiscs provide a platform to present membrane proteins for native MS within a lipid bilayer environment, but previous native MS of membrane proteins in nanodiscs has been limited by the intermediate stability of nanodiscs. It is difficult to eject membrane proteins from nanodiscs for native MS but also difficult to retain intact nanodisc complexes with membrane proteins inside. Here, we employed chemical reagents that modulate the charge acquired during electrospray ionization (ESI). By modulating ESI conditions, we could either eject the membrane protein complex with few bound lipids or capture the intact membrane protein nanodisc complex-allowing measurement of the membrane protein oligomeric state within an intact lipid bilayer environment. The dramatic differences in the stability of nanodiscs under different ESI conditions opens new applications for native MS of nanodiscs.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Dane Evan Zambrano
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Ciara K Zak
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Deseree J Reid
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Bhushan S Deodhar
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , Eugene , Oregon 97403 , United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
20
|
Jing X, Edwards KC, Vincent JB, Cassady CJ. The use of chromium(III) complexes to enhance peptide protonation by electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1198-1206. [PMID: 30281192 DOI: 10.1002/jms.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The addition of trivalent chromium, Cr(III), reagents to peptide solutions can increase the intensity of doubly protonated peptides, [M + 2H]2+ , through electrospray ionization (ESI). Three model heptapeptides were studied: neutral (AAAAAAA), acidic (AAEEEAA), and basic (AAAKAAA). The neutral and acidic peptides form almost no 2+ ions in the absence of Cr(III). Twenty Cr(III) complexes were used as potential enhanced protonation reagents, including 11 complexes with nonlabile ligands and nine with labile ligands. The complexes that provide the most abundant [M + 2H]2+ , the greatest [M + 2H]2+ to [M + H]+ ratio, and the cleanest mass spectra are [Cr(H2 O)6 ](NO3 )3 ·3H2 O and [Cr(THF)3 ]Cl3 . Anions in Cr(III) reagents can also affect the intensity of [M + 2H]2+ and the [M + 2H]2+ to [M + H]+ ratio through cation-anion interactions. The influence of anions on the extent of peptide protonation follows the trend ClO4 - ˃ SO4 2- ˃ Br- ˃ Cl- ˃ F- ≈ NO3 - . Solvent effects and complexes with varying number of water ligands were investigated to study the importance of water in enhanced protonation. Aqueous solvent systems and Cr(III) complexes that have at least one bound water ligand in solution must be used for successful increase in the intensity of [M + 2H]2+ , which indicates that water is involved in the mechanism of Cr(III)-induced enhanced protonation. The ESI source design is also important because no enhanced protonation was observed using a Z-spray source. The current results suggest that this Cr(III)-induced effect occurs during the ESI desolvation process.
Collapse
Affiliation(s)
- Xinyao Jing
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - Kyle C Edwards
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - John B Vincent
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - Carolyn J Cassady
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| |
Collapse
|
21
|
De Freitas KCB. Resolving the Discrepancies Between Empirical and Rayleigh Charge Limiting Models for Globular Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2059-2066. [PMID: 30043359 DOI: 10.1007/s13361-018-2025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Starting with the Rayleigh charge limiting model, a slightly different approach is used to account for the well-known discrepancy that exists between the said model and experimental ESI MS data for globular proteins. It is shown using published datasets that for globular proteins, the mass density ρ exhibits a weak second-order dependence on its mass M, according to ρ(M)∝ M-α, α ~ 0.14. A direct equivalence established between ESI MS and x-ray techniques suggests a minimum but critical surface tension of 15.6 ± 5.2 mN/m for the droplet at the liquid-to-gas phase transition point. The packing density factor η for globular proteins is believed to lie between 1 (very tightly packed) and 4.6 (less tight, natively packed). While the Rayleigh charge limiting model has been linked historically to the CRM (J. Chem. Phys. 49:2240-2249, 1968; Anal. Chim. Acta 406:93-104, 2000), this paper does not expressly seek to justify the CRM, but rather uses empirical data and existing knowledge across subfields to help build a consistent picture of ESI MS phenomena that might be difficult to explain otherwise. These results would be useful in molecular dynamics (MD) simulations, understanding liquid-to-gas phase transitions and in opening up new routes for cross-calibration between ESI MS, IM MS, NMR and x-ray crystallography studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Karen C B De Freitas
- Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
- The Doctors Laboratory, The Halo Building, 1 Mabledon Place, London, WC1H 9AX, UK.
| |
Collapse
|
22
|
Clark DD. Preliminary investigation of deoxyoligonucleotide binding to ribonuclease A using mass spectrometry: An attempt to develop a lab experience for undergraduates. F1000Res 2018; 7:340. [PMID: 29721314 PMCID: PMC5897785 DOI: 10.12688/f1000research.14268.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
Deoxyoligonucleotide binding to bovine pancreatic ribonuclease A (RNase A) was investigated using electrospray ionization ion-trap mass spectrometry (ESI-IT-MS). Deoxyoligonucleotides included CCCCC (dC
5) and CCACC (dC
2AC
2). This work was an attempt to develop a biochemistry lab experience that would introduce undergraduates to the use of mass spectrometry for the analysis of protein-ligand interactions. Titration experiments were performed using a fixed RNase A concentration and variable deoxyoligonucleotide concentrations. Samples at equilibrium were infused directly into the mass spectrometer under native conditions. For each deoxyoligonucleotide, mass spectra showed one-to-one binding stoichiometry, with marked increases in the total ion abundance of ligand-bound RNase A complexes as a function of concentration, but the accurate determination of dC
5 and dC
2AC
2 dissociation constants was problematic.
Collapse
Affiliation(s)
- Daniel D Clark
- Department of Chemistry and Biochemistry, California State University, Chico, Chico, CA, 95929-0210, USA
| |
Collapse
|
23
|
Kaltashov IA, Pawlowski JW, Yang W, Muneeruddin K, Yao H, Bobst CE, Lipatnikov AN. LC/MS at the whole protein level: Studies of biomolecular structure and interactions using native LC/MS and cross-path reactive chromatography (XP-RC) MS. Methods 2018; 144:14-26. [PMID: 29702225 DOI: 10.1016/j.ymeth.2018.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 11/25/2022] Open
Abstract
Interfacing liquid chromatography (LC) with electrospray ionization (ESI) to enable on-line MS detection had been initially implemented using reversed phase LC, which in the past three decades remained the default type of chromatography used for LC/MS and LC/MS/MS studies of protein structure. In contrast, the advantages of other types of LC as front-ends for ESI MS, particularly those that allow biopolymer higher order structure to be preserved throughout the separation process, enjoyed relatively little appreciation until recently. However, the past few years witnessed a dramatic surge of interest in the so-called "native" (with "non-denaturing" being perhaps a more appropriate adjective) LC/MS and LC/MS/MS analyses within the bioanalytical and biophysical communities. This review focuses on recent advances in this field, with an emphasis on size exclusion and ion exchange chromatography as front-end platforms for protein characterization by LC/MS. Also discussed are the benefits provided by the integration of chemical reactions in the native LC/MS analyses, including both ion chemistry in the gas phase (e.g., limited charge reduction for characterization of highly heterogeneous biopolymers) and solution-phase reactions (using the recently introduced technique cross-path reactive chromatography).
Collapse
Affiliation(s)
- Igor A Kaltashov
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States.
| | - Jake W Pawlowski
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Wenhua Yang
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Khaja Muneeruddin
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Honglin Yao
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cedric E Bobst
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Andrei N Lipatnikov
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
24
|
Nshanian M, Lakshmanan R, Chen H, Ogorzalek Loo RR, Loo JA. Enhancing Sensitivity of Liquid Chromatography-Mass Spectrometry of Peptides and Proteins Using Supercharging Agents. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:157-164. [PMID: 29750076 PMCID: PMC5937529 DOI: 10.1016/j.ijms.2017.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Rajeswari Lakshmanan
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
25
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
26
|
Xia Z, Williams ER. Protein-Glass Surface Interactions and Ion Desalting in Electrospray Ionization with Submicron Emitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:194-202. [PMID: 29027129 DOI: 10.1007/s13361-017-1825-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 05/27/2023]
Abstract
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. Graphical Abstract.
Collapse
Affiliation(s)
- Zije Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
27
|
Holden DD, Brodbelt JS. Ultraviolet Photodissociation of Native Proteins Following Proton Transfer Reactions in the Gas Phase. Anal Chem 2016; 88:12354-12362. [PMID: 28193062 DOI: 10.1021/acs.analchem.6b03565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
28
|
Challenges for the in vivo quantification of brain neuropeptides using microdialysis sampling and LC-MS. Bioanalysis 2016; 8:1965-85. [PMID: 27554986 DOI: 10.4155/bio-2016-0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, neuropeptides and their receptors have received an increased interest in neuropharmacological research. Although these molecules are considered relatively small compared with proteins, their in vivo quantification using microdialysis is more challenging than for small molecules. Low microdialysis recoveries, aspecific adsorption and the presence of various multiply charged precursor ions during ESI-MS/MS detection hampers the in vivo quantification of these low abundant biomolecules. Every step in the workflow, from sampling until analysis, has to be optimized to enable the sensitive analysis of these compounds in microdialysates.
Collapse
|
29
|
Going CC, Xia Z, Williams ER. Real-time HD Exchange Kinetics of Proteins from Buffered Aqueous Solution with Electrothermal Supercharging and Top-Down Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1019-1027. [PMID: 26919868 PMCID: PMC4865425 DOI: 10.1007/s13361-016-1350-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Catherine C Going
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
30
|
Lee JK, Jansson ET, Nam HG, Zare RN. High-Resolution Live-Cell Imaging and Analysis by Laser Desorption/Ionization Droplet Delivery Mass Spectrometry. Anal Chem 2016; 88:5453-61. [PMID: 27110027 PMCID: PMC5446058 DOI: 10.1021/acs.analchem.6b00881] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed a new ambient-ionization mass spectrometric technique named laser desorption/ionization droplet delivery mass spectrometry (LDIDD-MS). LDIDD-MS permits high-resolution, high-sensitivity imaging of tissue samples as well as measurements of both single-cell apoptosis and live-cell exocytosis. A pulsed (15 Hz) UV laser beam (266 nm) is focused on a surface covered with target analytes to trigger their desorption and ionization. A spray of liquid droplets is simultaneously directed onto the laser-focused surface region to capture the ionized analytes and deliver them to a mass spectrometer. The approach of rapid and effective capturing of molecules after laser desorption/ionization allows the limit of detection for the amino acid lysine to be as low as 2 amol under ambient ionization conditions. Two-dimensional maps of the desorbed/ionized species are recorded by moving the sample on an XY translational stage. The spatial resolution for imaging with LDIDD-MS was determined to be 2.4 μm for an ink-printed pattern and 3 μm for mouse brain tissue. We applied LDIDD-MS to single-cell analysis of apoptotic HEK cells. Differences were observed in the profiles of fatty acids and lipids between healthy HEK cells and those undergoing apoptosis. We observed upregulation of phosphatidylcholine (PC) with a relatively shorter carbon chain length and downregulation of PC with a relatively longer carbon chain length. We also applied LDIDD-MS for a real-time direct measurements of live-cell exocytosis. The catecholamine dopamine and trace amines (phenethylamine and tyramine) were detected from live PC12 cells without damaging them.
Collapse
Affiliation(s)
- Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
| | - Erik T. Jansson
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
- Department of Chemistry – BMC, Uppsala University, SE-75124 Uppsala, Sweden
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Republic of Korea
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
| |
Collapse
|