1
|
Song X, He S, Zheng J, Yang S, Li Q, Zhang Y. One-Step Construction of Tryptophan-Derived Small Molecule Hydrogels for Antibacterial Materials. Molecules 2023; 28:molecules28083334. [PMID: 37110568 PMCID: PMC10141015 DOI: 10.3390/molecules28083334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid-based hydrogels have received widespread attention because of their wide range of sources, biodegradability, and biocompatibility. Despite considerable progress, the development of such hydrogels has been limited by critical problems such as bacterial infection and complex preparation. Herein, by using the non-toxic gluconolactone (GDL) to adjust the pH of the solution to induce the rapid self-assembly of N-[(benzyloxy)carbonyl]-L-tryptophan (ZW) to form a three-dimensional (3D) gel network, we developed a stable and effective self-assembled small-molecule hydrogel. Characterization assays and molecular dynamics studies indicate that π-π stacking and hydrogen bonding are the main drivers of self-assembly between ZW molecules. In vitro experiments further confirmed this material's sustained release properties, low cytotoxicity, and excellent antibacterial activity, particularly against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This study provides a different and innovative perspective for the further development of antibacterial materials based on amino acid derivatives.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shunmei He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
3
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
4
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Kolari K, Bulatov E, Tatikonda R, Bertula K, Kalenius E, Haukka M. Self-healing, luminescent metallogelation driven by synergistic metallophilic and fluorine-fluorine interactions. SOFT MATTER 2020; 16:2795-2802. [PMID: 32104828 DOI: 10.1039/c9sm02186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Square planar platinum(ii) complexes are attractive building blocks for multifunctional soft materials due to their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels derived from platinum(ii) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single crystal X-ray diffraction studies, we show that the presence of synergistic platinum-platinum (PtPt) metallopolymerization and fluorine-fluorine (FF) interactions are the major driving forces in achieving hierarchical superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original storage modulus even after several cycles under oscillatory step-strain rheological measurements showing rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation, provide the potential to utilize synthetically simple discrete complexes in advanced optical materials.
Collapse
Affiliation(s)
- Kalle Kolari
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
7
|
Chao D, Pan Y, Gao XW. A long-lived Donor-Acceptor fluorescent probe for sequential detection of Cu 2+ and biothiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117770. [PMID: 31708463 DOI: 10.1016/j.saa.2019.117770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
A new long-lived Donor-Acceptor (D-A) fluorophore based on carbazolyl dicyanobenzene was developed as an ON-OFF-ON multifunctional fluorescent probe 1 for sequential detection of Cu2+ and biothiols (Cys, Hcy and GSH). The fluorescence of probe 1 can be significantly and selectively quenched by Cu2+. Meanwhile, the fluorescence lifetime decreased from 2.1 μs to 18.5 ns. The limit of detection was determined to be 33.6 nM. Upon addition of biothiols (Cys, Hcy and GSH), the generated ensemble 1-Cu2+ displayed a "turn-on" fluorescent response at 555 nm and an obvious recovery in fluorescence lifetime and UV-vis absorption within 1 min. The limit of detection for Cys, Hcy and GSH were calculated by fluorescence titration experiments to be 0.19, 0.21 and 0.29 μM, respectively. The ensemble 1-Cu2+ was further successfully applied in bioimaging.
Collapse
Affiliation(s)
- Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China.
| | - Yaping Pan
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
9
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Zhao LL, Han Y, Yan CG. Construction of [1]rotaxanes with pillar[5]arene as the wheel and terpyridine as the stopper. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
12
|
Wang X, Wei C, Gao S, He B, Lin Y. Assembly of (l+d)-Tryptophan Derivatives Containing an Imidazole Group Selectively Forms a Rare Purple Ni 2+-Hydrogel. ChemistryOpen 2019; 8:1172-1175. [PMID: 31497471 PMCID: PMC6718073 DOI: 10.1002/open.201900214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Indexed: 01/09/2023] Open
Abstract
Design of metal-selective hydrogels is attractive due to potential applications in materials and biological sciences. Although much progress has been made, assembly of both l- and d-amino acid derivatives was less explored for design of metallohydrogels. In this study, we synthesized a facile and small tryptophan derivative containing an imidazole ligand with both l- and d- configurations (denoted as l/d-ImW). Intriguingly, the assembly of (l+d)-ImW gelators was found to selectively form a Ni2+-hydrogel in aqueous medium at room temperature, which shows a rare purple color and exhibits excellent multi-responsiveness. In addition to insights into the gelation mechanism, this study provides a novel approach to the design of metallohydrogels, by the assembly of (l+d)-amino acid derivatives containing both aromatic rings and multiple metal coordination sites.
Collapse
Affiliation(s)
- Xiao‐Juan Wang
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Chuan‐Wan Wei
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| | - Bo He
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyang421001China
- Hunan Key Laboratory for the Design and Application of Actinide ComplexesUniversity of South ChinaHengyang421001China
- Laboratory of Protein Structure and FunctionUniversity of South ChinaHengyang421001China
| |
Collapse
|
13
|
Ge Q, Liang X, Ding L, Hou J, Miao J, Wu B, Yang Z, Xu T. Guiding the self-assembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Wei C, Wang X, Gao S, Wen G, Lin Y. A Phenylalanine Derivative Containing a 4‐Pyridine Group Can Construct Both Single Crystals and a Selective Cu‐Ag Bimetallohydrogel. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chuan‐Wan Wei
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Xiao‐Juan Wang
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
| | - Shu‐Qin Gao
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ge‐Bo Wen
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| | - Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China 421001 Hengyang China
- Laboratory of Protein Structure and Function University of South China 421001 Hengyang China
| |
Collapse
|
15
|
Xiao T, Xu L, Zhou L, Sun XQ, Lin C, Wang L. Dynamic hydrogels mediated by macrocyclic host-guest interactions. J Mater Chem B 2018; 7:1526-1540. [PMID: 32254900 DOI: 10.1039/c8tb02339e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels have attracted increasing research interest in recent years due to their dynamic properties and potential applications in biomaterials. Concurrently, macrocycle-based host-guest interactions have played an important role in the development of supramolecular chemistry. Recently, research towards dynamic hydrogels mediated by various macrocyclic host-guest interactions has been gradually disclosed. In this review, we will outline the burgeoning progress in the development of functional hydrogels mediated by various host molecules, such as cyclodextrins, cucurbit[n]urils, calix[n]arenes, pillar[n]arenes, and other macrocycles. Smart hydrogels with outstanding properties, like biocompatibility, toughness, and self-healing, are mainly focused. We believe that this review will highlight the potential of dynamic hydrogels mediated by macrocycle-based host-guest interactions.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
16
|
Wei CW, Wang XJ, Gao SQ, Wen GB, Lin YW. A La 3+-selective metallohydrogel with a facile gelator of a phenylalanine derivative containing an imidazole group. Dalton Trans 2018; 47:13788-13791. [PMID: 30252009 DOI: 10.1039/c8dt03557a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first La3+-selective metallohydrogel was constructed by using a facile gelator of a phenylalanine derivative containing an imidazole group, N-(1H-imidazol-4-yl)methylidene-l-phenylalanine, namely La-ImF, which exhibits multi-stimuli responsive properties, including to heat, shearing, pH, etc. Various measurements were also carried out to obtain insights into the mechanism of gelation. Moreover, the La-ImF hydrogel can adsorb toxic dyes, making it a potential candidate for sewage treatment.
Collapse
Affiliation(s)
- Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | |
Collapse
|
17
|
Mantooth SM, Munoz-Robles BG, Webber MJ. Dynamic Hydrogels from Host-Guest Supramolecular Interactions. Macromol Biosci 2018; 19:e1800281. [PMID: 30303631 DOI: 10.1002/mabi.201800281] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Indexed: 01/17/2023]
Abstract
Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross-linking mediated by host-guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross-linking by secondary non-covalent interactions or polymer jamming. Host-guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non-covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.
Collapse
Affiliation(s)
- Siena M Mantooth
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brizzia G Munoz-Robles
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
18
|
Zhou Y, Li E, Zhao R, Jie K. CO2-Enhanced Bola-Type Supramolecular Amphiphile Constructed from Pillar[5]arene-Based Host–Guest Recognition. Org Lett 2018; 20:4888-4892. [DOI: 10.1021/acs.orglett.8b02033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yujuan Zhou
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Run Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
19
|
Abstract
Pillararenes are a unique group of supramolecular macrocycles, presenting important features and potential applications on account of their intrinsic structural properties and functionality. Developing pillararene-based self-assembled amphiphiles (PSAs) is an efficient approach to translate pillararenes into functional systems and materials for facilitating their practical applications. In this review article, we highlight recent significant advancements in PSAs. A new standard according to the number, solubility, and amphiphilicity of building blocks is employed for dividing PSAs into different categories. The fabrication of PSAs based on various building blocks and supramolecular interactions, and the formation of amphiphile-based self-assemblies are then discussed based on this standard. Furthermore, interesting stimulus-responsiveness to various factors, such as pH, redox, temperature, light, ionic effect, and host-guest competition, generated by the functional groups on various building blocks is summarized, and the corresponding supramolecular interactions in PSAs and their self-assemblies are elaborated. In addition, some important applications of PSAs and their assemblies are discussed. This review not only provides fundamental findings on the construction of PSAs, but also foresees future research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | | | | |
Collapse
|
20
|
Maity A, Dey A, Si MK, Ganguly B, Das A. Impact of "half-crown/two carbonyl"-Ca 2+ metal ion interactions of a low molecular weight gelator (LMWG) on its fiber to nanosphere morphology transformation with a gel-to-sol phase transition. SOFT MATTER 2018; 14:5821-5831. [PMID: 29972192 DOI: 10.1039/c8sm01071d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report here a smart functional low molecular weight gelator (LMWG) L, containing an unusual metal ion coordination site, i.e. "half-crown/two carbonyl". The gelator L shows excellent gelation behavior with typical fibrillar morphology in acetonitrile, methanol and ethanol media. Upon Ca2+ ion binding with its "half-crown/two carbonyl" coordination site, the acetonitrile gel of L exhibits a fiber to nanosphere morphology transformation along with a gel-to-sol phase transition as confirmed by microscopic investigation and by direct naked eye visualization, respectively. The mechanism involved in this morphology transformation and gel-to-sol phase transition process was studied thoroughly with the help of computational calculations and various spectroscopic experiments and discussed.
Collapse
Affiliation(s)
- Arunava Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| | | | | | | | | |
Collapse
|
21
|
Li E, Jie K, Zhou Y, Zhao R, Zhang B, Wang Q, Liu J, Huang F. Aliphatic Aldehyde Detection and Adsorption by Nonporous Adaptive Pillar[4]arene[1]quinone Crystals with Vapochromic Behavior. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23147-23153. [PMID: 29916689 DOI: 10.1021/acsami.8b06396] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The detection and adsorption of volatile low-molecular-weight aliphatic aldehydes is of significance, owing to their physical volatility, chemical toxicity, and widespread applications in chemical industrial processes. Here, nonporous adaptive pillar[4]arene[1]quinone (EtP4Q1) crystals with vapochromic behavior are used for the volatile aliphatic aldehyde uptake and sensing. When desolvated EtP4Q1 crystals (EtP4Q1α) are exposed to aliphatic aldehydes with different carbon chain lengths, they quantitatively adsorb vapors of these aldehydes, accompanied by different color changes. Crystal structure analyses show that the structure of EtP4Q1 transforms from EtP4Q1α into the corresponding new structures after the adsorption of these aldehydes, which leads to different color changes. The selectivity of EtP4Q1α crystals, which function as both sensors and adsorbents upon exposure to mixed aldehyde vapors, is also explored. Finally, it is demonstrated that EtP4Q1α crystals can be recycled many times without loss of performance.
Collapse
|
22
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
23
|
Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Zhao R, Jie K, Zhou Y, Li E, Liu J, Huang F. Clip[4]arene: synthesis, rigid acyclic C-shaped structure, and redox-controlled host–guest complexation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Wang X, He T, Yang L, Wu H, Yin J, Shen R, Xiang J, Zhang Y, Wei C. Designing isometrical gel precursors to identify the gelation pathway for nickel-selective metallohydrogels. Dalton Trans 2018; 45:18438-18442. [PMID: 27819371 DOI: 10.1039/c6dt03828j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two novel multi-responsive metallohydrogels, namely, 2-PF-Ni and 3-PF-Ni, were successfully constructed from phenylalanine derivatives. The 2-PF gelator shows specific responses to Ni2+; particularly, 2-PF-Ni is lavender colored, which has been rarely reported among hydrogels triggered by Ni2+. 3-PF-Ni is light green and exhibits perfect thixotropy. This paper provides insights into the gelation mechanisms of these two metallogels.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Chemistry and Chemical Engineering, Changsha 410083, China and College of Chemistry and Chemical Engineering, University of South China, Hengyang 421000, China.
| | - Ting He
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Lan Yang
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Huiqiong Wu
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Jiafu Yin
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Rujuan Shen
- College of Chemistry and Chemical Engineering, Changsha 410083, China and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Changsha 410083, China
| | - Chuanwan Wei
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421000, China.
| |
Collapse
|
26
|
Zhang X, Wang K, Lin S, Dai Y, Xia F. Supramolecular Vesicles Prepared by Photodimerization of Coumarins in the Cavity of γ-Cyclodextrin. ChemistrySelect 2017. [DOI: 10.1002/slct.201701739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Kang Wang
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Shijun Lin
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Yu Dai
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
| | - Fan Xia
- Faculty of Materials Science and Chemistry; China University of Geosciences; Wuhan 430074 P.R. China
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|
27
|
Wang Y, Lv MZ, Song N, Liu ZJ, Wang C, Yang YW. Dual-Stimuli-Responsive Fluorescent Supramolecular Polymer Based on a Diselenium-Bridged Pillar[5]arene Dimer and an AIE-Active Tetraphenylethylene Guest. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yan Wang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ming-Zhe Lv
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Nan Song
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zeng-Jie Liu
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunyu Wang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC),
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
28
|
Yu X, Wang Z, Li Y, Geng L, Ren J, Feng G. Fluorescent and Electrochemical Supramolecular Coordination Polymer Hydrogels Formed from Ion-Tuned Self-Assembly of Small Bis-Terpyridine Monomer. Inorg Chem 2017. [DOI: 10.1021/acs.inorgchem.7b01031] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xudong Yu
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Zengyao Wang
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Lijun Geng
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Jujie Ren
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Guoliang Feng
- College of Science,
and Hebei
Research Centre of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
29
|
Kim C, Kim KY, Lee JH, Ahn J, Sakurai K, Lee SS, Jung JH. Chiral Supramolecular Gels with Lanthanide Ions: Correlation between Luminescence and Helical Pitch. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3799-3807. [PMID: 28059492 DOI: 10.1021/acsami.6b13916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the correlation between the fluorescence intensity and the helical pitch of supramolecular hydrogels with Tb(III) and Eu(III) as well as their inkjet printing patterning as an application. The luminescent gels, which exhibited three different emissions of red, green, and blue, could be prepared without and with Eu(III) and Tb(III). The luminescence intensity of supramolecular gels (gel-Tb and gel-Eu) composed of Tb(III) and Eu(III) was ca. 3-fold larger than that of the sol (1+Tb(III) or 1+Eu(III)), which was attributed to large tilting angles between molecules. By AFM observations, these gels showed well-defined right-handed helical nanofibers formed by coordination bonds in which the helical pitch lengths were strongly dependent on the concentrations of lanthanide ions. In particular, the large luminescence intensity of gel-Tb exhibited a smaller helical pitch length than that of gel-1 due to relatively weak π-π stacking with large tilting angles between molecules. The luminescence intensities were enhanced linearly with increasing concentrations of lanthanide ions. This is the first example of the correlation between the helical pitch length and the luminescence intensity of supramolecular materials. The coordination bonding in supramolecular hydrogels had a strong influence on rheological properties. We also developed a water-compatible inkjet printing system to generate luminescent supramolecular gels on A4-sized paper. The images of a logo and the text were composed of three different emissions and were well-printed on A4 sized paper coated with gel-1.
Collapse
Affiliation(s)
- Chaelin Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
| | - Ji Ha Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
- Department of Chemistry, Kitakyushu University , Kitakyushu 819-0395, Japan
| | - Junho Ahn
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
| | - Kazuo Sakurai
- Department of Chemistry, Kitakyushu University , Kitakyushu 819-0395, Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 660-701, Korea
| |
Collapse
|
30
|
Hsu CW, Miljanić OŠ. Kinetically controlled simplification of a multiresponsive [10 × 10] dynamic imine library. Chem Commun (Camb) 2016; 52:12357-12359. [PMID: 27711334 DOI: 10.1039/c6cc06772g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetically controlled self-sorting processes in complex synthetic mixtures represent an important model for behaviours of biological networks, which operate far from equilibrium and without interference among simultaneous metabolic pathways. However, most of the previously reported kinetic self-sorting protocols dealt with small dynamic libraries and a single external stimulus. Here, we report the iterative simplification of a large imine dynamic combinatorial library (DCL) constructed from 10 aldehydes and 10 anilines, under the sequential influence of an oxidant, an adsorbent, and an increase in temperature. Six components of this initial DCL are mechanically isolated and amplified at least three-fold relative to their equilibrium distributions at the outset of the sorting process.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- Department of Chemistry, University of Houston, 3583 Cullen Blvd. Room 112, Houston, TX 77204-5003, USA.
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3583 Cullen Blvd. Room 112, Houston, TX 77204-5003, USA.
| |
Collapse
|
31
|
Qian X, Gong W, Li X, Fang L, Kuang X, Ning G. Fluorescent Cross-Linked Supramolecular Polymer Constructed by Orthogonal Self-Assembly of Metal-Ligand Coordination and Host-Guest Interaction. Chemistry 2016; 22:6881-90. [DOI: 10.1002/chem.201600561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaomin Qian
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Weitao Gong
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaopeng Li
- Department of Chemistry and Biochemistry; Texas State University; San Marcos Texas 78666 USA
| | - Le Fang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaojun Kuang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Guiling Ning
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| |
Collapse
|