1
|
Takehana K, Koizumi H, Hiraba H, Kodaira A, Yoneyama T, Matsumura H. Bonding performance of a thiohydantoin-methacrylate monomer on noble metal alloys. Dent Mater J 2021; 41:279-285. [PMID: 34980767 DOI: 10.4012/dmj.2021-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed the effect of a primer containing 10-methacryloyloxydecyl-(2-thiohydantoin-4-yl)propionate (MDTHP) on the bonding of noble metal alloys to an acrylic resin. Three noble metal alloys were selected as adherends, and V-Primer containing 6-(4-vinylbenzyl-n-propyl)amino-1,3,5-triazine-2,4-dithione was used as a comparative control. The disk specimens of each noble metal alloy were wet-ground and divided into three conditions: specimens primed with MDTHP primer or V-Primer, and specimens without priming. An acrylic resin was bonded to each specimen, and the specimens were performed the shear bond test. The MDTHP primer showed higher shear bond strength than the V-Primer for all specimens. X-ray photoelectron spectroscopic analysis showed that MDTHP was adsorbed on the Au-Pt-Pd alloy surface even after acetone cleaning. MDTHP binds not only with Cu but also with Au and Ag, promoting the bond strength of noble metal alloys. The effectiveness of MDTHP on dental noble metal alloys was suggested.
Collapse
Affiliation(s)
- Kosuke Takehana
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Hiroyasu Koizumi
- Department of Dental Materials, Nihon University School of Dentistry.,Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry
| | - Haruto Hiraba
- Department of Fixed Prosthodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Akihisa Kodaira
- Department of Fixed Prosthodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Takayuki Yoneyama
- Department of Dental Materials, Nihon University School of Dentistry.,Division of Biomaterials Science, Dental Research Center, Nihon University School of Dentistry
| | - Hideo Matsumura
- Department of Fixed Prosthodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
2
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
4
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
5
|
Subramani B, Shantamurthy CD, Maru P, Belekar MA, Mardhekar S, Shanmugam D, Kikkeri R. Demystifying a hexuronic acid ligand that recognizes Toxoplasma gondii and blocks its invasion into host cells. Org Biomol Chem 2019; 17:4535-4542. [PMID: 30994681 DOI: 10.1039/c9ob00744j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is a ubiquitous eukaryotic pathogen responsible for toxoplasmosis in humans and animals. This parasite is an obligate intracellular pathogen and actively invades susceptible host cells, a process which is mediated by specific receptor-ligand interactions. Here, we have identified an unnatural 2,4-disulfated d-glucuronic acid (Di-S-GlcA), a hexuronic acid composed of heparin/heparan sulfate, as a potential carbohydrate ligand that can selectively bind to T. gondii parasites. More importantly, the gelatin conjugated Di-S-GlcA multivalent probe displayed strong inhibition of parasite entry into host cells. These results open perspective for the future use of Di-S-GlcA epitopes in biomedical applications against toxoplasmosis.
Collapse
Affiliation(s)
- Balamurugan Subramani
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhan W, Wei T, Yu Q, Chen H. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36585-36601. [PMID: 30285413 DOI: 10.1021/acsami.8b12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supramolecular host-guest interactions provide a facile and versatile basis for the construction of sophisticated structures and functional assemblies through specific molecular recognition of host and guest molecules to form inclusion complexes. In recent years, these interactions have been exploited as a means of attaching bioactive molecules and polymers to solid substrates for the fabrication of bioactive surfaces. Using a common host molecule, β-cyclodextrin (β-CD), and various guest molecules as molecular building blocks, we fabricated several types of bioactive surfaces with multifunctionality and/or function switchability via host-guest interactions. Other groups have also taken this approach, and several intelligent designs have been developed. The results of these investigations indicate that, compared to the more common covalent bonding-based methods for attachment of bioactive ligands, host-guest based methods are simple, more broadly ("universally") applicable, and allow convenient renewal of bioactivity. In this Spotlight on Applications, we review and summarize recent developments in the fabrication of supramolecular bioactive surfaces via β-CD-based host-guest interactions. The main focus is on the work from our laboratory, but highlights on work from other groups are included. Applications of the materials are also emphasized. These surfaces can be categorized into three types based on: (i) self-assembled monolayers, (ii) polymer brushes, and (iii) multilayered films. The host-guest strategy can be extended from material surfaces to living cell surfaces, and work along these lines is also reviewed. Finally, a brief perspective on the developments of supramolecular bioactive surfaces in the future is presented.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
7
|
Mannoside and 1,2-mannobioside β-cyclodextrin-scaffolded NO-photodonors for targeting antibiotic resistant bacteria. Carbohydr Polym 2018; 199:649-660. [PMID: 30143173 DOI: 10.1016/j.carbpol.2018.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022]
Abstract
Two β-cyclodextrin derivatives randomly appended on the primary face with both the nitric oxide (NO) photodonor 4-nitro-3-(trifluoromethyl)aniline and a mannose or α(1→2)mannobioside residue are reported to construct targeted NO photoreleasing nanocarriers. 2D ROESY and PGSE NMR suggested supramolecular homodimerization in water by inclusion of the nitroaniline group into the facing macrocycle cavities. Isothermal titration calorimetry on their concanavalin A lectin binding showed an exothermic binding event to the lectin and an endothermic process during the dilution of the conjugates. Both α(1→2)mannobioside and the nitroaniline moieties significantly enhanced the binding to the lectin. These effects might arise from a better fit within the carbohydrate-recognition site in the former case and a multivalent effect caused by homodimerization in the latter. Direct detection of NO by amperometric technique shows that both β-cyclodextrin derivatives release this radical upon excitation with visible light with higher efficiency than the unfunctionalized NO photodonor.
Collapse
|
8
|
Sangabathuni S, Murthy RV, Gade M, Bavireddi H, Toraskar S, Sonar MV, Ganesh KN, Kikkeri R. Modeling Glyco-Collagen Conjugates Using a Host-Guest Strategy To Alter Phenotypic Cell Migration and in Vivo Wound Healing. ACS NANO 2017; 11:11969-11977. [PMID: 29077384 DOI: 10.1021/acsnano.7b01789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The constructs and study of combinatorial libraries of structurally defined homologous extracellular matrix (ECM) glycopeptides can significantly accelerate the identification of cell surface markers involved in a variety of physiological and pathological processes. Herein, we present a simple and reliable host-guest approach to design a high-throughput glyco-collagen library to modulate the primary and secondary cell line migration process. 4-Amidoadamantyl-substituted collagen peptides and β-cyclodextrin appended with mono- or disaccharides were used to construct self-assembled glyco-collagen conjugates (GCCs), which were found to be thermally stable, with triple-helix structures and nanoneedles-like morphologies that altered cell migration processes. We also investigated the glycopeptide's mechanisms of action, which included interactions with integrins and cell signaling kinases. Finally, we report murine wound models to demonstrate the real-time application of GCCs. As a result of our observations, we claim that the host-guest model of ECM glycopeptides offers an effective tool to expedite identification of specific glycopeptides to manipulate cell morphogenesis, cell differentiation metastatic processes, and their biomedical applications.
Collapse
Affiliation(s)
- Sivakoti Sangabathuni
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | | | - Madhuri Gade
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Harikrishna Bavireddi
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Mahesh V Sonar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
9
|
Zhan W, Wei T, Cao L, Hu C, Qu Y, Yu Q, Chen H. Supramolecular Platform with Switchable Multivalent Affinity: Photo-Reversible Capture and Release of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3505-3513. [PMID: 28071051 DOI: 10.1021/acsami.6b15446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surfaces having dynamic control of interactions at the biological system-material interface are of great scientific and technological interest. In this work, a supramolecular platform with switchable multivalent affinity was developed to efficiently capture bacteria and on-demand release captured bacteria in response to irradiation with light of different wavelengths. The system consists of a photoresponsive self-assembled monolayer containing azobenzene (Azo) groups as guest and β-cyclodextrin (β-CD)-mannose (CD-M) conjugates as host with each CD-M containing seven mannose units to display localized multivalent carbohydrates. Taking the advantage of multivalent effect of CD-M, this system exhibited high capacity and specificity for the capture of mannose-specific type 1-fimbriated bacteria. Moreover, ultraviolet (UV) light irradiation caused isomerization of the Azo groups from trans-form to cis-form, resulting in the dissociation of the host-guest Azo/CD-M inclusion complexes and localized release of the captured bacteria. The capture and release process could be repeated for multiple cycles, suggesting good reproducibility. This platform provides the basis for development of reusable biosensors and diagnostic devices for the detection and measurement of bacteria and exhibits great potential for use as a standard protocol for the on-demand switching of surface functionalities.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| |
Collapse
|
10
|
Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H. A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J Mater Chem B 2017; 5:444-453. [DOI: 10.1039/c6tb02821g] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A re-usable supramolecular platform with the capability of high-efficiency capture and on-demand release of specific proteins and bacteria was developed.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|