1
|
Coimbra JC, Martins MA, Minim LA. A simplified CFD model to describe fluid dynamics, mass transport and breakthrough curves performance in cryogel supports for chromatographic separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Hochstrasser J, Juère E, Kleitz F, Wang W, Kübel C, Tallarek U. Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. J Colloid Interface Sci 2021; 592:296-309. [PMID: 33676192 DOI: 10.1016/j.jcis.2021.02.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Although many synthetic pathways allow to fine-tune the morphology of dendritic mesoporous silica nanoparticles (DMSNs), the control of their particle size and mesopore diameter remains a challenge. Our study focuses on either increasing the mean particle size or adjusting the pore size distribution, changing only one parameter (particle or pore size) at a time. The dependence of key morphological features (porosity; pore shape and pore dimensions) on radial distance from the particle center has been investigated in detail. EXPERIMENTS Three-dimensional reconstructions of the particles obtained by scanning transmission electron microscopy (STEM) tomography were adapted as geometrical models for the quantification of intraparticle morphologies by radial porosity and chord length distribution analyses. Structural properties of the different synthesized DMSNs have been complementary characterized using TEM, SEM, nitrogen physisorption, and dynamic light scattering. FINDINGS The successful independent tuning of particle and pore sizes of the DMSNs could be confirmed by conventional analysis methods. Unique morphological features, which influence the uptake and release of guest molecules in biomedical applications, were uncovered from analyzing the STEM tomography-based reconstructions. It includes the quantification of structural hierarchy, identification of intrawall openings and pores, as well as the distinction of pore shapes (conical vs. cylindrical).
Collapse
Affiliation(s)
- Janika Hochstrasser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Estelle Juère
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Wu Wang
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Materials and Earth Sciences, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
3
|
Abstract
Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.
Collapse
Affiliation(s)
- M Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| | - C Schlumberger
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| |
Collapse
|
4
|
The potential use of a gyroid structure to represent monolithic matrices for bioseparation purposes: Fluid dynamics and mass transfer analysis via CFD. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Through-pore polymerization in polar high-performance liquid chromatography columns allowing scanning electron microscopy based imaging of the packing order. J Chromatogr A 2020; 1638:461851. [PMID: 33434813 DOI: 10.1016/j.chroma.2020.461851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
To allow an enhanced understanding of the order in packed HPLC columns, in this work a methodology for immobilizing native polar silica particles is developed based on the polymerization of a methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the interstitial pores of HPLC columns. Subsequent mechanical cutting then allows scanning electron microscopy (SEM) based imagery of cross-sections of the packed bed. In this way, the packing efficiency of home-made and commercial HPLC columns with 4.6 mm inner diameter and 150 mm length comprising the same packing material of 5 µm silica particles are compared. The methodology is developed for native silica used in e.g. hydrophilic interaction liquid chromatography (HILIC) and in normal phase LC. In order to confirm the feasibility of the developed methodology, the conventional methods for the evaluation of column, efficiency and porosity, are also employed. The obtained porosity information is compared and showed the same trend with the external porosity measurements obtained via inverse size exclusion approach, illustrating its potential application to study the micro-heterogeneity of packed HPLC columns and to guide the optimization of the packing process of HPLC columns.
Collapse
|
6
|
Gritti F. Theoretical performance of multiple size-exclusion chromatography columns connected in series. J Chromatogr A 2020; 1634:461673. [PMID: 33189963 DOI: 10.1016/j.chroma.2020.461673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
The fundamental relationships are derived for the retention, peak width, and peak capacity of non-retained polymers eluting from multiple standard size-exclusion chromatography (SEC) columns connected in series. The standard SEC columns may have different dimensions and are packed with particles having distinct average particle diameters (APDs) and average mesopore sizes (AMSs). The performances (peak capacity, local resolution power, and sensitivity) of three standard SEC columns connected in series (called a tri-SEC column) packed with bridged-ethylene-hybrid (BEH) fully porous particles (FPPs) having three different APDs (1.7, 2.5, and 3.5 μm) and AMSs (200, 450, and 900 Å, respectively) are calculated as a function of the applied flow rate and size of polystyrene standards. Irrespective of the APD and AMS, the present investigation assumes isomorphological materials relative to the mesopore space of the three different BEH particles. The advantage of a 15 cm long tri-SEC column over a single reference SEC column (APD=3.5 μm, AMS=900 Å), which generates the same back pressure and separation window as those of the tri-SEC column, is expected at flow rates larger than the optimum flow rate generating the maximum peak capacity. The calculations predict a significant relative increase of the peak capacity (from +25% to +85%), resolution of small molecules (from +75% to +225%), and of the detection limit of intermediate size (from +15% to +70%) and largest polymers (from +25 to +110%). This is explained by 1) the exclusion of the largest polymers from the internal volume of the particles having the smallest mesopores (restricted access media) and 2) the minimum dispersion along the columns packed with the smallest particle sizes in the tri-SEC column. The main benefit of multi-SEC columns is to easily adjust the desired pore size distribution by properly selecting the lengths of each individual SEC column. The user can then control the pore size distribution for any specific separation problem. A potential application is theoretically demonstrated for the fast purification of monoclonal antibodies from metabolites, host cell proteins, aggregated forms, and from virus-like particles.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| |
Collapse
|
7
|
Analysis of flow profiles and mass transfer of monolithic chromatographic columns: the geometric influence of channels and tortuosity. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Gritti F, Hochstrasser J, Svidrytski A, Hlushkou D, Tallarek U. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. J Chromatogr A 2020; 1620:460991. [DOI: 10.1016/j.chroma.2020.460991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
|
9
|
Wang W, Svidrytski A, Wang D, Villa A, Hahn H, Tallarek U, Kübel C. Quantifying Morphology and Diffusion Properties of Mesoporous Carbon From High-Fidelity 3D Reconstructions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:891-902. [PMID: 31223100 DOI: 10.1017/s1431927619014600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A reliable quantitative analysis in electron tomography, which depends on the segmentation of the three-dimensional reconstruction, is challenging because of constraints during tilt-series acquisition (missing wedge) and reconstruction artifacts introduced by reconstruction algorithms such as the Simultaneous Iterative Reconstruction Technique (SIRT) and Discrete Algebraic Reconstruction Technique (DART). We have carefully evaluated the fidelity of segmented reconstructions analyzing a disordered mesoporous carbon used as support in catalysis. Using experimental scanning transmission electron microscopy (STEM) tomography data as well as realistic phantoms, we have quantitatively analyzed the effect on the morphological description as well as on diffusion properties (based on a random-walk particle-tracking simulation) to understand the role of porosity in catalysis. The morphological description of the pore structure can be obtained reliably both using SIRT and DART reconstructions even in the presence of a limited missing wedge. However, the measured pore volume is sensitive to the threshold settings, which are difficult to define globally for SIRT reconstructions. This leads to noticeable variations of the diffusion coefficients in the case of SIRT reconstructions, whereas DART reconstructions resulted in more reliable data. In addition, the anisotropy of the determined diffusion properties was evaluated, which was significant in the presence of a limited missing wedge for SIRT and strongly reduced for DART.
Collapse
Affiliation(s)
- Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Artur Svidrytski
- Department of Chemistry,Philipps-Universität Marburg,Hans-Meerwein-Straße 4, 35032 Marburg,Germany
| | - Di Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Alberto Villa
- Dipartimento di Chimica,Università degli Studi Milano,via Golgi 19, 20133 Milano,Italy
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| | - Ulrich Tallarek
- Department of Chemistry,Philipps-Universität Marburg,Hans-Meerwein-Straße 4, 35032 Marburg,Germany
| | - Christian Kübel
- Institute of Nanotechnology, Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,Germany
| |
Collapse
|
10
|
Svidrytski A, Hlushkou D, Tallarek U. Relationship between bed heterogeneity, chord length distribution, and longitudinal dispersion in particulate beds. J Chromatogr A 2019; 1600:167-173. [DOI: 10.1016/j.chroma.2019.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
|
11
|
Haas CP, Tallarek U. Kinetics Studies on a Multicomponent Knoevenagel-Michael Domino Reaction by an Automated Flow Reactor. ChemistryOpen 2019; 8:606-614. [PMID: 31110932 PMCID: PMC6511915 DOI: 10.1002/open.201900124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
The optimization of complex chemical reaction systems is often a troublesome and time‐consuming process. The application of modern technologies, including automated reactors and analytics, opens the avenue for generating large data sets on chemical reaction processes in a short period of time. In this work, an automated flow reactor is used to present detailed kinetics and mechanistic studies about an amine‐catalyzed Knoevenagel−Michael domino reaction to yield tetrahydrochromene derivatives. High‐performance monoliths as catalyst supports and online coupled HPLC analysis allow for time‐efficient data generation. We show that the two‐step multicomponent domino reaction does not follow the kinetics of consecutive reaction steps proceeding independently from each other. Instead, the starting materials of both individual reactions compete for the active sites on the heterogeneous catalyst, which lowers the rate constants of both steps. This knowledge was used to implement a more efficient experimental setup which increased the turnover numbers of the catalyst, without adjusting common reaction parameters like temperature, reaction time, and concentrations.
Collapse
Affiliation(s)
- Christian P Haas
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| | - Ulrich Tallarek
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| |
Collapse
|
12
|
Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 2019; 3:438-451. [PMID: 31123323 PMCID: PMC6556143 DOI: 10.1038/s41551-019-0356-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
The performance of current microfluidic methods for exosome detection is constrained by boundary conditions, as well as fundamental limits to microscale mass transfer and interfacial exosome binding. Here, we show that a microfluidic chip designed with self-assembled three-dimensional herringbone nanopatterns can detect low levels of tumour-associated exosomes in plasma (10 exosomes μl-1, or approximately 200 vesicles per 20 μl of spiked sample) that would otherwise be undetectable by standard microfluidic systems for biosensing. The nanopatterns promote microscale mass transfer, increase surface area and probe density to enhance the efficiency and speed of exosome binding, and permit drainage of the boundary fluid to reduce near-surface hydrodynamic resistance, thus promoting particle-surface interactions for exosome binding. We used the device for the detection-in 2 μl plasma samples from 20 ovarian cancer patients and 10 age-matched controls-of exosome subpopulations expressing CD24, epithelial cell adhesion molecule and folate receptor alpha proteins, and suggest exosomal folate receptor alpha as a potential biomarker for early detection and progression monitoring of ovarian cancer. The nanolithography-free nanopatterned device should facilitate the use of liquid biopsies for cancer diagnosis.
Collapse
|
13
|
Hlushkou D, Tallarek U. Analysis of microstructure–effective diffusivity relationships for the interparticle pore space in physically reconstructed packed beds. J Chromatogr A 2018; 1581-1582:173-179. [DOI: 10.1016/j.chroma.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
|
14
|
Axial heterogeneities in capillary ultrahigh pressure liquid chromatography columns: Chromatographic and bed morphological characterization. J Chromatogr A 2018; 1569:44-52. [DOI: 10.1016/j.chroma.2018.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022]
|
15
|
Svidrytski A, Rathi A, Hlushkou D, Ford DM, Monson PA, Tallarek U. Morphology of Fluids Confined in Physically Reconstructed Mesoporous Silica: Experiment and Mean Field Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9936-9945. [PMID: 30070853 DOI: 10.1021/acs.langmuir.8b01971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional physical reconstruction of the random mesopore network in a hierarchically structured, macroporous-mesoporous silica monolith via electron tomography has been used to generate a lattice model of amorphous, mesoporous silica. This geometrical model has subsequently been employed in mean field density functional theory (MFDFT) calculations of adsorption and desorption. Comparison of the results with experimental sorption isotherms for nitrogen at 77 K shows a good qualitative agreement, with both experiment and theory producing isotherms characterized by type H2 hysteresis. In addition to the isotherms, MFDFT provides the three-dimensional density distribution for the fluid in the porous material for each state studied. We use this information to map the phase distribution in the mesopore network in the hysteresis region. Phase distributions on the desorption boundary curve are compared to those on the adsorption boundary curve for both fixed pressure and fixed density, revealing insights into the relationship between phase distribution and hysteresis.
Collapse
Affiliation(s)
- Artur Svidrytski
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - Ashutosh Rathi
- Department of Chemical Engineering , University of Massachusetts , Amherst , Massachusetts 01003-9303 , United States
| | - Dzmitry Hlushkou
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| | - David M Ford
- Department of Chemical Engineering , University of Arkansas , Fayetteville , Arkansas 72701-1201 , United States
| | - Peter A Monson
- Department of Chemical Engineering , University of Massachusetts , Amherst , Massachusetts 01003-9303 , United States
| | - Ulrich Tallarek
- Department of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| |
Collapse
|
16
|
Reich SJ, Svidrytski A, Hlushkou D, Stoeckel D, Kübel C, Höltzel A, Tallarek U. Hindrance Factor Expression for Diffusion in Random Mesoporous Adsorbents Obtained from Pore-Scale Simulations in Physical Reconstructions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04840] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan-Johannes Reich
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Artur Svidrytski
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Dzmitry Hlushkou
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Daniela Stoeckel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Christian Kübel
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexandra Höltzel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
17
|
Kohns R, Haas CP, Höltzel A, Splith C, Enke D, Tallarek U. Hierarchical silica monoliths with submicron macropores as continuous-flow microreactors for reaction kinetic and mechanistic studies in heterogeneous catalysis. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00037a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed scheme enables academic laboratories to prepare hierarchical silica monoliths as continuous-flow microreactors for kinetic studies in heterogeneous catalysis.
Collapse
Affiliation(s)
- Richard Kohns
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Institute of Chemical Technology
| | - Christian P. Haas
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Alexandra Höltzel
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Christian Splith
- Institute of Chemical Technology
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Dirk Enke
- Institute of Chemical Technology
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Ulrich Tallarek
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| |
Collapse
|
18
|
Röding M. Shape-dependent effective diffusivity in packings of hard cubes and cuboids compared with spheres and ellipsoids. SOFT MATTER 2017; 13:8864-8870. [PMID: 29143013 DOI: 10.1039/c7sm01910f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We performed computational screening of effective diffusivity in different configurations of cubes and cuboids compared with spheres and ellipsoids. In total, more than 1500 structures are generated and screened for effective diffusivity. We studied simple cubic and face-centered cubic lattices of spheres and cubes, random configurations of cubes and spheres as a function of volume fraction and polydispersity, and finally random configurations of ellipsoids and cuboids as a function of shape. We found some interesting shape-dependent differences in behavior, elucidating the impact of shape on the targeted design of granular materials.
Collapse
Affiliation(s)
- Magnus Röding
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden.
| |
Collapse
|
19
|
Hubler MH, Gelb J, Ulm FJ. Microtexture Analysis of Gas Shale by XRM Imaging. JOURNAL OF NANOMECHANICS AND MICROMECHANICS 2017. [DOI: 10.1061/(asce)nm.2153-5477.0000123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Reising AE, Schlabach S, Baranau V, Stoeckel D, Tallarek U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J Chromatogr A 2017; 1513:172-182. [DOI: 10.1016/j.chroma.2017.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
21
|
Hlushkou D, Piatrusha S, Tallarek U. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media. Phys Rev E 2017; 95:063108. [PMID: 28709263 DOI: 10.1103/physreve.95.063108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 11/07/2022]
Abstract
Solute dispersion in fluid flow results from the interaction between advection and diffusion. The relative contributions of these two mechanisms to mass transport are characterized by the reduced velocity ν, also referred to as the Péclet number. In the absence of diffusion (i.e., when the solute diffusion coefficient D_{m}=0 and ν→∞), divergence-free laminar flow of an incompressible fluid results in a zero-transverse dispersion coefficient (D_{T}=0), both in ordered and random two-dimensional porous media. We demonstrate by numerical simulations that a more realistic realization of the condition ν→∞ using D_{m}≠0 and letting the fluid flow velocity approach infinity leads to completely different results for ordered and random two-dimensional porous media. With increasing reduced velocity, D_{T} approaches an asymptotic value in ordered two-dimensional porous media but grows linearly in disordered (random) structures depending on the geometrical disorder of a structure: a higher degree of heterogeneity results in a stronger growth of D_{T} with ν. The obtained results reveal that disorder in the geometrical structure of a two-dimensional porous medium leads to a growth of D_{T} with ν even in a uniform pore-scale advection field; however, lateral diffusion is a prerequisite for this growth. By contrast, in ordered two-dimensional porous media the presence of lateral diffusion leads to a plateau for the transverse dispersion coefficient with increasing ν.
Collapse
Affiliation(s)
- Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Stanislau Piatrusha
- Laboratory of Electron Kinetics, Institute of Solid State Physics, Russian Academy of Sciences, Academician Ossipyan Strasse 2, 142432 Chernogolovka, Russia.,Laboratory of Topological Quantum Phenomena in Superconducting Systems, Moscow Institute of Physics and Technology, Institutskiy Per. 9, 141700 Dolgoprudny, Russia
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
22
|
Reising AE, Godinho JM, Jorgenson JW, Tallarek U. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns. J Chromatogr A 2017; 1504:71-82. [PMID: 28511930 DOI: 10.1016/j.chroma.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process.
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - James W Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
23
|
Müllner T, Zankel A, Höltzel A, Svec F, Tallarek U. Morphological Properties of Methacrylate-Based Polymer Monoliths: From Gel Porosity to Macroscopic Inhomogeneities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2205-2214. [PMID: 28186759 DOI: 10.1021/acs.langmuir.7b00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Shaping chemical interfaces of hard and soft matter materials into physical morphologies that guarantee excellent transport properties is of central importance for technologies relying on adsorption, separation, and reaction at the interface. Polymer monoliths with a hierarchically structured pore space, for example, are widely used in flow-driven processes, whose efficiency depends on the morphology of the support material over several length scales. Compared with alternative support structures, particularly silica monoliths, polymer monoliths yield lower efficiency, which suggests a suboptimal morphology. Based on physical reconstruction by serial block-face scanning electron microscopy we evaluate the structural features of a methacrylate-based polymer monolith from the pore scale to the column scale. The morphological data reveal a homogeneous polymer skeleton with a solute-impenetrable core-porous shell architecture and a heterogeneous macropore space that suffers from inhomogeneities at the short-range and the transcolumn scale. Although the morphology of the polymer phase is favorable to efficient mass transport, the performance of the polymer monolith is limited by severe transcolumn gradients in macroporosity and macropore size. We propose to overcome these morphological limitations by pursuing a preparation strategy that involves active rather than passive shaping of the macropore space, for example, by using silica monoliths as templating structures for polymer monolith preparation.
Collapse
Affiliation(s)
- Tibor Müllner
- Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, and Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , 100029 Beijing, China
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg , Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
24
|
Meinusch R, Ellinghaus R, Hormann K, Tallarek U, Smarsly BM. On the underestimated impact of the gelation temperature on macro- and mesoporosity in monolithic silica. Phys Chem Chem Phys 2017; 19:14821-14834. [DOI: 10.1039/c7cp01846k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Elucidating pore formation in monolithic SiO2: small variations in gelation temperature have a surprisingly strong impact on the meso- and macroporosity.
Collapse
Affiliation(s)
- Rafael Meinusch
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
- Center for Materials Research (LaMa)
| | - Rüdiger Ellinghaus
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
- Center for Materials Research (LaMa)
| | - Kristof Hormann
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Thermo Fisher Scientific
| | - Ulrich Tallarek
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
| | - Bernd M. Smarsly
- Institute of Physical Chemistry
- Justus-Liebig-Universität Giessen
- 35392 Giessen
- Germany
- Center for Materials Research (LaMa)
| |
Collapse
|
25
|
Enke D, Gläser R, Tallarek U. Sol-Gel and Porous Glass-Based Silica Monoliths with Hierarchical Pore Structure for Solid-Liquid Catalysis. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Baranau V, Tallarek U. Chemical potential and entropy in monodisperse and polydisperse hard-sphere fluids using Widom’s particle insertion method and a pore size distribution-based insertion probability. J Chem Phys 2016; 144:214503. [DOI: 10.1063/1.4953079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Vasili Baranau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|