1
|
Babaei Z, Ghanadian M, Aghaei M. Disafynol: A polyacetylene dimer from Centaurea schmidii enhancing breast cancer cell apoptosis via oxidative and ER stress pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04085-z. [PMID: 40153016 DOI: 10.1007/s00210-025-04085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 03/30/2025]
Abstract
Phytochemical analysis of the aerial parts of Centaurea schmidii Wagenitz (Asteraceae) led to the isolation of disafynol, a novel polyacetylene, for the first time. This study investigated its anti-cancer effects and the mechanisms underlying these effects in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive) breast cancer cell lines. The cytotoxic effects of disafynol were evaluated using various concentrations to measure cell viability, apoptosis, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), caspases-12/6 activity, and protein aggregation. Expression of apoptotic markers and endoplasmic reticulum (ER) stress-related genes was analyzed by western blot and reverse transcription-PCR analyses, respectively. Disafynol exhibited dose-dependent cytotoxicity, with greater potency in MDA-MB-231 cells (IC50: 10.6 µM) compared to MCF-7 cells (IC50: 30 µM), indicating hormone receptor-independent manner of cell growth inhibition. Treating cells with disafynol caused significant apoptosis, marked by enhanced ROS production and reduced MMP. Meanwhile, disafynol induced Bcl-2 downregulation, Bax upregulation, and caspase-12/6 activities in both breast cancer cells. Additionally, disafynol triggered ER stress, as evidenced by protein aggregation and upregulation of genes related to ER stress, including BIP, ATF4, CHOP, and XBP-1. Overall, disafynol demonstrates significant pro-apoptotic effects on breast cancer cells by inducing oxidative stress and activating the ER stress pathway. Its hormone receptor-independent cytotoxicity suggests potential therapeutic applications for treating breast cancers, including triple-negative subtypes.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Santos JAM, Caiana RRA, Almeida CLA, Pimenta DC, Farias KJS, de Almeida Júnior RF, Machado PRL, Menezes PH, Freitas JCR. Synthesis, and antitumoral and antiviral evaluation of polyacetylene glycoside derivatives. Org Biomol Chem 2025; 23:410-421. [PMID: 39569683 DOI: 10.1039/d4ob01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A series of novel derivatives of Poliacetylene Glycosides (PAGs) were synthesized, and their antiproliferative and antiviral properties were evaluated. Starting from D-(+)-glucose pentaacetate as a precursor, a commercially available and low-cost starting material, three different strategies were attempted to synthesize the new PAGs, and the desired compounds were obtained in high overall yields after only three steps. The synthesized PAGs exhibited antitumoral activity in concentrations ranging from 68-878 μM and antiviral activities in concentrations ranging from 71-794 μM. Some preliminary structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Jonh A M Santos
- Instituto Federal de Pernambuco - IFPE, Barreiros, PE, Brazil
| | - Robrigo R A Caiana
- Universidade Federal de Pernambuco, Depto. de Antibióticos, Recife, PE, Brazil
| | - Cláudia L A Almeida
- Universidade Federal de Pernambuco, Depto. de Química Fund., Recife, PE, Brazil.
| | - Daniel C Pimenta
- Instituto Butantan, Laboratório de Biofísica e Bioquímica, São Paulo, SP, Brazil
| | - Kleber J S Farias
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Renato F de Almeida Júnior
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Paula R L Machado
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Paulo H Menezes
- Universidade Federal de Pernambuco, Depto. de Química Fund., Recife, PE, Brazil.
| | - Juliano C R Freitas
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil.
| |
Collapse
|
3
|
Park S, Park HW, Seo DB, Yoo DS, Bae S. In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells. Front Pharmacol 2024; 15:1482898. [PMID: 39691387 PMCID: PMC11649413 DOI: 10.3389/fphar.2024.1482898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Scalp hair plays a crucial role in social communication by expressing personal appearance and self-identity. Consequently, hair loss often leads to a perception of unattractiveness, negatively impacting an individual's life and mental health. Currently, the use of Food and Drug Administration (FDA)-approved drugs for hair loss is associated with several side effects, highlighting the need for identifying new drug candidates, such as plant-derived phytochemicals, to overcome these issues. Objective This study investigated the hair growth-promoting effects of araliadiol, a polyacetylene compound found in plants such as Centella asiatica. Methods We employed an in vitro model comprising human hair follicle stem cells (HHFSCs) and human dermal papilla cells (HDPCs) to evaluate the hair growth-promoting effects of araliadiol. The proliferation-stimulating effects of araliadiol were assessed using water-soluble tetrazolium salt assay, adenosine triphosphate content assay, and crystal violet staining assay. In addition, we performed luciferase reporter assay, polymerase chain reaction analysis, cell fractionation, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to elucidate the mechanism underlying the hair growth-inductive effects of araliadiol. Results Araliadiol exhibited both proliferation- and hair growth-promoting effects in HHFSCs and HDPCs. Specifically, it increased the protein expression of cyclin B1 and Ki67. In HHFSCs, it elevated the expression of hair growth-promoting factors, including CD34, vascular endothelial growth factor (VEGF), and angiopoietin-like 4. Similarly, araliadiol increased the expression of hair growth-inductive proteins such as fibroblast growth factor 7, VEGF, noggin, and insulin-like growth factor 1 in HDPCs. Subsequent Western blot analysis and ELISA using inhibitors such as GW9662 and SB202190 confirmed that these hair growth-promoting effects were dependent on the p38/PPAR-γ signaling in both HHFSCs and HDPCs. Conclusion Araliadiol promotes hair growth through the p38/PPAR-γ signaling pathway in human hair follicle cells. Therefore, araliadiol can be considered a novel drug candidate for the treatment of alopecia.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Balkrishna A, Joshi M, Gupta S, Priya Rani M, Srivastava J, Nain P, Varshney A. Dissecting the natural phytochemical diversity of carrot roots with its colour using high performance liquid chromatography and UV-Visible spectrophotometry. Heliyon 2024; 10:e35918. [PMID: 39220899 PMCID: PMC11365394 DOI: 10.1016/j.heliyon.2024.e35918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The research provides insights into the phytoconstituents of black, orange and red carrots (Daucus carota subsp. Sativus (Hoffm.) Schübl. & G. Martens), a highly nutritious food crop widely appreciated across age groups. Recognising carrots as a repository of health-promoting compounds, our study employs UV-Visible spectrophotometric and HPLC methods to discern significant variations in bioactive components among carrot varieties. Black carrots emerge as potent contenders, displaying the highest levels of total phenolics (2660 ± 2.29 mg GAE/100 g F W.), total flavonoids (831 ± 1.74 mg QE/100 g F W.), proanthocyanins (10910 ± 1.11 mg CE/100 g F W.), and tannins (713 ± 0.84 mg/100 g F W.). Red carrots, conversely, showcase higher anthocyanin content (6870 ± 1.85 mg CyGE/100 g F W.) by UV-Vis spectrophotometry. Additionally, orange carrots exhibit heightened β-carotene levels, confirmed at 0.03 μg/mg through HPLC. HPLC analysis unveils substantial chlorogenic acid variability (1.29 μg/mg) in black carrots, accompanied by the discovery of unique compounds such as cryptochlorogenic acid (0.05 μg/mg), caffeic acid (0.01 μg/mg), ferulic acid (0.11 μg/mg), methyl caffeate (0.01 μg/mg), and quercetin (0.02 μg/mg), marking the first detection of methyl caffeate in black carrots. The analytical methodology was meticulously validated encompassing optimal parameters such as linearity, precision, limit of detection, limit of quantification, accuracy, and robustness, within the range. In conclusion, our study underscores the health benefits of black carrots due to their rich polyphenolic content and endorses orange carrots for elevated β-carotene levels. These findings contribute to a deeper understanding of the diverse phytoconstituents in carrots, aid in informed dietary choices for improved health.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee, Haridwar Road, Haridwar, 249 405, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G411AU, UK
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
| | - Sarika Gupta
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
| | - M. Priya Rani
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
| | - Pardeep Nain
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Governed By Patanjali Research Foundation Trust, NH-58, Haridwar, 249 405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee, Haridwar Road, Haridwar, 249 405, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India
| |
Collapse
|
5
|
Kobaek-Larsen M, Deding U, Al-Najami I, Clausen BH, Christensen LP. Carrot Juice Intake Affects the Cytokine and Chemokine Response in Human Blood after Ex Vivo Lipopolysaccharide-Induced Inflammation. Nutrients 2023; 15:5002. [PMID: 38068860 PMCID: PMC10707883 DOI: 10.3390/nu15235002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
In vitro and animal studies have shown that carrot juice containing bioactive natural products, such as falcarinol (FaOH) and falcarindiol (FaDOH), can affect inflammation. The present study was designed to test whether oral intake of carrot juice containing the bioactive acetylenic oxylipins FaOH and FaDOH affects mediators of acute inflammation or the innate immune response in human blood. Carrot juice (500 mL) was administered orally to healthy volunteers, and blood samples were drawn before and 1 h after juice intake. Next, the blood samples were split in two, and one sample was stimulated ex vivo with lipopolysaccharide (LPS) and incubated at 37 °C for 24 h. The concentrations of 44 inflammatory cytokines and chemokines were examined using multiplex electrochemiluminescence analysis. In blood samples not stimulated with LPS, a significant increase in IL-15 was measured 1 h after carrot juice intake. Cytokines like IFN-ɣ, IL-12/IL-23(p40), IL-23, IL-17A, IL-17B, IL-17D, and IL-22 were significantly increased in LPS-stimulated blood samples after carrot juice intake. The upregulation of the immunostimulating cytokines belonging to the IL-23/IL-17 Th17 axis suggests that carrot juice intake could benefit diseases where inflammation plays a role, like in the early stages of diabetes or cancers.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ulrik Deding
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Issam Al-Najami
- Department of Surgery, Odense University Hospital, DK-5000 Odense C, Denmark; (M.K.-L.); (U.D.); (I.A.-N.)
- Department of Clinical Research, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - Lars Porskjær Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
6
|
Bossuat M, Rullière P, Preuilh N, Peixoto A, Joly E, Gomez JG, Bourkhis M, Rodriguez F, Gonçalves F, Fabing I, Gaspard H, Bernardes-Génisson V, Maraval V, Ballereau S, Chauvin R, Britton S, Génisson Y. Phenyl dialkynylcarbinols, a Bioinspired Series of Synthetic Antitumor Acetylenic Lipids. J Med Chem 2023; 66:13918-13945. [PMID: 37816126 DOI: 10.1021/acs.jmedchem.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.
Collapse
Affiliation(s)
- Margaux Bossuat
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Pauline Rullière
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Jean-Guillaume Gomez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Maroua Bourkhis
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Frédéric Rodriguez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Fernanda Gonçalves
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Isabelle Fabing
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Hafida Gaspard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, F-31077 Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III─Paul Sabatier (UT3), F-31044 Toulouse, France
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, F-31062 Toulouse, France
| |
Collapse
|
7
|
Santos P, Busta L, Yim WC, Cahoon EB, Kosma DK. Structural diversity, biosynthesis, and function of plant falcarin-type polyacetylenic lipids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2889-2904. [PMID: 35560192 DOI: 10.1093/jxb/erac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
The polyacetylenic lipids falcarinol, falcarindiol, and associated derivatives, termed falcarins, have a widespread taxonomical distribution in the plant kingdom and have received increasing interest for their demonstrated health-promoting properties as anti-cancer and anti-inflammatory agents. These fatty acid-derived compounds are also linked to plant pathogen resistance through their potent antimicrobial properties. Falcarin-type polyacetylenes, which contain two conjugated triple bonds, are derived from structural modifications of the common fatty acid oleic acid. In the past half century, much progress has been made in understanding the structural diversity of falcarins in the plant kingdom, whereas limited progress has been made on elucidating falcarin function in plant-pathogen interactions. More recently, an understanding of the biosynthetic machinery underlying falcarin biosynthesis has emerged. This review provides a concise summary of the current state of knowledge on falcarin structural diversity, biosynthesis, and plant defense properties. We also present major unanswered questions about falcarin biosynthesis and function.
Collapse
Affiliation(s)
- Patrícia Santos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
8
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
9
|
Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, Cui W, Jia L, Tang X, Yang J, Wu C, Wang L. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 2022; 21:106. [PMID: 35477569 PMCID: PMC9044593 DOI: 10.1186/s12943-022-01579-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. Methods We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. Results Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. Conclusion Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01579-9.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, People's Republic of China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| |
Collapse
|
10
|
Pereira CG, Moraes CB, Franco CH, Feltrin C, Grougnet R, Barbosa EG, Panciera M, Correia CRD, Rodrigues MJ, Custódio L. In Vitro Anti- Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel ( Crithmum maritimum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:2235. [PMID: 34834598 PMCID: PMC8625203 DOI: 10.3390/plants10112235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Marine halophytes are an outstanding reservoir of natural products and several species have anti-infectious traditional uses. However, reports about their potential use against neglected tropical ailments, such as Chagas disease, are scarce. This work evaluated for the first time the in vitro anti-Trypanosoma cruzi activity of extracts from the aromatic and medicinal species Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco (Asteraceae, everlasting) and Crithmum maritimum L. (Apiaceae, sea fennel). For that purpose, decoctions, tinctures, and essential oils from everlasting's flowers and sea fennel's stems, leaves, and flowers were tested against intracellular amastigotes of two T. cruzi strains. The extract from the sea fennel flower decoction displayed significant anti-trypanosomal activity and no toxicity towards the host cell (EC50 = 17.7 µg/mL, selectivity index > 5.65). Subsequent fractionation of this extract afforded 5 fractions that were re-tested in the same model of anti-parasitic activity. Fraction 1 was the most active and selective (EC50 = 0.47 μg/mL, selectivity index = 59.6) and was submitted to preparative thin-layer chromatography. One major compound was identified, falcarindiol, which was likely the one responsible for the observed anti-trypanosomal activity. This was confirmed using a commercially sourced molecule. Target-fishing studies showed falcarindiol as a ligand of T. cruzi spermidine synthase, pointing to a potential enzyme-inhibiting anti-trypanosomal mechanism of action. Overall, this work shows that sea fennel can provide effective anti-parasitic molecule(s) with potential pharmacological applications in the treatment of CD.
Collapse
Affiliation(s)
- Catarina G. Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
- Department of Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Caio H. Franco
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
| | - Clarissa Feltrin
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
| | - Raphaël Grougnet
- Natural Products, Analysis, Synthesis, UMR CNRS 8038, Faculty of Pharmacy, University of Paris, 4 Avenue de l’Observatoire, 75006 Paris, France;
| | | | - Michele Panciera
- Institute of Chemistry, State University of Campinas, Josue de Castro St., Campinas 13083-970, SP, Brazil; (M.P.); (C.R.D.C.)
| | - Carlos Roque D. Correia
- Institute of Chemistry, State University of Campinas, Josue de Castro St., Campinas 13083-970, SP, Brazil; (M.P.); (C.R.D.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| |
Collapse
|
11
|
Sarkar S, Sarkar P, Munshi S, Ghosh P. One-Pot Dual C-C Coupling Reaction via Site Selective Cascade Formation by Pd II -Cryptate of an Amino-Ether Heteroditopic Macrobicycle. Chemistry 2021; 27:7307-7314. [PMID: 33439499 DOI: 10.1002/chem.202005397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Selectivity of aryl iodo over ethynyl iodo toward the Suzuki cross coupling reaction is explored by utilizing a palladium complex of amino-ether heteroditopic macrobicycle. Subsequently, unreacted ethynyl iodide undergoes homocoupling reaction in the same catalytic atmosphere, thereby representing a cascade dual C-C coupling reaction. Furthermore, this approach is extended for novel one-pot synthesis of unsymmetrical 1,3-diynes.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
12
|
Bailly C. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen). NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:143-153. [PMID: 33161560 PMCID: PMC7981376 DOI: 10.1007/s13659-020-00283-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 05/13/2023]
Abstract
Lobetyolin (LBT) is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codonopsis pilosula, known as Radix Codonopsis or Dangshen. Twelve traditional Chinese medicinal preparations containing Radix Codonopsis were identified; they are generally used to tonify spleen and lung Qi and occasionally to treat cancer. Here we have reviewed the anticancer properties of Codonopsis extracts, LBT and structural analogs. Lobetyolin and lobetyolinin are the mono- and bis-glucosylated forms of the polyacetylenic compound lobetyol. Lobetyol and LBT have shown activities against several types of cancer (notably gastric cancer) and we examined the molecular basis of their activity. A down-regulation of glutamine metabolism by LBT has been evidenced, contributing to drug-induced apoptosis and tumor growth inhibition. LBT markedly reduces both mRNA and protein expression of the amino acid transporter Alanine-Serine-Cysteine Transporter 2 (ASCT2). Other potential targets are proposed here, based on the structural analogy with other anticancer compounds. LBT and related polyacetylene glycosides should be further considered as potential anticancer agents, but more work is needed to evaluate their efficacy, toxicity, and risk-benefit ratio.
Collapse
|
13
|
Grant CV, Cai S, Risinger AL, Liang H, O’Keefe BR, Doench JG, Cichewicz RH, Mooberry SL. CRISPR-Cas9 Genome-Wide Knockout Screen Identifies Mechanism of Selective Activity of Dehydrofalcarinol in Mesenchymal Stem-like Triple-Negative Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:3080-3092. [PMID: 33021790 PMCID: PMC7722265 DOI: 10.1021/acs.jnatprod.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are no targeted therapies available for triple-negative breast cancers (TNBCs) in part because they represent a heterogeneous group of tumors with diverse oncogenic drivers. Our goal is to identify targeted therapies for subtypes of these cancers using a mechanism-blind screen of natural product extract libraries. An extract from Desmanthodium guatemalense was 4-fold more potent for cytotoxicity against MDA-MB-231 cells, which represent the mesenchymal stem-like (MSL) subtype, as compared to cells of other TNBC subtypes. Bioassay-guided fractionation led to the isolation of six polyacetylenes, and subsequent investigations of plant sources known to produce polyacetylenes yielded six additional structurally related compounds. A subset of these compounds retained selective cytotoxic effects in MSL subtype cells. Studies suggest that these selective effects do not appear to be due to PPARγ agonist activities that have previously been reported for polyacetylenes. A CRISPR-Cas9-mediated gene knockout screen was employed to identify the mechanism of selective cytotoxic activity of the most potent and selective compound, dehydrofalcarinol (1a). This genomic screen identified HSD17B11, the gene encoding the enzyme 17β-hydroxysteroid dehydrogenase type 11, as a mediator of the selective cytotoxic effects of 1a in MDA-MB-231 cells that express high levels of this protein. The Project Achilles cancer dependency database further identified a subset of Ewing sarcoma cell lines as highly dependent on HSD17B11 expression, and it was found these were also highly sensitive to 1a. This report demonstrates the value of CRISPR-Cas9 genome-wide screens to identify the mechanisms underlying the selective activities of natural products.
Collapse
Affiliation(s)
- Corena V. Grant
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Huiyun Liang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - John G. Doench
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
14
|
Andersen CB, Runge Walther A, Pipó-Ollé E, Notabi MK, Juul S, Eriksen MH, Lovatt AL, Cowie R, Linnet J, Kobaek-Larsen M, El-Houri R, Andersen MØ, Hedegaard MAB, Christensen LP, Arnspang EC. Falcarindiol Purified From Carrots Leads to Elevated Levels of Lipid Droplets and Upregulation of Peroxisome Proliferator-Activated Receptor-γ Gene Expression in Cellular Models. Front Pharmacol 2020; 11:565524. [PMID: 32982759 PMCID: PMC7485416 DOI: 10.3389/fphar.2020.565524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Falcarindiol (FaDOH) is a cytotoxic and anti-inflammatory polyacetylenic oxylipin found in food plants of the carrot family (Apiaceae). FaDOH has been shown to activate PPARγ and to increase the expression of the cholesterol transporter ABCA1 in cells, both of which play an important role in lipid metabolism. Thus, a common mechanism of action of the anticancer and antidiabetic properties of FaDOH may be due to a possible effect on lipid metabolism. In this study, the effect of sub-toxic concentration (5 μM) of FaDOH inside human mesenchymal stem cells (hMSCs) was studied using white light microscopy and Raman imaging. Our results show that FaDOH increases lipid content in the hMSCs cells as well as the number of lipid droplets (LDs) and that this can be explained by increased expression of PPARγ2 as shown in human colon adenocarcinoma cells. Activation of PPARγ can lead to increased expression of ABCA1. We demonstrate that ABCA1 is upregulated in colorectal neoplastic rat tissue, which indicates a possible role of this transporter in the redistribution of lipids and increased formation of LDs in cancer cells that may lead to endoplasmic reticulum stress and cancer cell death.
Collapse
Affiliation(s)
- Camilla Bertel Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Anders Runge Walther
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark.,The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Emma Pipó-Ollé
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Martine K Notabi
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Sebastian Juul
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Mathias Hessellund Eriksen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Adam Leslie Lovatt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Richard Cowie
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Jes Linnet
- The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.,Mads Clausen Institute, University of Southern Denmark, Odense, Denmark
| | - Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Rime El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Morten Østergaard Andersen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Esbjerg, Denmark
| | - Eva Christensen Arnspang
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Bioactive C 17 and C 18 Acetylenic Oxylipins from Terrestrial Plants as Potential Lead Compounds for Anticancer Drug Development. Molecules 2020; 25:molecules25112568. [PMID: 32486470 PMCID: PMC7321150 DOI: 10.3390/molecules25112568] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive C17 and C18 acetylenic oxylipins have shown to contribute to the cytotoxic, anti-inflammatory, and potential anticancer properties of terrestrial plants. These acetylenic oxylipins are widely distributed in plants belonging to the families Apiaceae, Araliaceae, and Asteraceae, and have shown to induce cell cycle arrest and/or apoptosis of cancer cells in vitro and to exert a chemopreventive effect on cancer development in vivo. The triple bond functionality of these oxylipins transform them into highly alkylating compounds being reactive to proteins and other biomolecules. This enables them to induce the formation of anti-inflammatory and cytoprotective phase 2 enzymes via activation of the Keap1–Nrf2 signaling pathway, inhibition of proinflammatory peptides and proteins, and/or induction of endoplasmic reticulum stress, which, to some extent, may explain their chemopreventive effects. In addition, these acetylenic oxylipins have shown to act as ligands for the nuclear receptor PPARγ, which play a central role in growth, differentiation, and apoptosis of cancer cells. Bioactive C17 and C18 acetylenic oxylipins appear, therefore, to constitute a group of promising lead compounds for the development of anticancer drugs. In this review, the cytotoxic, anti-inflammatory and anticancer effects of C17 and C18 acetylenic oxylipins from terrestrial plants are presented and their possible mechanisms of action and structural requirements for optimal cytotoxicity are discussed.
Collapse
|
16
|
Synthesis of unsymmetric 1,3-diynes from bromoallenes using the catalysis of CuI and amino acid. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Deding U, Baatrup G, Christensen LP, Kobaek-Larsen M. Carrot Intake and Risk of Colorectal Cancer: A Prospective Cohort Study of 57,053 Danes. Nutrients 2020; 12:nu12020332. [PMID: 32012660 PMCID: PMC7071341 DOI: 10.3390/nu12020332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Carrots are consumed worldwide. Several meta-analysis studies on carrot consumption have indicated that carrots play a central role as a protecting vegetable against development of different types of cancers. A cancer-preventive role of carrots is plausible because they are the main dietary source of the bioactive polyacetylenic oxylipins falcarinol (FaOH) and falcarindiol (FaDOH), which have shown anti-proliferative and anti-inflammatory activity in numerous in vitro studies. In addition, purified FaOH and FaDOH have, in recent studies in colorectal cancer (CRC)-primed rats, demonstrated an anti-neoplastic effect in a dose-dependent manner. The mechanisms of action for this effect appears to be due to inhibition of pro-inflammatory and transcription factor biomarkers for inflammation and cancer. However, studies of the CRC-preventive effect of carrots in a large cohort are still missing. We therefore examined the risk of being diagnosed with CRC as predicted by intake of carrots in a Danish population of 57,053 individuals with a long follow-up. Self-reported intake of raw carrots at a baseline of 2-4 carrots or more each week (>32 g/day) was associated with a 17% decrease in risk of CRC with a mean follow-up of >18 years, compared to individuals with no intake of raw carrots even after extensive model adjustments (HR 0.83 CI 95% 0.71; 0.98). An intake below 2-4 carrots each week (<32 g/day) was not significantly associated with reduced risk of CRC (HR 0.93 CI 95% 0.82; 1.06). The results of this prospective cohort study clearly support the results from studies in cancer-primed rats for CRC and hence a CRC-preventive effect of carrots.
Collapse
Affiliation(s)
- Ulrik Deding
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; (U.D.); (G.B.)
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Gunnar Baatrup
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; (U.D.); (G.B.)
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, 6700 Esbjerg, Denmark;
| | - Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; (U.D.); (G.B.)
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-2461-3161
| |
Collapse
|
18
|
Wang C, Dong Q, Wu F, Li Z, Li P, Liu J, Wang F. A new alkynol compound from Platycodins folium and its cytotoxicity. Nat Prod Res 2020; 35:3487-3493. [PMID: 31951470 DOI: 10.1080/14786419.2020.1712381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new alkynol, platycodynol (1), identified as 2, 3, 9, 13, 14-pentahydroxy-4, 6-tetradecadiyne, along with six known compounds (2-7) were obtained from Platycodins folium for the first time. Their structures were elucidated with infrared (IR), ultraviolet (UV), 1D and 2D nuclear magnetic resonance (NMR) spectroscopic analysis as well as by high resolution electrospray ionization mass spectroscopy (HRESIMS). Platycodynol showed cytotoxicity against S180, A549 and SPC-A-1 cancer cells but no cytotoxicity against normal cells NCTC1469 and HL-7702 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Collapse
Affiliation(s)
- Cuizhu Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China.,School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qinghai Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhuo Li
- Department of Biomedical Sciences, Creighton University, Omaha, NE, America
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Kobaek-Larsen M, Baatrup G, K. Notabi M, El-Houri RB, Pipó-Ollé E, Christensen Arnspang E, Christensen LP. Dietary Polyacetylenic Oxylipins Falcarinol and Falcarindiol Prevent Inflammation and Colorectal Neoplastic Transformation: A Mechanistic and Dose-Response Study in A Rat Model. Nutrients 2019; 11:nu11092223. [PMID: 31540047 PMCID: PMC6769548 DOI: 10.3390/nu11092223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Falcarinol (FaOH) and falcarindiol (FaDOH) are cytotoxic and anti-inflammatory polyacetylenic oxylipins, which are commonly found in the carrot family (Apiaceae). FaOH and FaDOH have previously demonstrated a chemopreventive effect on precursor lesions of colorectal cancer (CRC) in azoxymethane (AOM)-induced rats. The purpose of the present study was to elucidate possible mechanisms of action for the preventive effect of FaOH and FaDOH on colorectal precancerous lesions and to determine how this effect was dependent on dose. Gene expression studies performed by RT-qPCR of selected cancer biomarkers in tissue from biopsies of neoplastic tissue revealed that FaOH and FaDOH downregulated NF-κβ and its downstream inflammatory markers TNFα, IL-6, and COX-2. The dose-dependent anti-neoplastic effect of FaOH and FaDOH in AOM-induced rats was investigated in groups of 20 rats receiving a standard rat diet (SRD) supplemented with 0.16, 0.48, 1.4, 7 or 35 µg FaOH and FaDOH g−1 feed in the ratio 1:1 and 20 rats were controls receiving only SRD. Analysis of aberrant crypt foci (ACF) showed that the average number of small ACF (<7 crypts) and large ACF (>7 crypts) decreased with increasing dose of FaOH and FaDOH and that this inhibitory effect on early neoplastic formation of ACF was dose-dependent, which was also the case for the total number of macroscopic neoplasms. The CRC protective effects of apiaceous vegetables are mainly due to the inhibitory effect of FaOH and FaDOH on NF-κB and its downstream inflammatory markers, especially COX-2.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-2461-3161
| | - Gunnar Baatrup
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Martine K. Notabi
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Rime Bahij El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Emma Pipó-Ollé
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Eva Christensen Arnspang
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark; (M.K.N.); (R.B.E.-H.); (E.P.-O.); (E.C.A.)
| | - Lars Porskjær Christensen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, 6700 Esbjerg, Denmark;
| |
Collapse
|
20
|
Gaiser BI, Danielsen M, Marcher-Rørsted E, Røpke Jørgensen K, Wróbel TM, Frykman M, Johansson H, Bräuner-Osborne H, Gloriam DE, Mathiesen JM, Sejer Pedersen D. Probing the Existence of a Metastable Binding Site at the β 2-Adrenergic Receptor with Homobivalent Bitopic Ligands. J Med Chem 2019; 62:7806-7839. [PMID: 31298548 DOI: 10.1021/acs.jmedchem.9b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we report the development of bitopic ligands aimed at targeting the orthosteric binding site (OBS) and a metastable binding site (MBS) within the same receptor unit. Previous molecular dynamics studies on ligand binding to the β2-adrenergic receptor (β2AR) suggested that ligands pause at transient, less-conserved MBSs. We envisioned that MBSs can be regarded as allosteric binding sites and targeted by homobivalent bitopic ligands linking two identical pharmacophores. Such ligands were designed based on docking of the antagonist (S)-alprenolol into the OBS and an MBS and synthesized. Pharmacological characterization revealed ligands with similar potency and affinity, slightly increased β2/β1AR-selectivity, and/or substantially slower β2AR off-rates compared to (S)-alprenolol. Truncated bitopic ligands suggested the major contribution of the metastable pharmacophore to be a hydrophobic interaction with the β2AR, while the linkers alone decreased the potency of the orthosteric fragment. Altogether, the study underlines the potential of targeting MBSs for improving the pharmacological profiles of ligands.
Collapse
Affiliation(s)
- Birgit I Gaiser
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Mia Danielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Emil Marcher-Rørsted
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Kira Røpke Jørgensen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Tomasz M Wróbel
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy , Medical University of Lublin , 4A Chodźki 20093 Lublin , Poland
| | - Mikael Frykman
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Henrik Johansson
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology , University of Copenhagen , Jagtvej 162 , 2100 Copenhagen , Denmark
| |
Collapse
|
21
|
Profiling withanolide A for therapeutic targets in neurodegenerative diseases. Bioorg Med Chem 2019; 27:2508-2520. [DOI: 10.1016/j.bmc.2019.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
|
22
|
Huang Z, Ogasawara D, Seneviratne UI, Cognetta AB, am Ende CW, Nason DM, Lapham K, Litchfield J, Johnson DS, Cravatt BF. Global Portrait of Protein Targets of Metabolites of the Neurotoxic Compound BIA 10-2474. ACS Chem Biol 2019; 14:192-197. [PMID: 30702848 DOI: 10.1021/acschembio.8b01097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinical investigation of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 resulted in serious adverse neurological events. Structurally unrelated FAAH inhibitors tested in humans have not presented safety concerns, suggesting that BIA 10-2474 has off-target activities. A recent activity-based protein profiling (ABPP) study revealed that BIA 10-2474 and one of its major metabolites inhibit multiple members of the serine hydrolase class to which FAAH belongs. Here, we extend these studies by performing a proteome-wide analysis of covalent targets of BIA 10-2474 metabolites. Using alkynylated probes for click chemistry-ABPP in human cells, we show that des-methylated metabolites of BIA 10-2474 covalently modify the conserved catalytic cysteine in aldehyde dehydrogenases, including ALDH2, which has been implicated in protecting the brain from oxidative stress-related damage. These findings indicate that BIA 10-2474 and its metabolites have the potential to inhibit multiple mechanistically distinct enzyme classes involved in nervous system function.
Collapse
Affiliation(s)
- Zhen Huang
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Daisuke Ogasawara
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Uthpala I. Seneviratne
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Armand B. Cognetta
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher W. am Ende
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane M. Nason
- Medicine Design, Medicinal Chemistry, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John Litchfield
- Medicine Design, Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Douglas S. Johnson
- Medicine Design, Chemical Biology, Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Benjamin F. Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Knutson PC, Fredericks HE, Ferreira EM. Synthesis of 1,3-Diynes via Cadiot-Chodkiewicz Coupling of Volatile, in Situ Generated Bromoalkynes. Org Lett 2018; 20:6845-6849. [PMID: 30336061 PMCID: PMC6217962 DOI: 10.1021/acs.orglett.8b02975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient Cadiot-Chodkiewicz protocol that facilitates the use of low molecular weight alkyne coupling partners is described. The method entails an in situ elimination from a dibromoolefin precursor and immediate subjection to copper-catalyzed conditions, circumventing the hazards of volatile brominated alkynes. The scope of this method is described, and the internal 1,3-diyne products are preliminarily evaluated in ruthenium-catalyzed azide-alkyne cycloadditions.
Collapse
Affiliation(s)
- Phil C. Knutson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602,
United States
| | | | - Eric M. Ferreira
- Department of Chemistry, University of Georgia, Athens, Georgia 30602,
United States
| |
Collapse
|
24
|
Zhang K, Zhang C, He ZH, Huang J, Du X, Wang L, Wei SP, Pu L, Wang Q. Highly Enantioselective Synthesis and Anticancer Activities of Chiral Conjugated Diynols. Chembiochem 2018; 19:2293-2299. [DOI: 10.1002/cbic.201800458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ke Zhang
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Chun Zhang
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Zhong-Hong He
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Jian Huang
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Xi Du
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Li Wang
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Si-Ping Wei
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
| | - Lin Pu
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Department of Medicinal Chemistry, Center for Pharmaceutical Research and Development; School of Pharmacy; Southwest Medical University; Luzhou Sichuan 646000 PRC
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| |
Collapse
|
25
|
Oplopanax horridus: Phytochemistry and Pharmacological Diversity and Structure-Activity Relationship on Anticancer Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9186926. [PMID: 30302120 PMCID: PMC6158975 DOI: 10.1155/2018/9186926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
Oplopanax horridus, well-known as Devil's club, is probably the most important ethnobotanical to most indigenous people living in the Pacific Northwest of North America. Compared with the long history of traditional use and widespread distribution in North America, the study of O. horridus is relatively limited. In the past decade, some exciting advances have been presented on the phytochemistry and pharmacological diversity and structure-activity relationship on anticancer effects of O. horridus. To date, no systematic review has been drafted on the recent advances of O. horridus. In this review, the different phytochemicals in O. horridus are compiled, including purified compounds and volatile components. Animal and in vitro studies are also described and discussed. Especially, the potential structural-activity relationship of polyynes on anticancer effects is highlighted. This review aimed to provide comprehensive and useful information for researching O. horridus and finding potential agents in drug discovery.
Collapse
|
26
|
Ott AA, Packard MH, Ortuño MA, Johnson A, Suding VP, Cramer CJ, Topczewski JJ. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. J Org Chem 2018; 83:8214-8224. [PMID: 29870252 DOI: 10.1021/acs.joc.8b00961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The spontaneous rearrangement of allylic azides is thought to be a sigmatropic reaction. Presented herein is a detailed investigation into the rearrangement of several allylic azides. A combination of experiments including equilibrium studies, kinetic analysis, density functional theory calculations, and selective 15N-isotopic labeling are included. We conclude that the Winstein rearrangement occurs by the assumed sigmatropic pathway under most conditions. However, racemization was observed for some cyclic allylic azides. A kinetic analysis of this process is provided, which supports a previously undescribed ionic pathway.
Collapse
Affiliation(s)
- Amy A Ott
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Mary H Packard
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Manuel A Ortuño
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Alayna Johnson
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Victoria P Suding
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
27
|
|
28
|
Isobe Y, Kawashima Y, Ishihara T, Watanabe K, Ohara O, Arita M. Identification of Protein Targets of 12/15-Lipoxygenase-Derived Lipid Electrophiles in Mouse Peritoneal Macrophages Using Omega-Alkynyl Fatty Acid. ACS Chem Biol 2018; 13:887-893. [PMID: 29461797 DOI: 10.1021/acschembio.7b01092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The 12/15-lipoxygenase (12/15-LOX) enzyme introduces peroxyl groups, in a position-specific manner, into polyunsaturated fatty acids to form various kinds of bioactive lipid metabolites, including lipid-derived electrophiles (LDE). The resident peritoneal macrophage is the site of highest 12/15-LOX expression in the mouse. However, the role of the enzyme in the regulation of resident macrophages is not fully understood. Here, we describe a chemoproteomic method to identify the targets of enzymatically generated LDE. By treating mouse peritoneal macrophages with omega-alkynyl arachidonic acid (aAA), we identified a series of proteins adducted by LDE generated through a 12/15-LOX catalyzed reaction. Pathway analysis revealed a dramatic enrichment of proteins involved in energy metabolism and found that glycolytic flux and mitochondrial respiration were significantly affected by the expression of 12/15-LOX. Our findings thus highlight the utility of chemoproteomics using aAA for identifying intracellular targets of enzymatically generated LDE.
Collapse
Affiliation(s)
- Yosuke Isobe
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tomoaki Ishihara
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Watanabe
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | - Makoto Arita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-0011, Japan
| |
Collapse
|
29
|
Kobaek-Larsen M, El-Houri RB, Christensen LP, Al-Najami I, Fretté X, Baatrup G. Dietary polyacetylenes, falcarinol and falcarindiol, isolated from carrots prevents the formation of neoplastic lesions in the colon of azoxymethane-induced rats. Food Funct 2017; 8:964-974. [PMID: 28197615 DOI: 10.1039/c7fo00110j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Falcarinol (FaOH) and falcarindiol (FaDOH) are found in many food plants of the Apiaceae family. Carrots are a major dietary source of these polyacetylenes. Feeding azoxymethane (AOM)-induced rats with carrots and purified FaOH have previously been shown to inhibit neoplastic transformations in the colon. FaOH and FaDOH have also shown to have a synergistic effect in vitro, resulting in a significant increased cytotoxic activity. Based on these findings the antineoplastic effect of FaOH and FaDOH (purity > 99%) was investigated in the AOM-induced rat model. Twenty rats received rat diet containing 7 μg FaOH per g feed and 7 μg FaDOH per g feed and 20 rats were controls receiving only rat diet. Then carcinogenesis was induced in all 40 rats with the carcinogen AOM. All animals received the designated diet for 2 weeks before AOM induction and continued on the designated diet throughout the experiment. Rats were euthanized 18 weeks after the first AOM injection and macroscopic polyp/cancers were measured, harvested and stained for histology. The difference in sizes of aberrant crypt foci (ACF) were analysed in a Wilcoxon rank sum test, in which the median number of small ACF was 218 in controls and 145 in polyacetylene treated rats (P < 0.001). Fifteen control rats and 8 treated rats had macroscopic tumors (P = 0.027). The number of tumors larger than 3 mm were 6 and 1 in control and treated rats, respectively (P = 0.032). In conclusion dietary supplements with FaOH and FaDOH reduced the number of neoplastic lesions as well as the growth rate of the polyps suggesting a preventive effect of FaOH and FaDOH on the development of colorectal cancer.
Collapse
Affiliation(s)
- Morten Kobaek-Larsen
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, DK-5000 Odense C, Denmark and Department of Surgery A, Odense University Hospital, Valdemarsgade 53, DK-5700 Svendborg, Denmark.
| | - Rime B El-Houri
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lars P Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Issam Al-Najami
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, DK-5000 Odense C, Denmark and Department of Surgery A, Odense University Hospital, Valdemarsgade 53, DK-5700 Svendborg, Denmark.
| | - Xavier Fretté
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gunnar Baatrup
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, DK-5000 Odense C, Denmark and Department of Surgery A, Odense University Hospital, Valdemarsgade 53, DK-5700 Svendborg, Denmark.
| |
Collapse
|
30
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
31
|
Ma KQ, Miao YH, Gao XX, Chao JB, Zhang X, Qin XM. Total syntheses of bupleurynol and its analog. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Gertsch J. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 2017; 174:1464-1483. [PMID: 27891602 DOI: 10.1111/bph.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
33
|
Ma KQ, Miao YH, Li X, Zhou YZ, Gao XX, Zhang X, Chao JB, Qin XM. Discovery of 1,3-diyne compounds as novel and potent antidepressant agents: synthesis, cell-based assay and behavioral studies. RSC Adv 2017. [DOI: 10.1039/c7ra01268c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1,3-Diynes compound 7a protected the corticosterone-injured PC12 cells through regulation of the apoptosis related proteins and exerted antidepressant effect in mice forced swim test in a concentration-dependent manner.
Collapse
Affiliation(s)
- Kai-Qing Ma
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yan-Hong Miao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Xiao Li
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xiang Zhang
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | - Jian-Bin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
34
|
Li Z, Zheng J, Hu W, Li J, Wu W, Jiang H. Synthesis of 1,4-enyne-3-ones via palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates. Org Chem Front 2017. [DOI: 10.1039/c7qo00082k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel and efficient palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates for constructing functionalized 1,4-enyne-3-ones has been demonstrated.
Collapse
Affiliation(s)
- Zun Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Weigao Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| |
Collapse
|
35
|
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2016; 17. [PMID: 27723264 DOI: 10.1002/pmic.201600212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China.,Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P. R., China
| | - Yew-Mun Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| |
Collapse
|
36
|
Kleiner P, Heydenreuter W, Stahl M, Korotkov VS, Sieber SA. Eine Gesamtproteom‐basierte Auflistung der Hintergrundbinder von Photovernetzern. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Kleiner
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Wolfgang Heydenreuter
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Matthias Stahl
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Vadim S. Korotkov
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Stephan A. Sieber
- Center for Integrated Protein Science an der Fakultät für Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
37
|
Kleiner P, Heydenreuter W, Stahl M, Korotkov VS, Sieber SA. A Whole Proteome Inventory of Background Photocrosslinker Binding. Angew Chem Int Ed Engl 2016; 56:1396-1401. [DOI: 10.1002/anie.201605993] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Kleiner
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Wolfgang Heydenreuter
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Vadim S. Korotkov
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Stephan A. Sieber
- Center for Integrated Protein Science at the Department of Chemistry Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
38
|
Listunov D, Saffon-Merceron N, Joly E, Fabing I, Génisson Y, Maraval V, Chauvin R. Ethynylogation approach in pharmacophore design: from alkynyl-to butadiynyl-carbinols vs antitumoral cytotoxicity. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Chen P, Wei S, Wang L, Tang B, Wang S, Wang Q, Du X. HPLC Determination of Enantiomeric Purity for 1-Styrene-3-Hexyl Propynol. J Chromatogr Sci 2016; 54:1794-1799. [DOI: 10.1093/chromsci/bmw134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 06/14/2016] [Indexed: 11/14/2022]
|
40
|
Arai M, Kawachi T, Kotoku N, Nakata C, Kamada H, Tsunoda SI, Tsutsumi Y, Endo H, Inoue M, Sato H, Kobayashi M. Furospinosulin-1, Marine Spongean Furanosesterterpene, Suppresses the Growth of Hypoxia-Adapted Cancer Cells by Binding to Transcriptional Regulators p54(nrb) and LEDGF/p75. Chembiochem 2015; 17:181-9. [PMID: 26561285 DOI: 10.1002/cbic.201500519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/09/2022]
Abstract
Hypoxia-adapted cancer cells in tumors contribute to the pathological progression of cancer. Cancer research has therefore focused on the identification of molecules responsible for hypoxia adaptation in cancer cells, as well as the development of new compounds with action against hypoxia-adapted cancer cells. The marine natural product furospinosulin-1 (1) has displayed hypoxia-selective growth inhibition against cultured cancer cells, and has shown in vivo anti-tumor activity, although its precise mode of action and molecular targets remain unclear. In this study, we found that 1 is selectively effective against hypoxic regions of tumors, and that it directly binds to the transcriptional regulators p54(nrb) and LEDGF/p75, which have not been previously identified as mediators of hypoxia adaptation in cancer cells.
Collapse
Affiliation(s)
- Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| | - Takashi Kawachi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Naoyuki Kotoku
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Chiaki Nakata
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Shin-ichi Tsunoda
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hiroko Endo
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | - Masahiro Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.,Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, 537-8511, Japan
| | - Hiroki Sato
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Motomasa Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|