1
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Indriani S, Srisakultiew N, Benjakul S, Boonchuen P, Pongsetkul J. Proteomic profiles revealed enzymatic activities associated with the flavor formation of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation. Food Funct 2024; 15:9100-9115. [PMID: 39210833 DOI: 10.1039/d4fo02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enzymatic proteomic profiles were examined to comprehend the predominant enzymes involved in the flavor development of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation (Inoc), compared to those without inoculation (CON). Inoc showed greater proteolytic, lipolytic, and chitinolytic activities than CON (P < 0.05) throughout 30 days of fermentation, indicating B. subtilis's ability to accelerate the fermentation rate and render distinctive flavor profiles to shrimp paste. Among 50 differential abundance proteins (DAPs), 24 DAPs were identified as potential key regulating enzymes, with a P-value < 0.05 and |FC| > 0.50, indicating their significance and regulating capacity within specific metabolic pathways. Notably, 27 and 23 DAPs were up-regulated in Inoc and CON, respectively. Moreover, gene ontology (GO) enrichment analysis revealed that hydrolases, involved in carbohydrate metabolic processes and proteolysis, were the most differentiating pathways between Inoc and CON. Both samples exhibited different flavor profiles. A greater abundance of N-containing volatile compounds with a lower total abundance of aldehydes, ketones, alcohols, and acids could suggest a more favorable flavor in Inoc, compared to CON. Principal component analysis (PCA) revealed a positive correlation between L-ascorbate peroxidase, carboxypeptidase, and tripeptidyl peptidase sed2, with proteolytic and lipolytic activities in Inoc (P < 0.05). Meanwhile, acids and alcohols were positively correlated with CON. Therefore, B. subtilis inoculation could produce a distinctive flavor with a desirable sensory perception of shrimp paste regarding its ability to release extracellular enzymes/proteins. B. subtilis K-C3 inoculation could be suggested in the production of shrimp paste to improve its flavor characteristics.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, Meng Y, Li T. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods 2023; 12:2898. [PMID: 37569167 PMCID: PMC10418324 DOI: 10.3390/foods12152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin.
Collapse
Affiliation(s)
- Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Ruiyi Zhai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Yaoyao Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| |
Collapse
|
4
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Ozogul Y, El Abed N, Montanari C, Ozogul F. Contribution of polysaccharides from crustacean in fermented food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:47-92. [PMID: 36064296 DOI: 10.1016/bs.afnr.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fermented foods are of great importance for their role in preserving nutrients and enriching the human diet. Fermentation ensures longer shelf life and microbiological safety of food. Natural bioactive compounds have been paid attention as nutraceuticals or functional ingredients, which have health-promoting components since polysaccharides, especially chitosan, chitin and their derivatives, are biocompatible and biodegradable, biorenewable, without toxic properties and environmentally friendly. They have been applied in several fields such as medicine, agriculture, and food industry. This chapter provides information on polysaccharides obtained from crustacean as bioactive compounds as well as their effects in fermented foods.
Collapse
Affiliation(s)
- Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Nariman El Abed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
6
|
Jadhav HB, Annapure U. Consequences of non-thermal cold plasma treatment on meat and dairy lipids – A review. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
7
|
Preparation and characterization of chitosan oligosaccharide derivatives containing cinnamyl moieties with enhanced antibacterial activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Zhang H, Zhang Y, Huang Y, Wu L, Guo Q, Wang Q, Liang L, Nishinari K, Zhao M. Interaction between bovine serum albumin and chitooligosaccharides: I. Molecular mechanism. Food Chem 2021; 358:129853. [PMID: 33933970 DOI: 10.1016/j.foodchem.2021.129853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 01/27/2023]
Abstract
The interaction between chitooligosaccharides (COS2-6) and bovine serum albumin (BSA) is worthy of investigation, which provides support for improving the physical properties (gelling, foaming, and emulsifying) of food proteins via COS addition and in vivo research on COS bioactivity. Component analysis indicated that COS2 and COS3 were enriched in the COS2-6-BSA precipitate. The fluorescence binding constant (1.73 × 103 M-1), ΔG of isothermal titration calorimetry (-6.7 kJ/mol), and the predicted ΔG of molecular docking (-10 to -5 kJ/mol) confirmed the weak interaction of COS2-6-BSA. Quartz crystal microbalance dissipation and molecular docking indicated that electrostatic and hydrophobic interactions were the main stabilization forces. Molecular docking showed that the predicted ΔG of COS2-6 to BSA decreased with the increasing degree of polymerization. This work clarified the weak and selective interaction between COS2-6 and BSA via various methods, which is useful for the food application of COS.
Collapse
Affiliation(s)
- Hui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Yanzhen Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Ling Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Qianwan Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Qi Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Li Liang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Katsuyoshi Nishinari
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China
| | - Meng Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Wuhan 430068, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
9
|
Yue L, Zheng M, Wang M, Khan IM, Wang B, Ma X, Peng C, Wang Z, Xia W. A general strategy to synthesis chitosan oligosaccharide-O-Terpenol derivatives with antibacterial properties. Carbohydr Res 2021; 503:108315. [PMID: 33865180 DOI: 10.1016/j.carres.2021.108315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023]
Abstract
The objectives of the present study are to synthesize a series of chitosan oligosaccharide-O-Terpenol (COS-O-Ter) derivatives and their implication to evaluate in vitro antibacterial activity. Herein, a general strategy is described for preparing COS-O-Ter derivatives, including substitution and deprotection reactions. The structures of COS-O-Ter derivatives were characterized by FT-IR, 1H NMR, XRD, TGA, and elemental analysis. COS-O-Ter derivatives revealed the excellent solubility and in vitro antibacterial activity. Moreover, their antibacterial activities were more sensitive to Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) indicating the effective potential application of COS-O-Ter derivatives as natural antibacterial agents. The aforementioned study opens a pave to expand the application scope of COS and its derivatives in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| |
Collapse
|
10
|
N-acetyl-chitooligosaccharide attenuates inflammatory responses by suppression of NF-κB signaling, MAPK and NLRP3 inflammasome in macrophages. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility. MEMBRANES 2021; 11:membranes11010037. [PMID: 33406798 PMCID: PMC7824666 DOI: 10.3390/membranes11010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications.
Collapse
|
12
|
Bi R, Yue L, Niazi S, Khan IM, Sun D, Wang B, Wang Z, Jiang Q, Xia W. Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydr Polym 2021; 251:117099. [DOI: 10.1016/j.carbpol.2020.117099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
|
13
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Yano S. Statistical optimization of halophilic chitosanase and protease production by Bacillus cereus HMRSC30 isolated from Terasi simultaneous with chitin extraction from shrimp shell waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Necol MR, Vela Gurovic MS, Ruiz Díaz S, Silbestri GF. Binding silver to chitooligosaccharides through N-heterocyclic carbenes: Synthesis and antimicrobial activity. Carbohydr Res 2019; 471:6-12. [DOI: 10.1016/j.carres.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
|
15
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
16
|
Long T, Yu ZJ, Wang J, Liu J, He BS. Orally Administered Chitooligosaccharides Modulate Colon Microbiota in Normal and Colitis Mice. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.291.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Embaby AM, Melika RR, Hussein A, El-Kamel AH, S.Marey H. Biosynthesis of chitosan-Oligosaccharides (COS) by non-aflatoxigenic Aspergillus sp. strain EGY1 DSM 101520: A robust biotechnological approach. Process Biochem 2018; 64:16-30. [DOI: 10.1016/j.procbio.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydr Polym 2017; 176:356-364. [DOI: 10.1016/j.carbpol.2017.07.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022]
|
19
|
Wu W, Wei W, Lu M, Zhu X, Liu N, Niu Y, Sun T, Li Y, Yu J. Neuroprotective Effect of Chitosan Oligosaccharide on Hypoxic-Ischemic Brain Damage in Neonatal Rats. Neurochem Res 2017; 42:3186-3198. [PMID: 28755288 DOI: 10.1007/s11064-017-2356-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is one of the leading causes of neonatal mortality and permanent neurological disability worldwide and the effective treatment strategies are not yet available. It has been demonstrated that Chitosan oligosaccharide (COS) exerts protective effect in vitro ischemic brain injury. However, no information is available on possible effects of COS on neonatal HIBD. To investigate the hypothesis of the potential neuroprotective effect of COS on the brain injury due to HIBD, 7-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37 °C. After COS treatment, the cerebral damage was measured by behavior tasks, 2,3,5-triphenyltetrazolium chloride(TTC), Hematoxyline-Eosin(HE), Nissl and Fluoro-Jade B(FJB)staining. In addition, the oxidative stress were assayed with ipsilateral hemisphere homogenates. Immunofluorescence staining were used to examine the activation of the astrocyte and microglia. Expression of inflammatory-related proteins were analyzed by western-blot analysis. In this study we found that administration of COS ameliorated early neurological reflex behavior, significantly reduce brain infarct volume and attenuated neuronal cell injury and degeneration. Furthermore, COS markedly decreased the level of MDA, lactic acid and increased SOD, GSH-Px and T-AOC. COS attenuated hypoxic-ischemic induced up-regulation of expressions of interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), meanwhile it dramatically increased the interleukin-10 (IL-10). These results suggest that COS exerts neuroprotection on hypoxic-ischemic brain damage in neonatal rats, it implies COS might be a potential therapeutic for the treatment of HIBD.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Min Lu
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Xiaoyun Zhu
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|
20
|
Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Mar Drugs 2017; 15:md15020051. [PMID: 28241416 PMCID: PMC5334631 DOI: 10.3390/md15020051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na⁺, NH₄⁺, K⁺, Mg2+, Ca2+, and chloride, acetate and lactate anions was developed. Detection limits were 0.01-0.05 μM for cations and 0.5-0.6 μM for anions. The linear range was 0.001-0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate.
Collapse
|
21
|
Tong Q, Yang Y, Xiong Z, Li Z, Yuan W, Wang T. Chitooligosaccharides Downregulate TLR4/NF-κB/COX-2 Signaling Cascade in Dextran Sulfate Sodium-treated Mice: A Potential Mechanism for the Anti-colitis Effect. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.720.728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|