1
|
Brough Z, Zhao Z, Duong van Hoa F. From bottom-up to cell surface proteomics: detergents or no detergents, that is the question. Biochem Soc Trans 2024; 52:1253-1263. [PMID: 38666604 PMCID: PMC11346462 DOI: 10.1042/bst20231020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Measuring the expression levels of membrane proteins (MPs) is crucial for understanding cell differentiation and tissue specificity, defining disease characteristics, identifying biomarkers, and developing therapeutics. While bottom-up proteomics addresses the need for accurately surveying the membrane proteome, the lower abundance and hydrophobic nature of MPs pose challenges in sample preparation. As MPs normally reside in the lipid bilayer, conventional extraction methods rely on detergents, introducing here a paradox - detergents prevent aggregation and facilitate protein processing, but themselves become contaminants that interfere with downstream analytical applications. Various detergent removal methods exist to mitigate this issue, including filter-aided sample preparation, SP3, suspension trapping, and membrane mimetics. This review delves into the fundamentals of each strategy, applications, merits, and limitations, providing insights into their effectiveness in MP research.
Collapse
Affiliation(s)
- Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
2
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
3
|
de Jong E, Kocer A. Current Methods for Identifying Plasma Membrane Proteins as Cancer Biomarkers. MEMBRANES 2023; 13:409. [PMID: 37103836 PMCID: PMC10142483 DOI: 10.3390/membranes13040409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane proteins are a special class of biomolecules present on the cellular membrane. They provide the transport of ions, small molecules, and water in response to internal and external signals, define a cell's immunological identity, and facilitate intra- and intercellular communication. Since they are vital to almost all cellular functions, their mutants, or aberrant expression is linked to many diseases, including cancer, where they are a part of cancer cell-specific molecular signatures and phenotypes. In addition, their surface-exposed domains make them exciting biomarkers for targeting by imaging agents and drugs. This review looks at the challenges in identifying cancer-related cell membrane proteins and the current methodologies that solve most of the challenges. We classified the methodologies as biased, i.e., search cells for the presence of already known membrane proteins. Second, we discuss the unbiased methods that can identify proteins without prior knowledge of what they are. Finally, we discuss the potential impact of membrane proteins on the early detection and treatment of cancer.
Collapse
|
4
|
Jorge S, Capelo JL, LaFramboise W, Satturwar S, Korentzelos D, Bastacky S, Quiroga-Garza G, Dhir R, Wiśniewski JR, Lodeiro C, Santos HM. Absolute quantitative proteomics using the total protein approach to identify novel clinical immunohistochemical markers in renal neoplasms. BMC Med 2021; 19:196. [PMID: 34482820 PMCID: PMC8420025 DOI: 10.1186/s12916-021-02071-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal neoplasms encompass a variety of malignant and benign tumors, including many with shared characteristics. The diagnosis of these renal neoplasms remains challenging with currently available tools. In this work, we demonstrate the total protein approach (TPA) based on high-resolution mass spectrometry (MS) as a tool to improve the accuracy of renal neoplasm diagnosis. METHODS Frozen tissue biopsies of human renal tissues [clear cell renal cell carcinoma (n = 7), papillary renal cell carcinoma (n = 5), chromophobe renal cell carcinoma (n = 5), and renal oncocytoma (n = 5)] were collected for proteome analysis. Normal adjacent renal tissue (NAT, n = 5) was used as a control. Proteins were extracted and digested using trypsin, and the digested proteomes were analyzed by label-free high-resolution MS (nanoLC-ESI-HR-MS/MS). Quantitative analysis was performed by comparison between protein abundances of tumors and NAT specimens, and the label-free and standard-free TPA was used to obtain absolute protein concentrations. RESULTS A total of 205 differentially expressed proteins with the potential to distinguish the renal neoplasms were found. Of these proteins, a TPA-based panel of 24, including known and new biomarkers, was selected as the best candidates to differentiate the neoplasms. As proof of concept, the diagnostic potential of PLIN2, TUBB3, LAMP1, and HK1 was validated using semi-quantitative immunohistochemistry with a total of 128 samples assessed on tissue micro-arrays. CONCLUSIONS We demonstrate the utility of combining high-resolution MS and the TPA as potential new diagnostic tool in the pathology of renal neoplasms. A similar TPA approach may be implemented in any cancer study with solid biopsies.
Collapse
Affiliation(s)
- Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - William LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Swati Satturwar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dimitrios Korentzelos
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal.
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Senturk A, Sahin AT, Armutlu A, Kiremit MC, Acar O, Erdem S, Bagbudar S, Esen T, Tuncbag N, Ozlu N. Quantitative Proteomics Identifies Secreted Diagnostic Biomarkers as well as Tumor-Dependent Prognostic Targets for Clear Cell Renal Cell Carcinoma. Mol Cancer Res 2021; 19:1322-1337. [PMID: 33975903 DOI: 10.1158/1541-7786.mcr-21-0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common and most malignant urological cancer, with a 5-year survival rate of 10% for patients with advanced tumors. Here, we identified 10,160 unique proteins by in-depth quantitative proteomics, of which 955 proteins were significantly regulated between tumor and normal adjacent tissues. We verified four putatively secreted biomarker candidates, namely, PLOD2, FERMT3, SPARC, and SIRPα, as highly expressed proteins that are not affected by intratumor and intertumor heterogeneity. Moreover, SPARC displayed a significant increase in urine samples of patients with ccRCC, making it a promising marker for the detection of the disease in body fluids. Furthermore, based on molecular expression profiles, we propose a biomarker panel for the robust classification of ccRCC tumors into two main clusters, which significantly differed in patient outcome with an almost three times higher risk of death for cluster 1 tumors compared with cluster 2 tumors. Moreover, among the most significant clustering proteins, 13 were targets of repurposed inhibitory FDA-approved drugs. Our rigorous proteomics approach identified promising diagnostic and tumor-discriminative biomarker candidates which can serve as therapeutic targets for the treatment of ccRCC. IMPLICATIONS: Our in-depth quantitative proteomics analysis of ccRCC tissues identifies the putatively secreted protein SPARC as a promising urine biomarker and reveals two molecular tumor phenotypes.
Collapse
Affiliation(s)
- Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse T Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Murat C Kiremit
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Omer Acar
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Selcuk Erdem
- Department of Urology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sidar Bagbudar
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tarik Esen
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey. .,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| |
Collapse
|
6
|
Clark DJ, Zhang H. Proteomic approaches for characterizing renal cell carcinoma. Clin Proteomics 2020; 17:28. [PMID: 32742246 PMCID: PMC7391522 DOI: 10.1186/s12014-020-09291-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma is among the top 15 most commonly diagnosed cancers worldwide, comprising multiple sub-histologies with distinct genomic, proteomic, and clinicopathological features. Proteomic methodologies enable the detection and quantitation of protein profiles associated with the disease state and have been explored to delineate the dysregulated cellular processes associated with renal cell carcinoma. In this review we highlight the reports that employed proteomic technologies to characterize tissue, blood, and urine samples obtained from renal cell carcinoma patients. We describe the proteomic approaches utilized and relate the results of studies in the larger context of renal cell carcinoma biology. Moreover, we discuss some unmet clinical needs and how emerging proteomic approaches can seek to address them. There has been significant progress to characterize the molecular features of renal cell carcinoma; however, despite the large-scale studies that have characterized the genomic and transcriptomic profiles, curative treatments are still elusive. Proteomics facilitates a direct evaluation of the functional modules that drive pathobiology, and the resulting protein profiles would have applications in diagnostics, patient stratification, and identification of novel therapeutic interventions.
Collapse
Affiliation(s)
- David J. Clark
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231 USA
| |
Collapse
|
7
|
Urinary Extracellular Vesicles and Salt-Losing Tubulopathies: A Proteomic Approach. Proteomes 2020; 8:proteomes8020009. [PMID: 32397528 PMCID: PMC7355747 DOI: 10.3390/proteomes8020009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Renal tubular cells release urinary extracellular vesicles (uEV) that are considered a promising source of molecular markers for renal dysfunction and injury. We investigated uEV proteomes of patients with hereditary salt-losing tubulopathies (SLTs), focusing on those caused by Gitelman and Bartter (BS) syndromes, to provide potential markers for differential diagnosis. Second morning urine was collected from patients with genetically proven SLTs and uEV were isolated by the ultracentrifugation-based protocol. The uEV proteome was run through a diagonal bidimensional electrophoresis (16BAC/SDS-PAGE), to improve hydrophobic protein resolution. Sixteen differential spots from the proteome of two variants (BS2 and BS3) were analysed by nLC-ESI-MS/MS after in-gel tryptic digestion. A total of 167 protein species were identified from 7 BS2 spots and 9 BS3 spot. Most of these proteins were membrane-associated proteins, in particular transmembrane proteins, and were related to typical renal functions. The differential content of some uEV was then validated by immunoblotting. Our work suggests that uEV proteomics represents a promising strategy for the identification of differential SLT proteins. This could play a role in understanding the pathophysiological disease mechanisms and may support the recognition of different syndromes.
Collapse
|
8
|
Raimondo F, Chinello C, Stella M, Santorelli L, Magni F, Pitto M. Effects of Hematuria on the Proteomic Profile of Urinary Extracellular Vesicles: Technical Challenges. J Proteome Res 2018; 17:2572-2580. [DOI: 10.1021/acs.jproteome.7b00763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Raimondo
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Clizia Chinello
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Martina Stella
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Lucia Santorelli
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Fulvio Magni
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Marina Pitto
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| |
Collapse
|
9
|
Severi L, Losi L, Fonda S, Taddia L, Gozzi G, Marverti G, Magni F, Chinello C, Stella M, Sheouli J, Braicu EI, Genovese F, Lauriola A, Marraccini C, Gualandi A, D'Arca D, Ferrari S, Costi MP. Proteomic and Bioinformatic Studies for the Characterization of Response to Pemetrexed in Platinum Drug Resistant Ovarian Cancer. Front Pharmacol 2018; 9:454. [PMID: 29867465 PMCID: PMC5952181 DOI: 10.3389/fphar.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Collapse
Affiliation(s)
- Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaia Gozzi
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Jalid Sheouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Gualandi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Chinello C, Stella M, Piga I, Smith AJ, Bovo G, Varallo M, Ivanova M, Denti V, Grasso M, Grasso A, Del Puppo M, Zaravinos A, Magni F. Proteomics of liquid biopsies: Depicting RCC infiltration into the renal vein by MS analysis of urine and plasma. J Proteomics 2018; 191:29-37. [PMID: 29689304 DOI: 10.1016/j.jprot.2018.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 01/12/2023]
Abstract
Liquid biopsies, as blood and urine, could offer an invaluable, easily accessible source of biomarkers, and evidences for elucidating the pathological processes. Only few studies integrated the proteomes driven by more than one biofluid. Furthermore, it is not clear which biofluid better mirrors the alterations triggered by disease. Venous infiltrating RCC(Renal Cell Carcinoma) could represent an advantageous model for exploring this aspect. Herein, we investigate how blood and urine "proteomically" reflect the changes occurring during RCC infiltration into renal vein(RV) by label-free nLC-ESI-MS/MS. We found 574 and 58 differentially expressed proteins(DEPs) in response to vascular involvement. To the augment of vascular involvement, the abundance of only three proteins in urine(UROM,RALA,CNDP1) and two in plasma(APOA1,K2C1) diminished while increased for twenty-six urinary proteins. 80 proteins were found both in urine and plasma, among which twenty-eight were DEPs. A huge overlap between the two biofluids was highlighted, as expected, being urine the filtrate of blood. However, this consistency decreases when RV-occlusion occurs suggesting alternative protein releases, and a loss of kidney architecture. Moreover, several proteomic and functional signatures were biofluid-specific. In conclusion, the complementarity between the specimens allowed to achieve a deeper level of molecular complexity of the RCC venous infiltration. SIGNIFICANCE: Although plasma and urine are strongly interconnected, only few proteomic studies investigated the complementarity of these fluids as bio-sources of information. Moreover, none of them was focused to their analysis and comparison in the context of vascular infiltration of renal cancer. Herein, new insights were gained regarding the impact into urinary and plasma proteome of the changes triggered by the ccRCC invasion into vascular system and renal vein. Furthermore, the integration of the information driven by the two liquid biopsies permits to unravel biological processes otherwise lost.
Collapse
Affiliation(s)
- Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy.
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | - Andrew James Smith
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | - Giorgio Bovo
- Pathology Unit, Vimercate Hospital, Vimercate, Italy
| | | | - Mariia Ivanova
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | | | | | - Marina Del Puppo
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Clinical Proteomics and Metabolomics Unit, Vedano al Lambro, Italy
| |
Collapse
|
11
|
Tubaon RM, Haddad PR, Quirino JP. Sample Clean‐up Strategies for ESI Mass Spectrometry Applications in Bottom‐up Proteomics: Trends from 2012 to 2016. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ria Marni Tubaon
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Paul R. Haddad
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
12
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|
13
|
Sun X, Zhang H, Luo L, Zhong K, Ma Y, Fan L, Fu D, Wan L. Comparative proteomic profiling identifies potential prognostic factors for human clear cell renal cell carcinoma. Oncol Rep 2016; 36:3131-3138. [PMID: 27748938 PMCID: PMC5112614 DOI: 10.3892/or.2016.5159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
The identification of markers for disease diagnostic, prognostic, or predictive purposes will have a great effect in improving patient management. Proteomic‑based approaches for biomarker discovery are promising strategies used in cancer research. In this study, we performed quantitative proteomic analysis on four patients including clear cell renal cell carcinoma (ccRCC) and paired adjacent non‑cancerous renal tissues using label‑free quantitative proteomics and liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) to identify differentially expressed proteins. Among 3,061 identified non‑redundant proteins, we found that 210 proteins were differentially expressed (83 overexpressed and 127 underexpressed) in ccRCC tissue when compared with normal kidney tissues. Two most significantly dysregulated proteins (PCK1 and SNRPF) were chosen to be confirmed by western blotting. Pathway analysis of 210 differentially expressed proteins showed that dysregulated proteins are related to many cancer‑related biological processes such as oxidative phosphorylation, glycolysis and amino acid synthetic pathways. Online survival analysis indicated the prognostic value of these dysregulated proteins. In conclusion, we identified some potential diagnostic biomarkers for ccRCC and an in‑depth understanding of their involved biological pathways may help pave the way to discover new therapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongwei Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai Jiao Tong University School of Medicine/Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | - Longhua Luo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kezhao Zhong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yushui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Linlin Fan
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lijuan Wan
- The Second Department of Internal Medicine, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
14
|
Shah AD, Inder KL, Shah AK, Cristino AS, McKie AB, Gabra H, Davis MJ, Hill MM. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer. J Proteome Res 2016; 15:3451-3462. [PMID: 27384440 DOI: 10.1021/acs.jproteome.5b01035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.
Collapse
Affiliation(s)
- Anup D Shah
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Kerry L Inder
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Arthur B McKie
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London Hammersmith Campus , London W12 0NN, United Kingdom
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London Hammersmith Campus , London W12 0NN, United Kingdom
| | - Melissa J Davis
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research , 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland , Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
15
|
Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 2016; 153:8-20. [PMID: 27530594 DOI: 10.1016/j.jprot.2016.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins. SIGNIFICANCE Integral membrane proteins (IMPs) are attractive therapeutic targets mostly due to their many important functions. However, our knowledge of the membrane proteome is severely limited to effectively exploit their potential. This is mostly due to the lack of appropriate techniques or methods compatible with the typical features of IMPs, namely hydrophobicity, low expression and lack of trypsin cleavage sites. This review summarizes the most recent development in membrane proteomics and outlines the most successful strategies for their large-scale analysis.
Collapse
Affiliation(s)
- O Vit
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - J Petrak
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
16
|
Zhao M, Wei W, Cheng L, Zhang Y, Wu F, He F, Xu P. Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process. J Proteome Res 2016; 15:4020-4029. [PMID: 27485413 DOI: 10.1021/acs.jproteome.6b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A membrane protein enrichment method composed of ultracentrifugation and detergent-based extraction was first developed based on MCF7 cell line. Then, in-solution digestion with detergents and eFASP (enhanced filter-aided sample preparation) with detergents were compared with the time-consuming in-gel digestion method. Among the in-solution digestion strategies, the eFASP combined with RapiGest identified 1125 membrane proteins. Similarly, the eFASP combined with sodium deoxycholate identified 1069 membrane proteins; however, the in-gel digestion characterized 1091 membrane proteins. Totally, with the five digestion methods, 1390 membrane proteins were identified with ≥1 unique peptides, among which 1345 membrane proteins contain unique peptides ≥2. This is the biggest membrane protein data set for MCF7 cell line and even breast cancer tissue samples. Interestingly, we identified 13 unique peptides belonging to 8 missing proteins (MPs). Finally, eight unique peptides were validated by synthesized peptides. Two proteins were confirmed as MPs, and another two proteins were candidate detections.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , 27 Tai-Ping Lu Road, Beijing 100850, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, Anhui, P. R. China
| |
Collapse
|
17
|
Lipecka J, Chhuon C, Bourderioux M, Bessard MA, van Endert P, Edelman A, Guerrera IC. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics 2016; 16:1852-7. [DOI: 10.1002/pmic.201600103] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Joanna Lipecka
- The CPN Proteomics Facility - 3P5; Center of Psychiatry and Neuroscience; UMR INSERM 894 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Cerina Chhuon
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Matthieu Bourderioux
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Marie-Andrée Bessard
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Centre National de la Recherche Scientifique; Unité 8253 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Centre National de la Recherche Scientifique; Unité 8253 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Aleksander Edelman
- Institut National de la Santé et de la Recherche Médicale; Unité 1151 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, PPN-3P5; Structure Fédérative de Recherche SFR Necker US24; Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Paris France
| |
Collapse
|