1
|
Kim H, Lee DW, Hwang JK. Curcuma xanthorrhiza extract and xanthorrhizol ameliorate cancer-induced adipose wasting in CT26-bearing mice by regulating lipid metabolism and adipose tissue browning. Integr Med Res 2024; 13:101020. [PMID: 38298864 PMCID: PMC10826318 DOI: 10.1016/j.imr.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Background Cancer cachexia-characterized by anorexia, body weight loss, skeletal muscle atrophy, and fat loss-affects nearly 80% of cancer patients and accounts for 20% of cancer deaths. Curcuma xanthorrhiza, known as Java turmeric, and its active compound xanthorrhizol (XAN) exhibit anticancer, anti-inflammatory, and antioxidant properties. However, the ameliorative effects of C. xanthorrhiza extract (CXE) and XAN on cancer-associated adipose atrophy remain unexplored. This study aimed to evaluate the therapeutic effects of CXE and XAN on cancer cachexia-induced adipose tissue wasting in CT26 tumor-bearing mice. Methods CT26 cells were injected subcutaneously into the right flank of BALB/c mice to establish a cancer cachexia model. To evaluate the inhibitory effects of CXE and XAN on cancer cachexia, 50 and 100 mg/kg CXE and 15 mg/kg XAN were administered orally every day for 1 week. Results CXE and XAN administration significantly attenuated the loss of body weight and epidydimal fat mass by cancer cachexia. In epididymal adipose tissues, administration of CXE or XAN inhibited white adipose tissue browning by repressing expression of the thermogenic genes. Simultaneously, CXE or XAN attenuated fat catabolism through the downregulation of lipolytic genes. The administration of CXE or XAN induced the expression of genes associated with adipogenesis and lipogenesis-related genes. Moreover, CXE or XAN treatment was associated with maintaining metabolic homeostasis; regulating the expression of adipokines and AMP-activated protein kinase (AMPK). Conclusions CXE and XAN mitigate cancer-induced adipose tissue atrophy, primarily by modulating lipid metabolism and WAT browning, indicating their therapeutic potential for cachectic cancer patients.
Collapse
Affiliation(s)
- Haeun Kim
- Graduate School of Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Graduate School of Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Kwan Hwang
- Graduate School of Bioindustrial Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yang JY, Zhang L, Zhang TT, Wang CC, Zhao YC, Li XY, Wang YM, Xue CH. Eicosapentaenoic acid-enriched phospholipids alleviate glucose and lipid metabolism in spontaneously hypertensive rats with CD36 mutation: a precise nutrition strategy. Food Funct 2023; 14:2349-2361. [PMID: 36843452 DOI: 10.1039/d2fo03016k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Previous studies have found that eicosapentaenoic acid-enriched phospholipids (EPA-PLs) alleviated glucose and lipid metabolism, which was accompanied by an increase of cluster of differentiation 36 (CD36). However, the effects of EPA-PLs on glucose and lipid metabolism in the case of CD36 mutation are unclear. Thus, spontaneously hypertensive rats/NCrl (SHR) were used as a CD36 mutation model to determine the effects of dietary 2% EPA-PLs for 4 weeks on glucose and lipid metabolism. The results showed that the intervention of EPA-PLs significantly alleviated the abnormal increase of serum free fatty acid levels and glycerol levels in SHRs. Moreover, the administration of EPA-PLs decreased the triglyceride levels and cholesterol levels by 31.1% and 37.9%, respectively, in the liver. Dietary EPA-PLs had no effect on epididymal fat weight, but EPA-PLs inhibited adipocyte hypertrophy in SHRs. Further mechanistic research found that EPA-PL pretreatment significantly reduced triacylglycerol catabolism and increased fatty acid β-oxidation. Additionally, the administration of EPA-PLs decreased the area under the curve of the intraperitoneal glucose tolerance test and fasting serum insulin levels by activating the IRS/PI3K/AKT signaling pathway. Furthermore, EPA-PL pretreatment significantly increased the CD36 gene expression in the liver tissues, adipose tissues and muscle tissues even in the case of CD36 mutation. These results indicated that EPA-PLs alleviate glucose and lipid metabolism in the case of CD36 mutation, which provides a precise nutrition strategy for people with CD36 mutation.
Collapse
Affiliation(s)
- Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China.
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China. .,College of Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China.
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China.
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China.
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, People's Republic of China.
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, People's Republic of China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Snoke DB, Nishikawa Y, Cole RM, Ni A, Angelotti A, Vodovotz Y, Belury MA. Dietary Naringenin Preserves Insulin Sensitivity and Grip Strength and Attenuates Inflammation but Accelerates Weight Loss in a Mouse Model of Cancer Cachexia. Mol Nutr Food Res 2021; 65:e2100268. [PMID: 34499400 PMCID: PMC8612985 DOI: 10.1002/mnfr.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 12/15/2022]
Abstract
SCOPE Cancer cachexia is characterized by the loss of skeletal muscle resulting in functional impairment, reduced quality of life and mortality. Naringenin, a flavonoid found in citrus fruits, improves insulin sensitivity and reduces inflammation and tumor growth in preclinical models. Therefore, the study hypothesizes that dietary supplementation of naringenin will improve insulin sensitivity, decrease inflammation, slow body weight loss, and delay tumor growth in a mouse model of cancer cachexia. METHODS AND RESULTS Mice are fed 2 wt% dietary naringenin before and during initiation of cancer cachexia using inoculated adenocarcinoma-26 cells (C-26). Food intake, body weight, body composition, muscle function, insulin tolerance, and inflammatory status are assessed. Although naringenin-fed tumor-bearing mice exhibit reductions in body weight and food intake earlier than control diet-fed tumor-bearing mice, dietary naringenin is protective against loss of muscle strength, and attenuates the onset of insulin resistance and markers of inflammation. CONCLUSIONS Dietary supplementation of naringenin improves multiple aspects of metabolic disturbance and inflammation during cancer cachexia progression in [C-26 tumor-bearing] mice. However, the acceleration of anorexia and weight loss is also observed. These findings emphasize the link between inflammation and insulin resistance as a basis for understanding their roles in the pathogenesis of cancer cachexia.
Collapse
Affiliation(s)
- Deena B. Snoke
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yuko Nishikawa
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Yael Vodovotz
- Interdisciplinary PhD Program in Nutrition, The Graduate School, The Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Narasimhan A, Zhong X, Au EP, Ceppa EP, Nakeeb A, House MG, Zyromski NJ, Schmidt CM, Schloss KNH, Schloss DEI, Liu Y, Jiang G, Hancock BA, Radovich M, Kays JK, Shahda S, Couch ME, Koniaris LG, Zimmers TA. Profiling of Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct Gene Profiles with Convergent Pathways. Cancers (Basel) 2021; 13:1975. [PMID: 33923976 PMCID: PMC8073275 DOI: 10.3390/cancers13081975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023] Open
Abstract
The vast majority of patients with pancreatic ductal adenocarcinoma (PDAC) suffer cachexia. Although cachexia results from concurrent loss of adipose and muscle tissue, most studies focus on muscle alone. Emerging data demonstrate the prognostic value of fat loss in cachexia. Here we sought to identify the muscle and adipose gene profiles and pathways regulated in cachexia. Matched rectus abdominis muscle and subcutaneous adipose tissue were obtained at surgery from patients with benign conditions (n = 11) and patients with PDAC (n = 24). Self-reported weight loss and body composition measurements defined cachexia status. Gene profiling was done using ion proton sequencing. Results were queried against external datasets for validation. 961 DE genes were identified from muscle and 2000 from adipose tissue, demonstrating greater response of adipose than muscle. In addition to known cachexia genes such as FOXO1, novel genes from muscle, including PPP1R8 and AEN correlated with cancer weight loss. All the adipose correlated genes including SCGN and EDR17 are novel for PDAC cachexia. Pathway analysis demonstrated shared pathways but largely non-overlapping genes in both tissues. Age related muscle loss predominantly had a distinct gene profiles compared to cachexia. This analysis of matched, externally validate gene expression points to novel targets in cachexia.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
| | - Ernie P. Au
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eugene P. Ceppa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Atilla Nakeeb
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Michael G. House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicholas J. Zyromski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - C. Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Katheryn N. H. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Daniel E. I. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Yunlong Liu
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bradley A. Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Milan Radovich
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Joshua K. Kays
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Safi Shahda
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E. Couch
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Han J, Shen L, Zhan Z, Liu Y, Zhang C, Guo R, Luo Y, Xie Z, Feng Y, Wu G. The long noncoding RNA MALAT1 modulates adipose loss in cancer-associated cachexia by suppressing adipogenesis through PPAR-γ. Nutr Metab (Lond) 2021; 18:27. [PMID: 33691715 PMCID: PMC7944636 DOI: 10.1186/s12986-021-00557-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer-associated cachexia is a multifactorial syndrome defined by progressive weight loss with ongoing loss of adipose tissue and skeletal muscle. Adipose loss occurs in the early stage of cachexia and is associated with reduced quality of life and survival time. Although numerous lncRNAs are regarded as novel regulators in adipose metabolism, the role of lncRNAs that selectively modulate the development of adipose loss in cachexia remains limited. Methods In this study, we analyzed microarray data of lncRNAs in adipose loss and further explored the function and mechanism of MALAT1 in adipose loss. First, we explored the expression and function of MALAT1 in adipose cell by quantitative PCR and RNA knockdown. Subsequently, the mechanism of MALAT1 involvement in adipose loss was analyzed via RNA-seq, bioinformatics analysis and reporter gene assay. Finally, we explored the clinical significance of MALAT1 through correlation analysis. Results Cellular experiments revealed that knocking down MALAT1 significantly inhibited the process of adipogenesis. RNA-seq data showed that numerous adipogenic genes were downregulated upon MALAT1 knockdown. A protein–protein interaction network analysis identified PPAR-γ as the central node transcription factor, the inhibition of which explains the downregulation of numerous adipogenic genes. A reporter gene assay suggested that MALAT1 can regulate the gene expression of PPAR-γ at the transcriptional level. Moreover, MALAT1 was weakly expressed in the subcutaneous white adipose tissue of cancer-associated cachexia patients and was related to low fat mass index and poor prognosis in cancer patients. Conclusions This study indicated that MALAT1 is associated with adipose loss in cancer-associated cachexia by regulating adipogenesis through PPAR-γ, which may potentially be a novel target for the diagnosis and treatment of cancer-associated cachexia in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00557-0.
Collapse
Affiliation(s)
- Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuguo Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chang Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruochen Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yangjun Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yang YH, Hao YM, Liu XF, Gao X, Wang BZ, Takahashi K, Du L. Docosahexaenoic acid-enriched phospholipids and eicosapentaenoic acid-enriched phospholipids inhibit tumor necrosis factor-alpha-induced lipolysis in 3T3-L1 adipocytes by activating sirtuin 1 pathways. Food Funct 2021; 12:4783-4796. [PMID: 34100500 DOI: 10.1039/d1fo00157d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some chronic diseases such as cancer-associated cachexia (CAC) and obesity are associated with the overproduction of tumor necrosis factor-alpha (TNF-α) that stimulates excess lipolysis in adipocytes. Our previous studies have shown that docosahexaenoic acid-enriched phospholipids (DHA-PL) and eicosapentaenoic acid-enriched phospholipids (EPA-PL) ameliorated CAC and obesity-related metabolic disorders. To identify the molecular mechanisms involved, we examined the impact and the associated signaling pathways of DHA-PL and EPA-PL on TNF-α-induced lipolysis in 3T3-L1 adipocytes. The present results revealed that DHA-PL and EPA-PL inhibited the TNF-α-induced increase of glycerol release and protected lipid droplets. In addition, DHA-PL and EPA-PL increased DHA and EPA contents in the phospholipid fraction of adipocytes, respectively. Moreover, DHA-PL and EPA-PL enhanced sirtuin 1 (SIRT1) deacetylase activity and its protein expression. By activating SIRT1, DHA-PL and EPA-PL upregulated the G0/G1 switch gene 2 protein level to inhibit adipose triglyceride lipase activity, activate AMP-activated protein kinase to reverse the downregulation of perilipin expression and phosphorylation of hormone-sensitive lipase (HSL) at Ser565 and prevent the phosphorylation of HSL at Ser660. Furthermore, DHA-PL and EPA-PL improved glucose uptake and glucose transporter type 4 translocation to the plasma membrane in TNF-α-treated adipocytes. Thus, it was concluded that DHA-PL and EPA-PL inhibit TNF-α-induced lipolysis in 3T3-L1 adipocytes by activating the SIRT1 pathways.
Collapse
Affiliation(s)
- Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501, Daxue Road, Jinan, Shandong 250353, China
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Xiao-Fang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, No. 106 Nanjing Road, Qingdao, Shandong 266071, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Koretaro Takahashi
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
8
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
9
|
Anti-tumor mechanism of eicosapentaenoic acid (EPA) on ovarian tumor model by improving the immunomodulatory activity in F344 rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Zhang TT, Xu J, Wang YM, Xue CH. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Prog Lipid Res 2019; 75:100997. [DOI: 10.1016/j.plipres.2019.100997] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
11
|
Freitas RDS, Campos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019; 11:nu11050945. [PMID: 31035457 PMCID: PMC6566772 DOI: 10.3390/nu11050945] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are considered immunonutrients and are commonly used in the nutritional therapy of cancer patients due to their ample biological effects. Omega-3 PUFAs play essential roles in cell signaling and in the cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory and antinociceptive effects. Additionally, they can act as agonists of G protein-coupled receptors, namely, GPR40/FFA1 and GPR120/FFA4. Cancer patients undergo complications, such as anorexia-cachexia syndrome, pain, depression, and paraneoplastic syndromes. Interestingly, the 2017 European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines for cancer patients only discuss the use of omega-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by omega-3 PUFA supplementation. This critical review aimed to discuss the effects and the possible underlying mechanisms of omega-3 PUFA supplementation in cancer-related complications. Data compilation in this critical review indicates that further investigation is still required to assess the factual benefits of omega-3 PUFA supplementation in cancer-associated illnesses. Nevertheless, preclinical evidence reveals that omega-3 PUFAs and their metabolites might modulate pivotal pathways underlying complications secondary to cancer, indicating that this is a promising field of knowledge to be explored.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| | - Maria M Campos
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| |
Collapse
|
12
|
He Y, Wang X, Wei H, Zhang J, Chen B, Chen F. Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:78. [PMID: 30992715 PMCID: PMC6449970 DOI: 10.1186/s13068-019-1418-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Marine microalga Nannochloropsis is a promising source for the production of renewable and sustainable biodiesel in replacement of depleting petroleum. Other than biodiesel, Nannochloropsis is a green and potential resource for the commercial production of nutraceutical eicosapentaenoic acid (EPA, C20:5). In recent studies, low-value biodiesel can be achieved by transesterification of Nannochloropsis biomass. However, it is undoubtedly wasteful to produce microalgal biodiesel containing EPA from nutritional and economical aspects. A new strategy was addressed and exploited to produce low-value bulky biodiesel along with EPA enrichment via enzymatic ethanolysis of Nannochloropsis biomass with a specific lipase. RESULTS Cellulase pretreatment on Nannochloropsis sp. biomass significantly improved the biodiesel conversion by direct ethanolysis with five enzymes from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TL), Rhizomucor miehei (RM), and Aspergillus oryzae (PLA). Among these five biocatalysts, CALA was the best suitable enzyme to yield high biodiesel conversion and effectively enrich EPA. After optimization, the maximum biodiesel conversion (46.53-48.57%) was attained by CALA at 8:1 ethanol/biomass ratio (v/w) in 10-15% water content with 10% lipase weight at 35 °C for 72 h. Meanwhile, EPA (60.81%) was highly enriched in microalgae NPLs (neutral lipids and polar lipids), increasing original EPA levels by 1.51-fold. Moreover, this process was re-evaluated with two Nannochloropsis species (IMET1 and Salina 537). Under the optimized conditions, the biodiesel conversions of IMET1 and Salina 537 by CALA were 63.41% and 54.33%, respectively. EPA contents of microalgal NPLs were 50.06% for IMET1 and 53.73% for Salina 537. CONCLUSION CALA was the potential biocatalyst to discriminate against EPA in the ethanolysis of Nannochloropsis biomass. The biodiesel conversion and EPA enrich efficiency of CALA were greatly dependent on lipidic class and fatty acid compositions of Nannochloropsis biomass. CALA-catalyzed ethanolysis with Nannochloropsis biomass was a promising approach for co-production of low-value biodiesel and high-value microalgae products rich in EPA.
Collapse
Affiliation(s)
- Yongjin He
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People’s Republic of China, Beijing, 100081 China
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Xiaofei Wang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Hehong Wei
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Jianzhi Zhang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Feng Chen
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000 China
| |
Collapse
|
13
|
The role of omega 3 fatty acids in suppressing muscle protein catabolism: A possible therapeutic strategy to reverse cancer cachexia? J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Zhang LY, Ding L, Shi HH, Xu J, Xue CH, Zhang TT, Wang YM. Eicosapentaenoic acid in the form of phospholipids exerts superior anti-atherosclerosis effects to its triglyceride form in ApoE−/−mice. Food Funct 2019; 10:4177-4188. [DOI: 10.1039/c9fo00868c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
EPA-PL was superior to EPA-TG in reducing lesion progression by modulating hepatic lipid metabolism and decreasing inflammation in the artery wall and circulatory system, which might be attributed to the structural differences at the sn-3 position.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Lin Ding
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Hao-Hao Shi
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Jie Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
15
|
Cao W, Wang C, Chin Y, Chen X, Gao Y, Yuan S, Xue C, Wang Y, Tang Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct 2019; 10:277-288. [DOI: 10.1039/c8fo01404c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DHA-PL and EPA-PL may effectively protect mice against intestinal dysfunction under chronic stress exposure.
Collapse
Affiliation(s)
- Wanxiu Cao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Chengcheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yaoxian Chin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Xin Chen
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuan Gao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shihan Yuan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yuming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qingjuan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
16
|
Bargut TCL, Santos LP, Machado DGL, Aguila MB, Mandarim-de-Lacerda CA. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet. Prostaglandins Leukot Essent Fatty Acids 2017; 123:14-24. [PMID: 28838556 DOI: 10.1016/j.plefa.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. METHODS 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. RESULTS The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. CONCLUSION Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil; Basic Science Department, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Brazil.
| | - Larissa Pereira Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daiana Guimarães Lopes Machado
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Zhang L, Wang D, Wen M, Du L, Xue C, Wang J, Xu J, Wang Y. Rapid modulation of lipid metabolism in C57BL/6J mice induced by eicosapentaenoic acid-enriched phospholipid from Cucumaria frondosa. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|