1
|
Lewis JA, Jacobo EP, Palmer N, Vermerris W, Sattler SE, Brozik JA, Sarath G, Kang C. Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein. Int J Mol Sci 2024; 25:5651. [PMID: 38891840 PMCID: PMC11172311 DOI: 10.3390/ijms25115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Eric P. Jacobo
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Nathan Palmer
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Scott E. Sattler
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - James A Brozik
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Gautam Sarath
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| |
Collapse
|
2
|
Diharce J, Bignon E, Fiorucci S, Antonczak S. Exploring Dihydroflavonol-4-Reductase Reactivity and Selectivity by QM/MM-MD Simulations. Chembiochem 2021; 23:e202100553. [PMID: 34859558 DOI: 10.1002/cbic.202100553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Flavonoids are secondary metabolites ubiquitously found in plants. Their antioxidant properties make them highly interesting natural compounds for use in pharmacology. Therefore, unravelling the mechanisms of flavonoid biosynthesis is an important challenge. Among all the enzymes involved in this biosynthetic pathway, dihydroflavonol-4-reductase (DFR) plays a key role in the production of anthocyanins and proanthocyanidins. Here, we provide new information on the mechanism of action of this enzyme by using QM/MM-MD simulations applied to both dihydroquercetin (DHQ) and dihydrokaempferol (DHK) substrates. The consideration of these very similar compounds shed light on the major role played by the enzyme on the stabilization of the transition state but also on the activation of the substrate before the reaction through near-attack conformer effects.
Collapse
Affiliation(s)
- Julien Diharce
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France.,Université de Paris, INSERM, Biologie Intégrée du Globule Rouge, UMR_S1134, 75015, Paris, France.,Laboratoire d'Excellence GR-Ex, 75015, Paris, France
| | - Emmanuelle Bignon
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
| | - Sébastien Fiorucci
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
| | - Serge Antonczak
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
| |
Collapse
|
3
|
Zhang Y, Fernie AR. Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. PLANT COMMUNICATIONS 2021; 2:100081. [PMID: 33511342 PMCID: PMC7816073 DOI: 10.1016/j.xplc.2020.100081] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Metabolons are transient multi-protein complexes of sequential enzymes that mediate substrate channeling. They differ from multi-enzyme complexes in that they are dynamic, rather than permanent, and as such have considerably lower dissociation constants. Despite the fact that a huge number of metabolons have been suggested to exist in plants, most of these claims are erroneous as only a handful of these have been proven to channel metabolites. We believe that physical protein-protein interactions between consecutive enzymes of a pathway should rather be called enzyme-enzyme assemblies. In this review, we describe how metabolons are generally assembled by transient interactions and held together by both structural elements and non-covalent interactions. Experimental evidence for their existence comes from protein-protein interaction studies, which indicate that the enzymes physically interact, and direct substrate channeling measurements, which indicate that they functionally interact. Unfortunately, advances in cell biology and proteomics have far outstripped those in classical enzymology and flux measurements, rendering most reports reliant purely on interactome studies. Recent developments in co-fractionation mass spectrometry will likely further exacerbate this bias. Given this, only dynamic enzyme-enzyme assemblies in which both physical and functional interactions have been demonstrated should be termed metabolons. We discuss the level of evidence for the manifold plant pathways that have been postulated to contain metabolons and then list examples in both primary and secondary metabolism for which strong evidence has been provided to support these claims. In doing so, we pay particular attention to experimental and mathematical approaches to study metabolons as well as complexities that arise in attempting to follow them. Finally, we discuss perspectives for improving our understanding of these fascinating but enigmatic interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
The Effect of Light Intensity on the Expression of Leucoanthocyanidin Reductase in Grapevine Calluses and Analysis of Its Promoter Activity. Genes (Basel) 2020; 11:genes11101156. [PMID: 33007888 PMCID: PMC7600843 DOI: 10.3390/genes11101156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
To investigate the effect of light intensity on flavonoid biosynthesis, grapevine calluses were subjected to high light (HL, 250 μmol m−2 s−1) and dark (0 μmol m−2 s−1) in comparison to 125 μmol m−2 s−1 under controlled conditions (NL). The alteration of flavonoid profiles was determined and was integrated with RNA sequencing (RNA-seq)-based transcriptional changes of the flavonoid pathway genes. Results revealed that dark conditions inhibited flavonoid biosynthesis. Increasing light intensity affected flavonoids differently—the concentrations of flavonols and anthocyanins as well as the expressions of corresponding genes were less affected, whereas flavan-3-ol concentrations were predominantly increased, which caused enhanced trans-flavan-3-ol concentrations. Moreover, genes encoding leucoanthocyanidin reductase (LAR) exhibited different response patterns to light intensity changes—VviLAR1 expression increased with an increased light intensity, whereas VviLAR2 expression was insensitive. We further confirmed that the known transcription factors (TFs) involved in regulating flavan-3-ol biosynthesis utilized VviLAR1 as a target gene in grapevine calluses. In addition, VviLAR1 promoter activity was more sensitive to light intensity changes than that of VviLAR2 as determined using a transgenic Arabidopsis leaf system. These results suggested that light intensity had the most prominent effect on trans-flavan-3-ols in grapevine calluses and demonstrated that the two LAR genes had different response patterns to light intensity changes.
Collapse
|
5
|
García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. PLANTS 2020; 9:plants9060774. [PMID: 32575698 PMCID: PMC7357106 DOI: 10.3390/plants9060774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Peter Palove-Balang
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia;
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
- Correspondence: ; Tel.: +34-954557145
| |
Collapse
|
6
|
Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E, Lainé E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. PLANTA 2019; 249:1695-1714. [PMID: 30895445 DOI: 10.1007/s00425-019-03137-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.
Collapse
Affiliation(s)
| | | | | | - Samantha Drouet
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Ivan Mateljak
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | - Daniel Auguin
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | | | - Elisabeth Fuss
- Interfaculty Institute of Biochemistry, Hoppe-Seyler-St. 4, 72076, Tübingen, Germany
| | - Eric Lainé
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France.
- LBLGC, INRA USC 1328 Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny, 28000, Chartres, France.
| |
Collapse
|
7
|
Nakayama T, Takahashi S, Waki T. Formation of Flavonoid Metabolons: Functional Significance of Protein-Protein Interactions and Impact on Flavonoid Chemodiversity. FRONTIERS IN PLANT SCIENCE 2019; 10:821. [PMID: 31338097 PMCID: PMC6629762 DOI: 10.3389/fpls.2019.00821] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
Flavonoids are a class of plant specialized metabolites with more than 6,900 known structures and play important roles in plant survival and reproduction. These metabolites are derived from p-coumaroyl-CoA via the sequential actions of a variety of flavonoid enzymes, which have been proposed to form weakly bound, ordered protein complexes termed flavonoid metabolons. This review discusses the impacts of the formation of flavonoid metabolons on the chemodiversity of flavonoids. Specific protein-protein interactions in the metabolons of Arabidopsis thaliana and other plant species have been studied for two decades. In many cases, metabolons are associated with the ER membrane, with ER-bound cytochromes P450 hypothesized to serve as nuclei for metabolon formation. Indeed, cytochromes P450 have been found to be components of flavonoid metabolons in rice, snapdragon, torenia, and soybean. Recent studies illustrate the importance of specific interactions for the efficient production and temporal/spatial distribution of flavonoids. For example, in diverse plant species, catalytically inactive type-IV chalcone isomerase-like protein serves as an enhancer of flavonoid production via its involvement in flavonoid metabolons. In soybean roots, a specific isozyme of chalcone reductase (CHR) interacts with 2-hydroxyisoflavanone synthase, to which chalcone synthase (CHS) can also bind, providing a mechanism to prevent the loss of the unstable CHR substrate during its transfer from CHS to CHR. Thus, diversification in chemical structures and temporal/spatial distribution patterns of flavonoids in plants is likely to be mediated by the formation of specific flavonoid metabolons via specific protein-protein interactions.
Collapse
|
8
|
Sweetlove LJ, Fernie AR. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 2018; 9:2136. [PMID: 29849027 PMCID: PMC5976638 DOI: 10.1038/s41467-018-04543-8] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 11/08/2022] Open
Abstract
Transient physical association between enzymes appears to be a cardinal feature of metabolic systems, yet the purpose of this metabolic organisation remains enigmatic. It is generally assumed that substrate channelling occurs in these complexes. However, there is a lack of information concerning the mechanisms and extent of substrate channelling and confusion regarding the consequences of substrate channelling. In this review, we outline recent advances in the structural characterisation of enzyme assemblies and integrate this with new insights from reaction-diffusion modelling and synthetic biology to clarify the mechanistic and functional significance of the phenomenon.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany.
| |
Collapse
|