1
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
2
|
Singh D, Knight BJ, Catalano VJ, García-Serres R, Maurel V, Mouesca JM, Murray LJ. Partial Deoxygenative CO Homocoupling by a Diiron Complex. Angew Chem Int Ed Engl 2023; 62:e202308813. [PMID: 37594782 DOI: 10.1002/anie.202308813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
One route to address climate change is converting carbon dioxide to synthetic carbon-neutral fuels. Whereas carbon dioxide to CO conversion has precedent in homo- and heterogeneous catalysis, deoxygenative coupling of CO to products with C-C bonds-as in liquid fuels-remains challenging. Here, we report coupling of two CO molecules by a diiron complex. Reduction of Fe2 (CO)2 L (2), where L2- is a bis(β-diketiminate) cyclophane, gives [K(THF)5 ][Fe2 (CO)2 L] (3), which undergoes silylation to Fe2 (CO)(COSiMe3 )L (4). Subsequent C-OSiMe3 bond cleavage and C=C bond formation occurs upon reduction of 4, yielding Fe2 (μ-CCO)L. CO derived ligands in this series mediate weak exchange interactions with the ketenylidene affording the smallest J value, with changes to local metal ion spin states and coupling schemes (ferro- vs. antiferromagnetism) based on DFT calculations, Mössbauer and EPR spectroscopy. Finally, reaction of 5 with KEt3 BH or methanol releases the C2 O2- ligand with retention of the diiron core.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Brian J Knight
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000, Grenoble, France
| | - Vincent Maurel
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
4
|
Ye M, Brown AC, Suess DLM. Reversible Alkyl-Group Migration between Iron and Sulfur in [Fe 4S 4] Clusters. J Am Chem Soc 2022; 144:13184-13195. [PMID: 35830717 PMCID: PMC9526375 DOI: 10.1021/jacs.2c03195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic [Fe4S4] clusters with Fe-R groups (R = alkyl/benzyl) are shown to release organic radicals on an [Fe4S4]3+-R/[Fe4S4]2+ redox couple, the same that has been proposed for a radical-generating intermediate in the superfamily of radical S-adenosyl-l-methionine (SAM) enzymes. In attempts to trap the immediate precursor to radical generation, a species in which the alkyl group has migrated from Fe to S is instead isolated. This S-alkylated cluster is a structurally faithful model of intermediates proposed in a variety of functionally diverse S transferase enzymes and features an "[Fe4S4]+-like" core that exists as a physical mixture of S = 1/2 and 7/2 states. The latter corresponds to an unusual, valence-localized electronic structure as indicated by distortions in its geometric structure and supported by computational analysis. Fe-to-S alkyl group migration is (electro)chemically reversible, and the preference for Fe vs S alkylation is dictated by the redox state of the cluster. These findings link the organoiron and organosulfur chemistry of Fe-S clusters and are discussed in the context of metalloenzymes that are proposed to make and break Fe-S and/or C-S bonds during catalysis.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra C. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L. M. Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
|
7
|
Schneider C, Demeshko S, Meyer F, Werncke CG. A Molecular Low-Coordinate [Fe-S-Fe] Unit in Three Oxidation States. Chemistry 2021; 27:6348-6353. [PMID: 33512018 PMCID: PMC8048577 DOI: 10.1002/chem.202100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/10/2022]
Abstract
A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57 Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.
Collapse
Affiliation(s)
- Christian Schneider
- Fachbereich ChemiePhilipps-UniversitätHans-Meerwein-Str. 435043MarburgGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität GöttingenTammannstr. 437077GöttingenGermany
| | - C. Gunnar Werncke
- Fachbereich ChemiePhilipps-UniversitätHans-Meerwein-Str. 435043MarburgGermany
| |
Collapse
|
8
|
Boudalis AK. Half-Integer Spin Triangles: Old Dogs, New Tricks. Chemistry 2021; 27:7022-7042. [PMID: 33336864 DOI: 10.1002/chem.202004919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Indexed: 11/06/2022]
Abstract
Spin triangles, that is, triangular complexes of half-integer spins, are the oldest molecular nanomagnets (MNMs). Their magnetic properties have been studied long before molecular magnetism was delineated as a research field. This Review presents the history of their study, with references to the parallel development of new experimental investigations and new theoretical ideas used for their interpretation. It then presents an indicative list of spin-triangle families to illustrate their chemical diversity. Finally, it makes reference to recent developments in terms of theoretical ideas and new phenomena, as well as to the relevance of spin triangles to spintronic devices and new physics.
Collapse
Affiliation(s)
- Athanassios K Boudalis
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, Université de Strasbourg, CNRS, 67000, Strasbourg, France.,Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
9
|
Buratto WR, Ferreira RB, Catalano VJ, García-Serres R, Murray LJ. Cleavage of cluster iron-sulfide bonds in cyclophane-coordinated Fe nS m complexes. Dalton Trans 2021; 50:816-821. [PMID: 33393563 PMCID: PMC7880558 DOI: 10.1039/d0dt03805a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reaction of the tri(μ-sulfido)triiron(iii) tris(β-diketiminate) cyclophane complex, Fe3S3LEt/Me (1), or of the di(μ-sulfido)diiron(iii) complex Fe2S2HLEt/Me (5), with the related tri(bromide)triiron(ii) complex Fe3Br3LEt/Me (2) results in electron and ligand redistribution to yield the mixed-ligand multiiron complexes, including Fe3Br2SLEt/Me (3) and Fe2Br2SHLEt/Me (4). The cleavage and redistribution observed in these complexes is reminiscent of necessary Fe-S bond cleavage for substrate activation in nitrogenase enzymes, and provides a new perspective on the lability of Fe-S bonds in FeS clusters.
Collapse
Affiliation(s)
- William R Buratto
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | | | |
Collapse
|
10
|
Robert J, Parizel N, Turek P, Boudalis AK. Polyanisotropic Magnetoelectric Coupling in an Electrically Controlled Molecular Spin Qubit. J Am Chem Soc 2019; 141:19765-19775. [DOI: 10.1021/jacs.9b09101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jérôme Robert
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France
| | - Nathalie Parizel
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Athanassios K. Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| |
Collapse
|
11
|
Pellicer Martinez MT, Crack JC, Stewart MYY, Bradley JM, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Mechanisms of iron- and O 2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife 2019; 8:e47804. [PMID: 31526471 PMCID: PMC6748827 DOI: 10.7554/elife.47804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Melissa YY Stewart
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | | | - Andrew WB Johnston
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan D Todd
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
12
|
Hong DH, Knight BJ, Catalano VJ, Murray LJ. Isolation of chloride- and hydride-bridged tri-iron and -zinc clusters in a tris(β-oxo-δ-diimine) cyclophane ligand. Dalton Trans 2019; 48:9570-9575. [PMID: 31012886 PMCID: PMC6610688 DOI: 10.1039/c9dt00799g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A cyclophane ligand (H6L) bearing three β-oxo-δ-diimine arms and the corresponding tri-iron and -zinc complexes in which the metal ions are bridged by either chlorides, viz. Fe3Cl3(H3L) (1) and Zn3Cl3(H3L) (2), or hydrides, viz. Fe3H3(H3L) (3), Zn3H3(H3L) (4), were synthesized and characterized. 1 adopts a chair-shaped C3v-symmetric [Fe3(μ-Cl)3]3+ cluster wherein only one hemisphere of the ligand is metallated and the other three ketoimine sites remain protonated as evidenced by single crystal X-ray diffraction and vibrational and NMR spectroscopic analyses. 3 and 4 were synthesized by substitution of the bridging chlorides in 1 and 2 using KBEt3H and are accessed with retention of the three protonated ketoimine sites.
Collapse
Affiliation(s)
- Dae Ho Hong
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | |
Collapse
|
13
|
|
14
|
Bhutto SM, Holland PL. Dinitrogen Activation and Functionalization using β-Diketiminate Iron Complexes. Eur J Inorg Chem 2019; 2019:1861-1869. [PMID: 31213945 DOI: 10.1002/ejic.201900133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Iron catalysts are adept at breaking the N-N bond of N2, as exemplified by the iron-catalyzed Haber-Bosch process and the iron-containing clusters at the active sites of nitrogenase enzymes. This Minireview summarizes recent work that has identified a well-characterized set of multi-iron complexes that are capable of breaking and functionalizing N2, and are amenable to detailed mechanistic studies. We discuss the redox balancing, the potential intermediates during N2 activation, the variation of alkali metal reductant, the reversibility of N2 cleavage, and the formation of N-H and N-C bonds from N2.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520, USA
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
16
|
McSkimming A, Suess DLM. Selective Synthesis of Site-Differentiated Fe 4S 4 and Fe 6S 6 Clusters. Inorg Chem 2018; 57:14904-14912. [PMID: 30418746 DOI: 10.1021/acs.inorgchem.8b02684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obtaining rational control over the structure and nuclearity of metalloclusters is an ongoing challenge in synthetic Fe-S cluster chemistry. We report a new family of tridentate imidazolin-2-imine ligands L(NImR)3 that can bind [Fe4S4]2+ or [Fe6S6]3+ clusters, depending on the steric profile of the ligand and the reaction stoichiometry. A high-yielding synthetic route to L(NImR)3 ligands (where R is the imidazolyl N substituents) from trianiline and 2-chloroimidazolium precursors is described. For L(NImMe)3 (tris(1,3,5-(3-( N, N-dimethyl-4,5-diphenylimidazolin-2-imino)phenylmethyl))benzene), metalation with 1 equiv of [Ph4P]2[Fe4S4Cl4] and 3 equiv of NaBPh4 furnishes a mixture of products, but adjusting the stoichiometry to 1.5 equiv of [Ph4P]2[Fe4S4Cl4] provides (L(NImMe)3)Fe6S6Cl6 in high yield. Formation of an [Fe6S6]3+ cluster using L(NImTol)3 (tris(1,3,5-(3-( N, N-bis(4-methylphenyl)-4,5-diphenylimidazolin-2-imino)phenylmethyl))benzene) is not observed; instead, the [Fe4S4]2+ cluster [(L(NImTol)3)(Fe4S4Cl)][BPh4] is cleanly generated when 1 equiv of [Ph4P]2[Fe4S4Cl4] is employed. The selectivity for cluster nuclearity is rationalized by the orientation of the imidazolyl rings whereby long N-imidazolyl substituents preclude formation of [Fe6S6]3+ clusters but not [Fe4S4]2+ clusters. Thus, the structure and nuclearity of L(NImR)3-bound Fe-S clusters may be selectively controlled through rational modification the ligand's substituents.
Collapse
Affiliation(s)
- Alex McSkimming
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel L M Suess
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Ferreira RB, Cook BJ, Knight BJ, Catalano VJ, García-Serres R, Murray LJ. Catalytic Silylation of Dinitrogen by a Family of Triiron Complexes. ACS Catal 2018; 8:7208-7212. [PMID: 30574427 DOI: 10.1021/acscatal.8b02021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of triiron complexes supported by a tris(β-diketiminate)cyclophane (L 3- ) catalyze the reduction of dinitrogen to tris(trimethylsilyl)amine using KC8 and Me3SiCl. Employing Fe3Br3 L affords 83 ± 7 equiv. NH4 +/complex after protonolysis, which is a 50% yield based on reducing equivalents. The series of triiron compounds tested evidences the subtle effects of ancillary donors, including halides, hydrides, sulfides, and carbonyl ligands, and metal oxidation state on N(SiMe3)3 yield, and highlight Fe3(μ3-N)L as a common species in product mixtures. These results suggest that ancillary ligands can be abstracted with Lewis acids under reducing conditions.
Collapse
Affiliation(s)
- Ricardo B. Ferreira
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brian J. Cook
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brian J. Knight
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Vincent J. Catalano
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249), F-38054 Grenoble, France
| | - Leslie J. Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
19
|
Anderton KJ, Ermert DM, Quintero PA, Turvey MW, Fataftah MS, Abboud KA, Meisel MW, Čižmár E, Murray LJ. Correlating Bridging Ligand with Properties of Ligand-Templated [Mn II3X 3] 3+ Clusters (X = Br -, Cl -, H -, MeO -). Inorg Chem 2017; 56:12012-12022. [PMID: 28920698 DOI: 10.1021/acs.inorgchem.7b02004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polynuclear manganese compounds have garnered interest as mimics and models of the water oxidizing complex (WOC) in photosystem II and as single molecule magnets. Molecular systems in which composition can be correlated to physical phenomena, such as magnetic exchange interactions, remain few primarily because of synthetic limitations. Here, we report the synthesis of a family of trimanganese(II) complexes of the type Mn3X3L (X = Cl-, H-, and MeO-) where L3- is a tris(β-diketiminate) cyclophane. The tri(chloride) complex (2) is structurally similar to the reported tri(bromide) complex (1) with the Mn3X3 core having a ladder-like arrangement of alternating M-X rungs, whereas the tri(μ-hydride) (3) and tri(μ-methoxide) (4) complexes contain planar hexagonal cores. The hydride and methoxide complexes are synthesized in good yield (48% and 56%) starting with the bromide complex employing a metathesis-like strategy. Compounds 2-4 were characterized by combustion analysis, X-ray crystallography, X-band EPR spectroscopy, SQUID magnetometry, and infrared and UV-visible spectroscopy. Magnetic susceptibility measurements indicate that the Mn3 clusters in 2-4 are antiferromagnetically coupled, and the spin ground state of the compounds (S = 3/2 (1, 2) or S = 1/2 (3, 4)) is correlated to the identity of the bridging ligand and structural arrangement of the Mn3X3 core (X = Br, Cl, H, OCH3). Electrochemical experiments on isobutyronitrile solutions of 3 and 4 display broad irreversible oxidations centered at 0.30 V.
Collapse
Affiliation(s)
- Kevin J Anderton
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - David M Ermert
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - Pedro A Quintero
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Mackenzie W Turvey
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Majed S Fataftah
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Khalil A Abboud
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| | - Mark W Meisel
- Department of Physics and the National High Magnetic Field Laboratory, University of Florida , Gainesville, Florida 32611, United States
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University , 04154 Košice, Slovakia
| | - Leslie J Murray
- Department of Chemistry, Center for Catalysis and Center for Heterocyclic Compounds, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
20
|
Arnet NA, McWilliams SF, DeRosha DE, Mercado BQ, Holland PL. Synthesis and Mechanism of Formation of Hydride-Sulfide Complexes of Iron. Inorg Chem 2017; 56:9185-9193. [PMID: 28726395 DOI: 10.1021/acs.inorgchem.7b01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron-sulfide complexes with hydride ligands provide an experimental precedent for spectroscopically detected hydride species on the iron-sulfur MoFe7S9C cofactor of nitrogenase. In this contribution, we expand upon our recent synthesis of the first iron sulfide hydride complex from an iron hydride and a sodium thiolate ( Arnet, N. A.; Dugan, T. R.; Menges, F. S.; Mercado, B. Q.; Brennessel, W. W.; Bill, E.; Johnson, M. A.; Holland, P. L., J. Am. Chem. Soc. 2015 , 137 , 13220 - 13223 ). First, we describe the isolation of an analogous iron sulfide hydride with a smaller diketiminate supporting ligand, which benefits from easier preparation of the hydride precursor and easier isolation of the product. Second, we describe mechanistic studies on the C-S bond cleavage through which the iron sulfide hydride product is formed. In a key experiment, use of cyclopropylmethanethiolate as the sulfur precursor leads to products from cyclopropane ring opening, implicating an alkyl radical as an intermediate. Combined with the results of isotopic labeling studies, the data are consistent with a mechanism in which homolytic C-S bond cleavage is followed by rebound of the alkyl radical to abstract a hydrogen atom from iron to give the observed alkane and iron-sulfide products.
Collapse
Affiliation(s)
- Nicholas A Arnet
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sean F McWilliams
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Daniel E DeRosha
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
21
|
Ohta S, Ohki Y. Impact of ligands and media on the structure and properties of biological and biomimetic iron-sulfur clusters. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Anderton KJ, Knight BJ, Rheingold AL, Abboud KA, García-Serres R, Murray LJ. Reactivity of hydride bridges in a high-spin [Fe 3(μ-H) 3] 3+ cluster: reversible H 2/CO exchange and Fe-H/B-F bond metathesis. Chem Sci 2017; 8:4123-4129. [PMID: 28603601 PMCID: PMC5443887 DOI: 10.1039/c6sc05583d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023] Open
Abstract
The triiron trihydride complex Fe3H3L (1) [where L3– is a tris(β-diketiminate)cyclophanate] reacts with CO and with BF3·OEt2 to afford (FeICO)2FeII(μ3-H)L (2) and Fe3F3L (3), respectively.
The triiron trihydride complex Fe3H3L (1) [where L3– is a tris(β-diketiminate)cyclophanate] reacts with CO and with BF3·OEt2 to afford (FeICO)2FeII(μ3-H)L (2) and Fe3F3L (3), respectively. Variable-temperature and applied-field Mössbauer spectroscopy support the assignment of two high-spin (HS) iron(i) centers and one HS iron(ii) ion in 2. Preliminary studies support a CO-induced reductive elimination of H2 from 1, rather than CO trapping a species from an equilibrium mixture. This complex reacts with H2 to regenerate 1 under a dihydrogen atmosphere, which represents a rare example of reversible CO/H2 exchange and the first to occur at high-spin metal centers, as well as the first example of a reversible multielectron redox reaction at a designed high-spin metal cluster. The formation of 3 proceeds through a previously unreported net fluoride-for-hydride substitution, and 3 is surprisingly chemically inert to Si–H bonds and points to an unexpectedly large difference between the Fe–F and Fe–H bonds in this high-spin system.
Collapse
Affiliation(s)
- Kevin J Anderton
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| | - Brian J Knight
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry , University of California San Diego , 9500 Gilman Drive, MC 0358 , La Jolla , CA 92093-0358 , USA
| | - Khalil A Abboud
- Department of Chemistry , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA
| | - Ricardo García-Serres
- Laboratoire de Chimie de Biologie des Métaux , UMR 5249 , Université Joseph Fourier , Grenoble-1, CNRS-CEA 17 Rue des Martyrs , 38054 Grenoble Cedex 9 , France
| | - Leslie J Murray
- Center for Catalysis , University of Florida , 214 Leigh Hall P.O. Box 117200 , Gainesville , FL 32611 , USA .
| |
Collapse
|
23
|
Mass spectrometric identification of intermediates in the O 2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR. Proc Natl Acad Sci U S A 2017; 114:E3215-E3223. [PMID: 28373574 DOI: 10.1073/pnas.1620987114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The iron-sulfur cluster containing protein Fumarate and Nitrate Reduction (FNR) is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high-affinity DNA binding. Here, we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a [3Fe-3S] cluster and persulfide-coordinated [2Fe-2S] clusters [[2Fe-2S](S) n , where n = 1 or 2]. Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion and not as a subsequent, secondary reaction to generate [2Fe-2S](S) n species. This methodology shows great potential for broad application to studies of protein cofactor-small molecule interactions.
Collapse
|
24
|
Holm RH, Lo W. Structural Conversions of Synthetic and Protein-Bound Iron–Sulfur Clusters. Chem Rev 2016; 116:13685-13713. [DOI: 10.1021/acs.chemrev.6b00276] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. H. Holm
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Wayne Lo
- Department
of Chemistry and
Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Lee Y, Abboud KA, García-Serres R, Murray LJ. A three-coordinate Fe(ii) center within a [3Fe-(μ3-S)] cluster that provides an accessible coordination site. Chem Commun (Camb) 2016; 52:9295-8. [PMID: 27363672 DOI: 10.1039/c6cc04671a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A μ3-sulfide bridged triiron cluster(ii,ii,iii) supported by a cyclophane ligand undergoes metal-based reduction to yield an all-ferrous species. The latter complex incorporates a three-coordinate iron center that provides an accessible coordination site to a solvent molecule.
Collapse
Affiliation(s)
- Yousoon Lee
- University of Florida, Department of Chemistry, Center for Catalysis, Gainesville, FL 32611-7200, USA.
| | | | | | | |
Collapse
|
26
|
Ermert DM, Murray LJ. Insights into small molecule activation by multinuclear first-row transition metal cyclophanates. Dalton Trans 2016; 45:14499-507. [DOI: 10.1039/c6dt01857b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rational design of trimetallic transition metal clusters supported by a trinucleating cyclophane ligand, L3−, and the reactivities of these complexes with dinitrogen and carbon dioxide are discussed.
Collapse
Affiliation(s)
- David M. Ermert
- Center for Catalysis
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Leslie J. Murray
- Center for Catalysis
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|