1
|
Dahmani H, Salhi O, Nabi M, Mokrani D, Kaaboub EA, Ouchetati I, Ouchene N, Touhami NAK. Spatiotemporal Dynamics and Epidemiology of Cutaneous Leishmaniasis in Algeria (2011-2020): One Health Insights for Targeted Interventions. Acta Parasitol 2025; 70:109. [PMID: 40377763 DOI: 10.1007/s11686-025-01048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
PURPOSE The epidemiology of human cutaneous leishmaniasis, a parasitic disease transmitted by sandflies, varies across regions, particularly affecting tropical and subtropical areas, with significant seasonal and demographic fluctuations. This study explores the temporal, seasonal, demographic, and spatial distribution of cutaneous leishmaniasis (CL) in the wilaya of Medea, Algeria, from 2011 to 2020. METHODS The epidemiological data for this retrospective study were provided by the Prevention Service of the Directorate of Public Health (DSP) in Medea. RESULTS In 2011, 248 cases were reported (28.62/10⁵ inhabitants). A significant decline occurred in 2012, with 123 cases (13.92/10⁵, p < 0.05), reaching a minimum of 61 cases in 2015 (6.50/10⁵, p < 0.01). Cases fluctuated moderately from 2016 to 2019 (p < 0.05), but 2020 saw a sharp rise to 515 cases (49.74/10⁵, p < 0.001), indicating a major epidemiological shift. Seasonal analysis revealed significant variations (p < 0.001), with winter months showing the highest incidence, particularly December (433 cases) and January (269 cases). In contrast, summer months (June: 47 cases, July: 38 cases, August: 30 cases) had the lowest numbers. Demographically, children aged under 10 years old were most affected (721 cases, p < 0.001). Men (875 cases) were more affected than women (657 cases, p < 0.05). Geographically, southern municipalities had the highest incidence (up to 31%, p < 0.001), while northern and eastern regions showed much lower rates. Some areas, like Chabounia, saw a dramatic increase in 2020 (80%, p < 0.001), while Chellalat El-Adhaoura showed a steady decline. CONCLUSION CL in the Medea region shows significant variations over time, seasons, and geography, mainly affecting children, men, and southern areas. These findings highlight the need for stronger surveillance, targeted actions for vulnerable groups, and increased preventive measures, especially in winter, to better control the epidemic through a One Health approach.
Collapse
Affiliation(s)
- Hichem Dahmani
- Institute of Veterinary Sciences, University of Blida 1, BP 270, Blida, 09000, Algeria
| | - Omar Salhi
- Institute of Veterinary Sciences, University of Blida 1, BP 270, Blida, 09000, Algeria
| | - Mustapha Nabi
- Institute of Veterinary Sciences, University of Blida 1, BP 270, Blida, 09000, Algeria
| | - Djamel Mokrani
- Faculty of Sciences, Department of Agronomy, University of Boumerdes, Boumerdes, 35000, Algeria
- Laboratory of Bioinformatics, Applied Microbiology and Biomolecules, M'Hamed Bougara, University of Boumerdes, Boumerdes, 35000, Algeria
| | | | - Imane Ouchetati
- Laboratory of Physical Chemistry and Biology of Materials, Department of Natural Sciences, Higher Normal School of Technological Education of Skikda, City of Boucetta Brothers, 21300, Azzaba, Algeria
| | - Nassim Ouchene
- Institute of Veterinary Sciences, University of Blida 1, BP 270, Blida, 09000, Algeria.
- Laboratory of Physico-Chemistry of Materials and Interfaces Applied to the Environment, University Blida 1, Blida, 09000, Algeria.
| | - Nadjet Amina Khelifi Touhami
- Institute of Veterinary Sciences, University of Blida 1, BP 270, Blida, 09000, Algeria
- Laboratory of Physico-Chemistry of Materials and Interfaces Applied to the Environment, University Blida 1, Blida, 09000, Algeria
| |
Collapse
|
2
|
Bhusal CK, Beniwal P, Singh S, Kaur D, Kaur U, Kaur S, Sehgal R. Possibility of re-purposing antifungal drugs posaconazole & isavuconazole against promastigote form of Leishmania major. Indian J Med Res 2024; 160:466-478. [PMID: 39737513 DOI: 10.25259/ijmr_569_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/30/2024] [Indexed: 01/01/2025] Open
Abstract
Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options. In this study, the Computer Aided Drug Design (CADD) approach was used to repurpose already existing drugs against Leishmania major. The enzyme lanosterol 14-alpha demethylase (CYP51), in L. major, was chosen as the drug target since it is a key enzyme involved in synthesizing ergosterol, a crucial component of the cell membrane. Methods A library of 1615 FDA-approved drugs was virtually screened and docked with modeled CYP51 at its predicted binding site. The drugs with high scores and high affinity were subjected to Molecular Dynamics (MD) simulations for 100 ns. Finally, the compounds were tested in vitro using an MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay against the promastigotes of L. major. Results Computational screening of FDA-approved drugs identified posaconazole and isavuconazole as promising candidates, as both drugs target the CYP51 enzyme in fungi. Molecular dynamics (MD) simulations demonstrated that both drugs form stable complexes with the target enzyme. In vitro studies of posaconazole and isavuconazole against promastigotes of L. major demonstrated significant efficacy, with IC50 values of 2.062±0.89 µg/ml and 1.202±0.47 µg/ml, respectively. Interpretation & conclusions The study showed that the existing FDA-approved drugs posaconazole and isavuconazole can successfully be repurposed for treating L. major by targeting the CYP51 enzyme, demonstrating significant efficacy against promastigotes.
Collapse
Affiliation(s)
- Chandra Kanta Bhusal
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Pooja Beniwal
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Sarman Singh
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
| | - Davinder Kaur
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Upninder Kaur
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Rakesh Sehgal
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
3
|
Kataria A, Srivastava A, Singh DD, Haque S, Han I, Yadav DK. Systematic computational strategies for identifying protein targets and lead discovery. RSC Med Chem 2024; 15:2254-2269. [PMID: 39026640 PMCID: PMC11253860 DOI: 10.1039/d4md00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein-ligand complexes, affinity prediction, and for designing better ligands. Herein, we provide an overview of salient components of recently reported computational drug-discovery workflows that includes algorithms, tools, and databases for protein target identification and optimized ligand selection.
Collapse
Affiliation(s)
- Arti Kataria
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Ankit Srivastava
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) Hamilton MT 59840 USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University Jazan-45142 Saudi Arabia
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 32 820 4948
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea
| |
Collapse
|
4
|
Bharadava K, Upadhyay TK, Kaushal RS, Ahmad I, Alraey Y, Siddiqui S, Saeed M. Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations. ACS OMEGA 2024; 9:12500-12514. [PMID: 38524425 PMCID: PMC10955595 DOI: 10.1021/acsomega.3c09400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.
Collapse
Affiliation(s)
- Krupanshi Bharadava
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Radhey Shyam Kaushal
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Yasser Alraey
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Service Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
5
|
Vashishtha S, Thakur S, Singh J, Adhana S, Kundu B. Evolutionarily conserved heat shock protein, HtpX, as an adjunct target against antibiotic-resistant Neisseria gonorrhoeae. J Cell Biochem 2023; 124:1516-1529. [PMID: 37566682 DOI: 10.1002/jcb.30461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
The emergence of multiple drug resistance and extreme drug resistance pathogens necessitates the continuous evaluation of the pathogenic genome to identify conserved molecular targets and their respective inhibitors. In this study, we mapped the global mutational landscape of Neisseria gonorrhoeae (an intracellular pathogen notoriously known to cause the sexually transmitted disease gonorrhoea). We identified highly variable amino acid positions in the antibiotic target genes like the penA, ponA, 23s rRNA, rpoB, gyrA, parC, mtrR and porB. Some variations are directly reported to confer resistance to the currently used front-line drugs like ceftriaxone, cefixime, azithromycin and ciprofloxacin. Further, by whole genome comparison and Shannon entropy analysis, we identified a completely conserved protein HtpX in the drug-resistant as well as susceptible isolates of N. gonorrhoeae (NgHtpX). Comparison with the only available information of Escherichia coli HtpX suggested it to be a transmembrane metalloprotease having a role in stress response. The critical zinc-binding residue of NgHtpX was mapped to E141. By applying composite high throughput screening followed by MD simulations, we identified pemirolast and thalidomide as high-energy binding ligands of NgHtpX. Following cloning and expression of the purified metal-binding domain of NgHtpX (NgHtpXd), its Zn2+ -binding (Kd = 0.4 µM) and drug-binding (pemirolast, Kd = 3.47 µM; and thalidomide, Kd = 1.04 µM) potentials were determined using in-vitro fluorescence quenching experiment. When tested on N. gonorrhoeae cultures, both the ligands imposed a dose-dependent reduction in viability. Overall, our results provide high entropy positions in the targets of presently used antibiotics, which can be further explored to understand the AMR mechanism. Additionally, HtpX and its specific inhibitors identified can be utilised effectively in managing gonococcal infections.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sujata Adhana
- Department of Biomedical Sciences, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Vashishtha S, Singh J, Kundu B. Antimicrobial‐resistant
Neisseria gonorrhoeae
can be targeted using inhibitors against evolutionary conserved
l
‐asparaginase. J Cell Biochem 2022; 123:1171-1182. [DOI: 10.1002/jcb.30271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shubham Vashishtha
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi Delhi India
| | - Jasdeep Singh
- Department of Biotechnology and Biochemical Engineering Indian Institute of Technology Delhi Delhi India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
7
|
Vimal A, Siddiqui MH, Verma A, Kumar A. Degradation product of curcumin restrain Salmonella typhimurium virulent protein L-asparaginase. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021:jcim-2021-0172. [PMID: 34860475 DOI: 10.1515/jcim-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Salmonella typhimurium is a pathogen responsible for causing a wide range of infectious diseases. The emergence of multi-drug resistance (MDR) in this microbe is a big challenge. L-asparaginase (less explored drug target) is selected as a drug target because it is actively involved in the virulence mechanism. To block this virulent enzyme, curcumin that is traditionally renowned for its medicinal properties was examined. However, its pharmacological behavior and targeting property is less understood because of its poor bioavailability. Therefore, the present work explores the antimicrobial effect of both curcumin and its degradation product against the MDR pathogen. METHODS Molecular docking studies were carried out to evaluate the inhibitory effect of curcumin and its degradation product against the L-asparaginase enzyme using Schrodinger Maestro interface tools. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile of all the test ligands was also performed. RESULTS The docking score of curcumin was -5.465 kcal/mol while its degradation product curcumin glucuronide has the lowest i.e., -6.240 kcal/mol. All the test ligands showed better or comparable docking scores with respect to control (Ciprofloxacin). Arg 142 and Asn 84 amino acid residues of L-asparaginase were found to be interacting with test ligands inside the binding pocket of the target protein. ADME/toxicology study also indicated the potency of curcumin/curcumin degradation products as a potent inhibitor. CONCLUSIONS It was found that both curcumin and its degradation products have the potential to inhibit Salmonella. This information could be valuable for futuristic drug candidate development against this pathogen and could be a potential lead for mitigation of MDR.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
8
|
Kataria A, Patel AK, Kundu B. Distinct functional properties of secretory l-asparaginase Rv1538c involved in phagosomal survival of Mycobacterium tuberculosis. Biochimie 2021; 182:1-12. [PMID: 33412160 DOI: 10.1016/j.biochi.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) stains has escalated the need for developing more efficient drugs and therapeutic strategies against tuberculosis. Here we functionally annotate a secretory mycobacterial asparaginase Rv1538c (MtA) and describe its biochemical properties. MtA primarily existed as dimer along with a minor population of multimers. Circular dichroism and fluorescence spectroscopy demonstrated a compact structure in Tris HCl buffer at pH 8.0. Under these conditions it also displayed optimum activity. It retained ∼40% activity at pH 5.5, supporting its physiological relevance in acidic phagosomal environment. MtA contravened classical Michaelis-Menten kinetics and exhibited product inhibition profile, yielding a Kcat of 869.4 s-1 and an apparent Km of 8.36 mM. We report the presence of several antigenic epitopes and a C-terminal YXXXD/E motif in MtA, hinting towards its potential to interact or influence host immune system. This was supported by our observation of morphological changes in MtA-treated human B lymphoblasts. We propose that MtA is a dual purpose enzyme used by Mtb to survive inside its host by; 1) ammonia-mediated neutralization of the phagosomal acidic pH and 2) inducing stress to primary immune cells and compromising the host immune response. Overall, this study contributes to our understanding of the biological role of mycobacterial asparaginase opening avenues for developing effective TB therapeutics.
Collapse
Affiliation(s)
- Arti Kataria
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, India, 110016
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, India, 110016
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, India, 110016.
| |
Collapse
|
9
|
|
10
|
Mudali D, Jeevanandam J, Danquah MK. Probing the characteristics and biofunctional effects of disease-affected cells and drug response via machine learning applications. Crit Rev Biotechnol 2020; 40:951-977. [PMID: 32633615 DOI: 10.1080/07388551.2020.1789062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drug-induced transformations in disease characteristics at the cellular and molecular level offers the opportunity to predict and evaluate the efficacy of pharmaceutical ingredients whilst enabling the optimal design of new and improved drugs with enhanced pharmacokinetics and pharmacodynamics. Machine learning is a promising in-silico tool used to simulate cells with specific disease properties and to determine their response toward drug uptake. Differences in the properties of normal and infected cells, including biophysical, biochemical and physiological characteristics, plays a key role in developing fundamental cellular probing platforms for machine learning applications. Cellular features can be extracted periodically from both the drug treated, infected, and normal cells via image segmentations in order to probe dynamic differences in cell behavior. Cellular segmentation can be evaluated to reflect the levels of drug effect on a distinct cell or group of cells via probability scoring. This article provides an account for the use of machine learning methods to probe differences in the biophysical, biochemical and physiological characteristics of infected cells in response to pharmacokinetics uptake of drug ingredients for application in cancer, diabetes and neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Deborah Mudali
- Department of Computer Science, University of Tennessee, Chattanooga, TN, USA
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, Miri, Malaysia
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA
| |
Collapse
|
11
|
Pereira CA, Sayé M, Reigada C, Silber AM, Labadie GR, Miranda MR, Valera-Vera E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology 2020; 147:611-633. [PMID: 32046803 PMCID: PMC10317681 DOI: 10.1017/s0031182020000207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.
Collapse
Affiliation(s)
- Claudio A. Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps – LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guillermo R. Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana R. Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
12
|
Halder AK, Dias Soeiro Cordeiro MN. Advanced in Silico Methods for the Development of Anti- Leishmaniasis and Anti-Trypanosomiasis Agents. Curr Med Chem 2020; 27:697-718. [DOI: 10.2174/0929867325666181031093702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/24/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022]
Abstract
Leishmaniasis and trypanosomiasis occur primarily in undeveloped countries and account
for millions of deaths and disability-adjusted life years. Limited therapeutic options, high toxicity of
chemotherapeutic drugs and the emergence of drug resistance associated with these diseases demand
urgent development of novel therapeutic agents for the treatment of these dreadful diseases. In the last
decades, different in silico methods have been successfully implemented for supporting the lengthy and
expensive drug discovery process. In the current review, we discuss recent advances pertaining to in
silico analyses towards lead identification, lead modification and target identification of antileishmaniasis
and anti-trypanosomiasis agents. We describe recent applications of some important in
silico approaches, such as 2D-QSAR, 3D-QSAR, pharmacophore mapping, molecular docking, and so
forth, with the aim of understanding the utility of these techniques for the design of novel therapeutic
anti-parasitic agents. This review focuses on: (a) advanced computational drug design options; (b) diverse
methodologies - e.g.: use of machine learning tools, software solutions, and web-platforms; (c)
recent applications and advances in the last five years; (d) experimental validations of in silico predictions;
(e) virtual screening tools; and (f) rationale or justification for the selection of these in silico
methods.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@ REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, Porto 4169-007, Portugal
| | | |
Collapse
|
13
|
Kataria A, Singh J, Kundu B. Identification and validation of
l
‐asparaginase as a potential metabolic target against
Mycobacterium tuberculosis. J Cell Biochem 2018; 120:143-154. [DOI: 10.1002/jcb.27169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Arti Kataria
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| | - Jasdeep Singh
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
14
|
Tiwari K, Dubey VK. Leishmania donovani asparaginase variants exhibit cytosolic localization. Int J Biol Macromol 2018; 114:35-39. [DOI: 10.1016/j.ijbiomac.2018.03.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/03/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
15
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
16
|
Oxidative Stress-Mediated Overexpression of Uracil DNA Glycosylase in Leishmania donovani Confers Tolerance against Antileishmanial Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4074357. [PMID: 29636843 PMCID: PMC5845521 DOI: 10.1155/2018/4074357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Leishmania donovani is an intracellular protozoan parasite that causes endemic tropical disease visceral leishmaniasis (VL). Present drugs used against this fatal disease are facing resistance and toxicity issues. Survival of leishmania inside the host cells depends on the parasite's capacity to cope up with highly oxidative environment. Base excision repair (BER) pathway in L. donovani remains unexplored. We studied uracil DNA glycosylase (UNG), the key enzyme involved in BER pathway, and found that the glycosylase activity of recombinant LdUNG (Leishmania donovani UNG) expressed in E. coli is in sync with the activity of the parasite lysate under different reaction conditions. Overexpression of UNG in the parasite enhances its tolerance towards various agents which produce reactive oxygen species (ROS) and shows a higher infectivity in macrophages. Surprisingly, exposure of parasite to amphotericin B and sodium antimony gluconate upregulates the expression of UNG. Further, we found that the drug resistant parasites isolated from VL patients show higher expression of UNG. Mechanisms of action of some currently used drugs include accumulation of ROS. Our findings strongly suggest that targeting LdUNG would be an attractive therapeutic strategy as well as potential measure to tackle the problem of drug resistance in the treatment of leishmaniasis.
Collapse
|
17
|
Singh S, Jha P, Singh V, Sinha K, Hussain S, Singh MK, Das P. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation. Integr Biol (Camb) 2017; 8:1040-1048. [PMID: 27723851 DOI: 10.1039/c6ib00092d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-targeted photosensitizers lack selectivity that undermines the potential use of photodynamic therapy (PDT). Herein, we report the DNA mediated assembly of a ZnSe/ZnS quantum dot (QD)-photosensitizer (PS)-Mucin 1(MUC1) aptamer conjugate for targeting the MUC1 cancer biomarker and simultaneous generation of reactive oxygen species (ROS). A photosensitizer, protoporphyrin IX (PpIX), was conjugated to a single stranded DNA and self-assembled to a complementary strand that was conjugated to a QD and harboring a MUC1 aptamer sequence. A multistep fluorescence resonance energy transfer (FRET) is shown that involves the QD, PpIX and covalently linked CF™ 633 amine dye (CF dye) to the MUC1 peptide that tracks the potency of the aptamer to attach itself with the MUC1 peptide. Since the absorption spectra of the CF dye overlap with the emission spectra of PpIX, the former acts as an acceptor to PpIX forming a second FRET pair when the dye labeled MUC1 binds to the aptamer. The binding of the QD-PpIX nanoassemblies with MUC1 through the aptamer was further confirmed by gel electrophoresis and circular dichroism studies. The selective photodamage of MUC1 expressing HeLa cervical cancer cells through ROS generation in the presence of the QD-PpIX FRET probe upon irradiation is successfully demonstrated.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Pravin Jha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Kislay Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| | - Manoj K Singh
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
18
|
Vimal A, Jha A, Kumar A. Eugenol derivatives prospectively inhibit l-asparaginase: A heady target protein of Salmonella typhimurium. Microb Pathog 2017; 114:8-16. [PMID: 29138086 DOI: 10.1016/j.micpath.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022]
Abstract
Salmonella typhimurium is the causative agent of severe human infections and mortality throughout the world. Pacing advent of new resistance mechanisms in this microorganism exists, rendering treatment of infectious disease difficult. Ciprofloxacin is no longer considered the first choice of antimicrobial agent due to the emergence of resistance. Therefore, the need for scenario is to find out novel drug target and its potential inhibitor to fight against this pathogen. The present study was undertaken to find out a novel drug target and its inhibitor for improving the current therapeutic methods for treating Salmonella infections. It is found that l-asparaginase is exploited by the pathogen for its survival benefit. Therefore, it could be targeted to fight against lethality caused by Salmonella infections. In the present in silico study, the 3-D structure of the enzyme l-asparaginase was modelled by using homology modeling technique. Thereafter, molecular docking studies and ADMET prediction to assess pharmacokinetic profiles of test ligands (eugenol and its derivative) was performed. The results show that eugenol and its derivative are capable of inhibiting the Salmonella virulent protein l-asparaginase. There were 18 ligands including ciprofloxacin (used as reference) were docked. The lowest binding energy was observed with eugenol derivative 8 i.e -5.836 kcal/mol while for ciprofloxacin was -4.661 kcal/mol. The docking of the eugenol derivative 8 with l-asparaginase revealed a strong interaction between them with two hydrogen bonds. Thr 35 and Asp 116 residues are actively participating in this interaction. The result of ADMET profiling suggests the potency of eugenol and its derivatives against Salmonellal-asparaginase-II as a compelling drug candidate. These findings provide useful information on the biological role, structure-based drug design and potent inhibitor of l-asparaginase for the development of effective therapeutic molecule against Salmonella infection.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Anubhuti Jha
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India.
| |
Collapse
|
19
|
Singh J, Khan MI, Singh Yadav SP, Srivastava A, Sinha KK, Ashish, Das P, Kundu B. L-Asparaginase of Leishmania donovani: Metabolic target and its role in Amphotericin B resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:337-349. [PMID: 28988014 PMCID: PMC5633258 DOI: 10.1016/j.ijpddr.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023]
Abstract
Emergence of Amphotericin B (AmB) resistant Leishmania donovani has posed major therapeutic challenge against the parasite. Consequently, combination therapy aimed at multiple molecular targets, based on proteome wise network analysis has been recommended. In this regard we had earlier identified and proposed L-asparaginase of Leishmania donovani (LdAI) as a crucial metabolic target. Here we report that both LdAI overexpressing axenic amastigote and promastigote forms of L. donovani survives better when challenged with AmB as compared to wild type strain. Conversely, qRT-PCR analysis showed an upregulation of LdAI in both forms upon AmB treatment. Our data demonstrates the importance of LdAI in imparting immediate protective response to the parasite upon AmB treatment. In the absence of structural and functional information, we modeled LdAI and validated its solution structure through small angle X-ray scattering (SAXS) analysis. We identified its specific inhibitors through ligand and structure-based approach and characterized their effects on enzymatic properties (Km, Vmax, Kcat) of LdAI. We show that in presence of two of the inhibitors L1 and L2, the survival of L. donovani is compromised whereas overexpression of LdAI in these cells restores viability. Taken together, our results conclusively prove that LdAI is a crucial metabolic enzyme conferring early counter measure against AmB treatment by Leishmania.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mohd Imran Khan
- National Institute of Pharmaceutical Education & Research, EPIP Complex, Hajipur, Vaishali 844102, India
| | - Shiv Pratap Singh Yadav
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kislay K Sinha
- National Institute of Pharmaceutical Education & Research, EPIP Complex, Hajipur, Vaishali 844102, India
| | - Ashish
- The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
20
|
Jha PK, Khan MI, Mishra A, Das P, Sinha KK. HAT2 mediates histone H4K4 acetylation and affects micrococcal nuclease sensitivity of chromatin in Leishmania donovani. PLoS One 2017; 12:e0177372. [PMID: 28486547 PMCID: PMC5423686 DOI: 10.1371/journal.pone.0177372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
Histone post-translational modifications (PTMs) such as acetylation and methylation are known to affect chromatin higher order structures. Primary targets of these modifications include basic residues present at N-terminus tail region of core histones. Four histone acetyltransferase (HAT) genes have been identified in trypanosomatids. HAT1, HAT3 and HAT4 of Leishmania donovani have been partially characterized. However, there is no report about HAT2 of Leishmania donovani. Lysine residues present on the N-terminal tail of Leishmania donovani histone H4 are conserved in other trypanosomatids and humans. PTMs of lysines modulate various functions at chromatin level. The four histone acetyltransferases encoded in Leishmania genome were over-expressed to analyse their functional activity. All four HATs were found actively acetylating core histones H3/H4. Similar to L. donovani HAT3 and HAT4, HAT2 was found to be a member of MYST family protein and have SAS2 type domain. Over-expression of HAT2 significantly increases acetylation of H4K4. To analyse the effect of HAT2 over-expression on chromatin accessibility, micrococcal nuclease digestion assay was performed. MNase digestion resulted in a higher proportion of the mononucleosomes and dinucleosomes in HAT2 over-expressing cells as compared to WT L. donovani cells. Acetylation of lysine-4 neutralizes the amino terminal region of histone H4. This weakens its interaction with neighbouring nucleosomes and the linker DNA. HAT2 over-expression in L. donovani resulted in highly accessible chromatin suggesting chromatin decondensation. HAT2 may have an important role to play in global regulation of transcription in L. donovani. Better understanding of these epigenetic determinants of parasite would help in designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Pravin K Jha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Mohd Imran Khan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Anshul Mishra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pradeep Das
- Molecular Biology Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - Kislay K Sinha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
21
|
Vimal A, Kumar A. The morpheein model of allosterism: a remedial step for targeting virulent l -asparaginase. Drug Discov Today 2017; 22:814-822. [DOI: 10.1016/j.drudis.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022]
|
22
|
Singh J, Srivastava A, Sharma P, Pradhan P, Kundu B. DNA intercalators as amyloid assembly modulators: mechanistic insights. RSC Adv 2017. [DOI: 10.1039/c6ra26313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA intercalators modulate amyloid assembly of proteins through specific hetero-aromatic interactions diverting them to form amorphous aggregates.
Collapse
Affiliation(s)
- Jasdeep Singh
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Pankaj Sharma
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Prashant Pradhan
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|