1
|
Xie J, Xiang J, Shen Y, Shao S. Mechanistic Insights into the Tools for Intracellular Protein Delivery. CHEM & BIO ENGINEERING 2025; 2:132-155. [PMID: 40171130 PMCID: PMC11955855 DOI: 10.1021/cbe.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 04/03/2025]
Abstract
Proteins are an important therapeutic modality in modern medicine. However, their inherent inability to traverse cell membranes essentially limits their application to extracellular targets. Recent advances in intracellular protein delivery have enabled access to traditionally "undruggable" intracellular targets and paved the way to precisely modulate cellular functions. This Review provides a comprehensive examination of the key mechanisms and emerging technologies that facilitate the transport of functional proteins across cellular membranes. Delivery methods are categorized into physical, chemical, and biological approaches, each with distinct advantages and limitations. Physical methods enable direct protein entry but often pose challenges related to invasiveness and technical complexity. Chemical strategies offer customizable solutions with enhanced control over cellular targeting and uptake, yet may face issues with cytotoxicity and scalability. Biological approaches leverage naturally occurring processes to achieve efficient intracellular transport, though regulatory and production consistency remain hurdles. By highlighting recent advancements, challenges, and opportunities within each approach, this review underscores the potential of intracellular protein delivery technologies to unlock new therapeutic pathways and transform drug development paradigms.
Collapse
Affiliation(s)
- Jingwen Xie
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiajia Xiang
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Youqing Shen
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Shiqun Shao
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
2
|
Du X, Zhao M, Jiang L, Pang L, Wang J, Lv Y, Yao C, Wu R. A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser. Drug Deliv 2024; 31:2306231. [PMID: 38245895 PMCID: PMC10802807 DOI: 10.1080/10717544.2024.2306231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells. Compared with femtosecond laser, nanosecond laser has the advantage of high throughput and low costs. It also has a higher delivery efficiency than continuous wave laser. Here, we provide an extensive overview of current status of nanosecond pulsed laser induced photoporation, covering the photoporation mechanism as well as various factors that impact the delivery efficiency of photoporation. Additionally, we discuss various techniques for achieving photoporation, such as direct photoporation, nanoparticles-mediated photoporation and plasmonic substrates mediated photoporation. Among these techniques, nanoparticles-mediated photoporation is the most promising approach for potential clinical application. Studies have already been reported to safely destruct the vitreous opacities in vivo by nanosecond laser induced vapor nanobubble. Finally, we discuss the potential of nanosecond laser induced phototoporation for future clinical applications, particularly in the areas of skin and ophthalmic pathologies. We hope this review can inspire scientists to further improve nanosecond laser induced photoporation and facilitate its eventual clinical application.
Collapse
Affiliation(s)
- Xiaofan Du
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Meng Zhao
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Le Jiang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Lihui Pang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
3
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
4
|
Pfeffer ME, DiFrancesco ML, Marchesi A, Galluzzi F, Moschetta M, Rossini A, Francia S, Franz CM, Fok Y, Valotteau C, Paternò GM, Redondo Morata L, Vacca F, Mattiello S, Magni A, Maragliano L, Beverina L, Mattioli G, Lanzani G, Baldelli P, Colombo E, Benfenati F. Nanoactuator for Neuronal Optoporation. ACS NANO 2024; 18:12427-12452. [PMID: 38687909 DOI: 10.1021/acsnano.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Light-driven modulation of neuronal activity at high spatial-temporal resolution is becoming of high interest in neuroscience. In addition to optogenetics, nongenetic membrane-targeted nanomachines that alter the electrical state of the neuronal membranes are in demand. Here, we engineered and characterized a photoswitchable conjugated compound (BV-1) that spontaneously partitions into the neuronal membrane and undergoes a charge transfer upon light stimulation. The activity of primary neurons is not affected in the dark, whereas millisecond light pulses of cyan light induce a progressive decrease in membrane resistance and an increase in inward current matched to a progressive depolarization and action potential firing. We found that illumination of BV-1 induces oxidation of membrane phospholipids, which is necessary for the electrophysiological effects and is associated with decreased membrane tension and increased membrane fluidity. Time-resolved atomic force microscopy and molecular dynamics simulations performed on planar lipid bilayers revealed that the underlying mechanism is a light-driven formation of pore-like structures across the plasma membrane. Such a phenomenon decreases membrane resistance and increases permeability to monovalent cations, namely, Na+, mimicking the effects of antifungal polyenes. The same effect on membrane resistance was also observed in nonexcitable cells. When sustained light stimulations are applied, neuronal swelling and death occur. The light-controlled pore-forming properties of BV-1 allow performing "on-demand" light-induced membrane poration to rapidly shift from cell-attached to perforated whole-cell patch-clamp configuration. Administration of BV-1 to ex vivo retinal explants or in vivo primary visual cortex elicited neuronal firing in response to short trains of light stimuli, followed by activity silencing upon prolonged light stimulations. BV-1 represents a versatile molecular nanomachine whose properties can be exploited to induce either photostimulation or space-specific cell death, depending on the pattern and duration of light stimulation.
Collapse
Affiliation(s)
- Marlene E Pfeffer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | | | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Torrette di Ancona, Italy
| | - Filippo Galluzzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Via Morego 30, 16163 Genova, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Andrea Rossini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Simona Francia
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yulia Fok
- Aix-Marseille University, INSERM, DyNaMo, Turing Centre for Living Systems, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Claire Valotteau
- Aix-Marseille University, INSERM, DyNaMo, Turing Centre for Living Systems, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Giuseppe Maria Paternò
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy
| | - Lorena Redondo Morata
- Aix-Marseille University, INSERM, DyNaMo, Turing Centre for Living Systems, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Sara Mattiello
- Department of Material Science, Bicocca University, Via Roberto Cozzi 55, 20126 Milano, Italy
| | - Arianna Magni
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Beverina
- Department of Material Science, Bicocca University, Via Roberto Cozzi 55, 20126 Milano, Italy
| | - Giuseppe Mattioli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (CNR-ISM), Via Salaria km 29.300, 00015 Monterotondo (RM), Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
5
|
Illath K, Kar S, Shinde A, Ojha R, Iyer DR, Mahapatra NR, Nagai M, Santra TS. Microfluidic device-fabricated spiky nano-burflower shape gold nanomaterials facilitate large biomolecule delivery into cells using infrared light pulses. LAB ON A CHIP 2023; 23:4783-4803. [PMID: 37870396 DOI: 10.1039/d3lc00341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Photothermal nanoparticle-sensitised photoporation is an emerging approach, which is considered an efficient tool for the intracellular delivery of biomolecules. Nevertheless, using this method to achieve high transfection efficiency generally compromises cell viability and uneven distribution of nanoparticles results in non-uniform delivery. Here, we show that high aspect ratio gold nano-burflowers, synthesised in a microfluidic device, facilitate highly efficient small to very-large cargo delivery uniformly using infrared light pulses without sacrificing cell viability. By precisely controlling the flow rates of shaping reagent and reducing agent, high-density (24 numbers) sharply branched spikes (∼80 nm tip-to-tip length) of higher aspect ratios (∼6.5) with a small core diameter (∼45 nm) were synthesised. As produced gold burflower-shape nanoparticles are biocompatible, colloidally stable (large surface zeta potential value), and uniform in morphology with a higher plasmonic peak (max. 890 nm). Theoretical analysis revealed that spikes on the nanoparticles generate a higher electromagnetic field enhancement upon interaction with light pulses. It induces plasmonic nanobubbles in the vicinity of the cells, followed by pore formation on the membrane leading to diverse biomolecular delivery into cells. Our platform has been successfully implemented for uniform delivery of small to very large biomolecules, including siRNA (20-24 bp), plasmid DNA expressing green fluorescent protein (6.2 kbp), Cas-9 plasmid (9.3 kbp), and β-galactosidase enzyme (465 kDa) into diverse mammalian cells with high transfection efficiency and cell viability. For very large biomolecules such as enzymes, the best results were achieved as ∼100% transfection efficiency and ∼100% cell viability in SiHa cells. Together, our findings demonstrate that the spiky gold nano-burflower shape nanoparticles manufactured in a microfluidic system exhibited excellent plasmonic behaviour and could serve as an effective tool in manipulating cell physiology.
Collapse
Affiliation(s)
- Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Rajdeep Ojha
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Dhanya R Iyer
- Department of Biotechnology, Indian Institute of Technology Madras, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
6
|
Xie C, Kang P, Cazals J, Castelán OM, Randrianalisoa J, Qin Z. Single pulse heating of a nanoparticle array for biological applications. NANOSCALE ADVANCES 2022; 4:2090-2097. [PMID: 35530423 PMCID: PMC9063739 DOI: 10.1039/d1na00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
With the ability to convert external excitation into heat, nanomaterials play an essential role in many biomedical applications. Two modes of nanoparticle (NP) array heating, nanoscale-confined heating (NCH) and macroscale-collective heating (MCH), have been found and extensively studied. Despite this, the resulting biological response at the protein level remains elusive. In this study, we developed a computational model to systematically investigate the single-pulsed heating of the NP array and corresponding protein denaturation/activation. We found that NCH may lead to targeted protein denaturation, however, nanoparticle heating does not lead to nanoscale selective TRPV1 channel activation. The excitation duration and NP concentration are primary factors that determine a window for targeted protein denaturation, and together with heating power, we defined quantified boundaries for targeted protein denaturation. Our results boost our understandings of the NCH and MCH under realistic physical constraints and provide robust guidance to customize biomedical platforms with desired NP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Johan Cazals
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Omar Morales Castelán
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Jaona Randrianalisoa
- Institut de Thermique, Mécanique, Matériaux (ITheMM EA 7548), University of Reims Champagne-ArdenneReimsCedex 251687France
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas800 West Campbell RoadRichardsonTexas 75080USA
- Department of Surgery, University of Texas at Southwestern Medical Center5323 Harry Hines BoulevardDallasTexas 75390USA
| |
Collapse
|
7
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
8
|
Light triggered nanoscale biolistics for efficient intracellular delivery of functional macromolecules in mammalian cells. Nat Commun 2022; 13:1996. [PMID: 35422038 PMCID: PMC9010410 DOI: 10.1038/s41467-022-29713-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Biolistic intracellular delivery of functional macromolecules makes use of dense microparticles which are ballistically fired onto cells with a pressurized gun. While it has been used to transfect plant cells, its application to mammalian cells has met with limited success mainly due to high toxicity. Here we present a more refined nanotechnological approach to biolistic delivery with light-triggered self-assembled nanobombs (NBs) that consist of a photothermal core particle surrounded by smaller nanoprojectiles. Upon irradiation with pulsed laser light, fast heating of the core particle results in vapor bubble formation, which propels the nanoprojectiles through the cell membrane of nearby cells. We show successful transfection of both adherent and non-adherent cells with mRNA and pDNA, outperforming electroporation as the most used physical transfection technology by a factor of 5.5–7.6 in transfection yield. With a throughput of 104-105 cells per second, biolistic delivery with NBs offers scalable and highly efficient transfections of mammalian cells. Ballistic delivery with micro/nano-particles has been successfully used to transfect plant cells, however, has failed in mammalian cells due to toxic effects. Here, the authors report on a self-assembled nano-ballistic delivery system for the delivery of functional macromolecules and demonstrate efficient transfection of mammalian cells.
Collapse
|
9
|
Roversi K, Tabatabaei M, Desjardins-Lecavalier N, Balood M, Crosson T, Costantino S, Griffith M, Talbot S, Boutopoulos C. Nanophotonics Enable Targeted Photothermal Silencing of Nociceptor Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103364. [PMID: 35195345 DOI: 10.1002/smll.202103364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The sensory nervous and immune systems work in concert to preserve homeostasis. While this endogenous interplay protects from danger, it may drive chronic pathologies. Currently, genetic engineering of neurons remains the primary approach to interfere selectively with this potentially deleterious interplay. However, such manipulations are not feasible in a clinical setting. Here, this work reports a nanotechnology-enabled concept to silence subsets of unmodified nociceptor neurons that exploits their ability to respond to heat via the transient receptor potential vanilloid type 1 (TRPV1) channel. This strategy uses laser stimulation of antibody-coated gold nanoparticles to heat-activate TRPV1, turning this channel into a cell-specific drug-entry port. This delivery method allows transport of a charged cationic derivative of an N-type calcium channel blocker (CNCB-2) into targeted sensory fibers. CNCB-2 delivery blocks neuronal calcium currents and neuropeptides release, resulting in targeted silencing of nociceptors. Finally, this work demonstrates the ability of the approach to probe neuro-immune crosstalk by targeting cytokine-responsive nociceptors and by successfully preventing nociceptor-induced CD8+ T-cells polarization. Overall, this work constitutes the first demonstration of targeted silencing of nociceptor neuron subsets without requiring genetic modification, establishing a strategy for interfering with deleterious neuro-immune interplays.
Collapse
Affiliation(s)
- Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Maryam Tabatabaei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
| | - Nicolas Desjardins-Lecavalier
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Santiago Costantino
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Christos Boutopoulos
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
10
|
Zhao X, Shi Y, Pan T, Lu D, Xiong J, Li B, Xin H. In Situ Single-Cell Surgery and Intracellular Organelle Manipulation Via Thermoplasmonics Combined Optical Trapping. NANO LETTERS 2022; 22:402-410. [PMID: 34968073 DOI: 10.1021/acs.nanolett.1c04075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microsurgery and biopsies on individual cells in a cellular microenvironment are of great importance to better understand the fundamental cellular processes at subcellular and even single-molecular levels. However, it is still a big challenge for in situ surgery without interfering with neighboring living cells. Here, we report a thermoplasmonics combined optical trapping (TOT) technique for in situ single-cell surgery and intracellular organelle manipulation, without interfering with neighboring cells. A selective single-cell perforation was demonstrated via a localized thermoplasmonic effect, which facilitated further targeted gene delivery. Such a perforation was reversible, and the damaged membrane was capable of being repaired. Remarkably, a targeted extraction and precise manipulation of intracellular organelles were realized via the optical trapping. This TOT technique represents a new way for single-cell microsurgery, gene delivery, and intracellular organelle manipulation, and it provides a new insight for a deeper understanding of cellular processes as well as to reveal underlying causes of diseases associated with organelle malfunctions at a subcellular level.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jianyun Xiong
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
11
|
Ramon J, Xiong R, De Smedt SC, Raemdonck K, Braeckmans K. Vapor nanobubble-mediated photoporation constitutes a versatile intracellular delivery technology. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Hasanzadeh Kafshgari M, Agiotis L, Largillière I, Patskovsky S, Meunier M. Antibody-Functionalized Gold Nanostar-Mediated On-Resonance Picosecond Laser Optoporation for Targeted Delivery of RNA Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007577. [PMID: 33783106 DOI: 10.1002/smll.202007577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rapid advances of genetic and genomic technology indicate promising therapeutic potential of genetic materials for regulating abnormal gene expressions causing diseases and disorders. However, targeted intracellular delivery of RNA therapeutics still remains a major challenge hindering the clinical translation. In this study, an elaborated plasmonic optoporation approach is proposed to efficiently and selectively transfect specific cells. The site-specific optoporation is obtained by tuning the spectral range of a supercontinuum pulsed picosecond laser in order for each individual cell binding gold nanostar with their unique resonance peak to magnify the local field strength in the near-infrared region and facilitate a selective delivery of small interfering RNA, messenger RNA, and Cas9-ribonucleoprotein into human retinal pigment epithelial cells. Numerical simulations indicate that optoporation is not due to a plasma-mediated process but rather due to a highly localized temperature rise both in time (few nanoseconds) and space (few nanometers). Taking advantage of the numerical simulation and fine-tuning of the optical strategy, the perforated lipid bilayer of targeted cells undergoes a membrane recovery process, important to retain their viability. The results signify the prospects of antibody functionalized nanostar-mediated optoporation as a simple and realistic gene delivery approach for future clinical practices.
Collapse
Affiliation(s)
| | - Leonidas Agiotis
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Isabelle Largillière
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Sergiy Patskovsky
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Michel Meunier
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| |
Collapse
|
13
|
Eversole D, Subramanian K, Harrison RK, Bourgeois F, Yuksel A, Ben-Yakar A. Femtosecond Plasmonic Laser Nanosurgery (fs-PLN) mediated by molecularly targeted gold nanospheres at ultra-low pulse fluences. Sci Rep 2020; 10:12387. [PMID: 32709944 PMCID: PMC7382507 DOI: 10.1038/s41598-020-68512-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmonic Laser Nanosurgery (PLN) is a novel photomodification technique that exploits the near-field enhancement of femtosecond (fs) laser pulses in the vicinity of gold nanoparticles. While prior studies have shown the advantages of fs-PLN to modify cells, further reduction in the pulse fluence needed to initiate photomodification is crucial to facilitate deep–tissue treatments. This work presents an in-depth study of fs-PLN at ultra-low pulse fluences using 47 nm gold nanoparticles, conjugated to antibodies that target the epithelial growth factor receptor and excited off-resonance using 760 nm, 270 fs laser pulses at 80 MHz repetition rate. We find that fs-PLN can optoporate cellular membranes with pulse fluences as low as 1.3 mJ/cm2, up to two orders of magnitude lower than those used at lower repetition rates. Our results, corroborated by simulations of free-electron generation by particle photoemission and photoionization of the surrounding water, shed light on the off-resonance fs-PLN mechanism. We suggest that photo-chemical pathways likely drive cellular optoporation and cell damage at these off-resonance, low fluence, and high repetition rate fs-laser pulses, with clusters acting as local concentrators of ROS generation. We believe that the low fluence and highly localized ROS-mediated fs-PLN approach will enable targeted therapeutics and cancer treatment.
Collapse
Affiliation(s)
- Daniel Eversole
- Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Kaushik Subramanian
- Mechanical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Rick K Harrison
- Mechanical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Frederic Bourgeois
- Mechanical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Anil Yuksel
- Mechanical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Adela Ben-Yakar
- Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA. .,Mechanical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Wang L, Darviot C, Zapata-Farfan J, Patskovsky S, Trudel D, Meunier M. Designable nanoplasmonic biomarkers for direct microscopy cytopathology diagnostics. JOURNAL OF BIOPHOTONICS 2019; 12:e201900166. [PMID: 31365187 DOI: 10.1002/jbio.201900166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Direct microscopy interpretation of fine-needle biopsy cytological samples is routinely used by practicing cytopathologists. Adding possibility to identify selective and multiplexed biomarkers on the same samples and with the same microscopy technique can greatly improve diagnostic accuracy. In this article, we propose to use biomarkers based on designable plasmonic nanoparticles (NPs) with unique optical properties and excellent chemical stability that can satisfy the above-mentioned requirements. By finely controlling the size and composition of gold-silver alloy NPs and gold nanorods, the NPs plasmonic resonance properties, such as scattering efficiency and resonance peak spectral position, are adjusted in order to provide reliable identification and chromatic differentiation by conventional direct microscopy. Efficient darkfield NPs imaging is performed by using a novel circular side illumination adaptor that can be easily integrated into any microscopy setup while preserving standard cytopathology visualization method. The efficiency of the proposed technology for fast visual detection and differentiation of three spectrally distinct NP-markers is demonstrated in different working media, thus confirming the potential application in conventional cytology preparations. It is worth emphasizing that the presented technology does not interfere with standard visualization with immunohistochemical staining, but should rather be considered as a second imaging modality to confirm the diagnostics.
Collapse
Affiliation(s)
- Lu Wang
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| | - Cecile Darviot
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| | - Jennyfer Zapata-Farfan
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| | - Sergiy Patskovsky
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| | - Dominique Trudel
- Research Center of the Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec, Canada
| |
Collapse
|
15
|
Avvakumova S, Pandolfi L, Soprano E, Moretto L, Bellini M, Galbiati E, Rizzuto MA, Colombo M, Allevi R, Corsi F, Sánchez Iglesias A, Prosperi D. Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. NANOSCALE ADVANCES 2019; 1:3626-3638. [PMID: 36133537 PMCID: PMC9419579 DOI: 10.1039/c9na00241c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 06/01/2023]
Abstract
The efficient targeting of cancer cells depends on the success of obtaining the active targeting of overexpressed receptors. A very accurate design of nanoconjugates should be done via the selection of the conjugation strategy to achieve effective targeted nanoconjugates. Here, we present a detailed study of cetuximab-conjugated nonspherical gold nanocages for the active targeting of triple-negative breast cancer cells, including MDA-MB-231 and MDA-MB-468. A few different general strategies were selected for monoclonal antibody conjugation to the nanoparticle surface. By varying the bioconjugation conditions, including antibody orientation or the presence of a polymeric spacer or recombinant protein biolinker, we demonstrate the importance of a rational design of nanoconjugates. A quantitative study of gold content via ICP-AES allowed us to compare the effectiveness of cellular uptake as a function of the conjugation strategy and confirmed the active nature of nanoparticle internalization in cancer cells via epidermal growth factor receptor recognition, corroborating the importance of the rational design of nanomaterials for nanomedicine.
Collapse
Affiliation(s)
- S Avvakumova
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Pandolfi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Fondazione Policlinico San Matteo Pavia Italy
| | - E Soprano
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Moretto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Bellini
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - E Galbiati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M A Rizzuto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - R Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| | - A Sánchez Iglesias
- Bionanoplasmonics Laboratory, CICbiomaGUNE Paseo de Miramón 182 20014 Donostia-San Sebastián Spain
| | - D Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| |
Collapse
|
16
|
Schneckenburger H. Laser-assisted optoporation of cells and tissues - a mini-review. BIOMEDICAL OPTICS EXPRESS 2019; 10:2883-2888. [PMID: 31259058 PMCID: PMC6583334 DOI: 10.1364/boe.10.002883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/08/2023]
Abstract
Laser microbeam techniques are presented, which permit the introduction of molecules or small particles into living cells. Possible mechanisms - including photochemical, photothermal and opto-mechanical interactions (ablations) - are induced by continuous wave (cw) or pulsed lasers of different wavelength, power, and mode of operation. Laser-assisted optoporation permits the uptake of fluorescent dyes as well as DNA plasmids for cell transfection, and, in addition to its broad application to cultivated cells, may have some clinical potential.
Collapse
|
17
|
Cho SK, Su LJ, Mao C, Wolenski CD, Flaig TW, Park W. Multifunctional nanoclusters of NaYF 4:Yb 3+,Er 3+ upconversion nanoparticle and gold nanorod for simultaneous imaging and targeted chemotherapy of bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:784-792. [PMID: 30678969 PMCID: PMC6407122 DOI: 10.1016/j.msec.2018.12.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
This paper reports successful synthesis of multifunctional nanoclusters of upconversion nanoparticle (UCNP) and gold nanorod (AuNR) through a PEGylation process. UCNPs emit visible luminescence under near-infrared excitation, producing high-contrast images with no background fluorescence. When coupled with AuNRs, the resulting UCNP-AuNR multifunctional nanoclusters are capable of simultaneous detection and treatment of bladder cancer. These UCNP-AuNR nanoclusters are further functionalized with antibodies to epidermal growth factor receptor (EGFR) to target bladder cancer cells known to overexpress EGFRs. This paper demonstrates, for the first time, efficient targeting of bladder cancer cells with UCNP-AuNR nanoclusters. In addition to high-contrast imaging and consequently high sensitivity detection of bladder cancer cells, highly selective optoporation-assisted chemotherapy was accomplished using a dosage of chemotherapy agent significantly lower than any previous reports, within a clinically relevant incubation time window. These results are highly relevant to the eventual human application in which the nanoclusters and chemotherapy drugs will be directly instilled in bladder via urinary catheter.
Collapse
Affiliation(s)
- Suehyun K Cho
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Lih-Jen Su
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Chenchen Mao
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor D Wolenski
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Thomas W Flaig
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Ji J, Moquin A, Bertorelle F, KY Chang P, Antoine R, Luo J, McKinney RA, Maysinger D. Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology 2019; 13:285-304. [DOI: 10.1080/17435390.2018.1543468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeff Ji
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Alexandre Moquin
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Franck Bertorelle
- CNRS, Institut Lumière Matière, Université Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Philip KY Chang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Université Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Luo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - R. Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, Yao C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 2018; 25:1516-1525. [PMID: 29968512 PMCID: PMC6058615 DOI: 10.1080/10717544.2018.1480674] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades. In particular, the advanced physical approaches development and new technology are highlighted, which intends to stimulate rapid advancement of perforation techniques, develop new delivery strategies and accelerate application of these techniques in clinic.
Collapse
Affiliation(s)
- Xiaofan Du
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Jing Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Quan Zhou
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Luwei Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Sijia Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Zhenxi Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cuiping Yao
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
20
|
Doppenberg A, Meunier M, Boutopoulos C. A needle-like optofluidic probe enables targeted intracellular delivery by confining light-nanoparticle interaction on single cell. NANOSCALE 2018; 10:21871-21878. [PMID: 30457139 DOI: 10.1039/c8nr03895c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular delivery of molecular cargo is the basis for a plethora of therapeutic applications, including gene therapy and cancer treatment. A very efficient method to perform intracellular delivery is the photo-activation of nanomaterials that have been previously directed to the cell vicinity and bear releasable molecular cargo. However, potential in vivo applications of this method are limited by our ability to deliver nanomaterials and light in tissue. Here, we demonstrate intracelullar delivery using a needle-like optofluidic probe capable of penetrating soft tissue. Firstly, we used the optofluidic probe to confine an intracellular delivery mixture, composed of 100 nm gold nanoparticles (AuNP) and membrane-impermeable calcein, in the vicinity of cancer cells. Secondly, we delivered nanosecond (ns) laser pulses (wavelength: 532 nm; duration: 5 ns) using the same probe and without introducing a AuNP cells incubation step. The AuNP photo-activation caused localized and reversible disruption of the cell membrane, enabling calcein delivery into the cytoplasm. We measured 67% intracellular delivery efficacy and showed that the optofluidic probe can be used to treat cells with single-cell precision. Finally, we demonstrated targeted delivery in tissue (mouse retinal explant) ex vivo. We expect that this method can enable nanomaterial-assisted intracellular delivery applications in soft tissue (e.g. brain, retina) of small animals.
Collapse
Affiliation(s)
- Andrew Doppenberg
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
21
|
Wilson AM, Mazzaferri J, Bergeron É, Patskovsky S, Marcoux-Valiquette P, Costantino S, Sapieha P, Meunier M. In Vivo Laser-Mediated Retinal Ganglion Cell Optoporation Using K V1.1 Conjugated Gold Nanoparticles. NANO LETTERS 2018; 18:6981-6988. [PMID: 30285455 DOI: 10.1021/acs.nanolett.8b02896] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vision loss caused by retinal diseases affects hundreds of millions of individuals worldwide. The retina is a delicate central nervous system tissue stratified into layers of cells with distinct roles. Currently, there is a void in treatments that selectively target diseased retinal cells, and current therapeutic paradigms present complications associated with off-target effects. Herein, as a proof of concept, we introduce an in vivo method using a femtosecond laser to locally optoporate retinal ganglion cells (RGCs) targeted with functionalized gold nanoparticles (AuNPs). We provide evidence that AuNPs functionalized with an antibody toward the cell-surface voltage-gated K+ channel subunit KV1.1 can selectively deliver fluorescently tagged siRNAs or fluorescein isothiocyanate-dextran dye into retinal cells when irradiated with an 800 nm 100 fs laser. Importantly, neither AuNP administration nor irradiation resulted in RGC death. This system provides a novel, non-viral-based approach that has the potential to selectively target retinal cells in diseased regions while sparing healthy areas and may be harnessed in future cell-specific therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ariel M Wilson
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | - Éric Bergeron
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Sergiy Patskovsky
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Paule Marcoux-Valiquette
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | | | - Michel Meunier
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| |
Collapse
|
22
|
Rudnitzki F, Feineis S, Rahmanzadeh R, Endl E, Lutz J, Groll J, Hüttmann G. siRNA release from gold nanoparticles by nanosecond pulsed laser irradiation and analysis of the involved temperature increase. JOURNAL OF BIOPHOTONICS 2018; 11:e201700329. [PMID: 29704320 DOI: 10.1002/jbio.201700329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm-2 and with 32 mJ cm-2 for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures.
Collapse
Affiliation(s)
- Florian Rudnitzki
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Susanne Feineis
- Department and Chair of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | | | - Elmar Endl
- Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Johanna Lutz
- Department and Chair of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department and Chair of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, Würzburg, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medizinisches Laserzentrum Lübeck GmbH, Lübeck, Germany
| |
Collapse
|
23
|
Wang L, Wu J, Hu Y, Hu C, Pan Y, Yu Q, Chen H. Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery. J Mater Chem B 2018; 6:4427-4436. [PMID: 32254660 DOI: 10.1039/c8tb01026a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular delivery of exogenous macromolecules such as functional proteins, antibodies, polysaccharides and nucleic acids into living cells for biomedical applications is of great interest. Even though great efforts have been devoted to this task, universal delivery systems that provide excellent intracellular delivery performance combined with easy cell recovery are urgently needed. Magnetic iron oxide nanoparticles show promising potential for various biomedical applications because of their advantages such as high biocompatibility and cost-effectiveness. Herein, a new facile platform for macromolecular delivery was developed based on the photothermal properties of porous magnetic iron oxide nanoparticles (P-MNPs). The near-infrared radiation (NIR) absorption behavior of P-MNPs remarkably facilitates the delivery of macromolecules into cells while maintaining high cell viability. Furthermore, the assistance of polycationic polyethylenimine improves the efficiency of DNA delivery. Most importantly, the cells could be easily recovered after macromolecular delivery by trypsinization, which is of great significance for further practical application of the delivery system. The facile and cost-effective platform proposed in this work provides a new avenue for the utilization of P-MNPs in macromolecular delivery.
Collapse
Affiliation(s)
- Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
25
|
Saklayen N, Kalies S, Madrid M, Nuzzo V, Huber M, Shen W, Sinanan-Singh J, Heinemann D, Heisterkamp A, Mazur E. Analysis of poration-induced changes in cells from laser-activated plasmonic substrates. BIOMEDICAL OPTICS EXPRESS 2017; 8:4756-4771. [PMID: 29082100 PMCID: PMC5654815 DOI: 10.1364/boe.8.004756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 - 10% decrease), and cytoplasm (5 - 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications.
Collapse
Affiliation(s)
- Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Co-first authors
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-first authors
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jasmine Sinanan-Singh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Dag Heinemann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-last authors
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Co-last authors
| |
Collapse
|
26
|
Saklayen N, Huber M, Madrid M, Nuzzo V, Vulis DI, Shen W, Nelson J, McClelland AA, Heisterkamp A, Mazur E. Intracellular Delivery Using Nanosecond-Laser Excitation of Large-Area Plasmonic Substrates. ACS NANO 2017; 11:3671-3680. [PMID: 28291329 DOI: 10.1021/acsnano.6b08162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Efficiently delivering functional cargo to millions of cells on the time scale of minutes will revolutionize gene therapy, drug discovery, and high-throughput screening. Recent studies of intracellular delivery with thermoplasmonic structured surfaces show promising results but in most cases require time- or cost-intensive fabrication or lead to unreproducible surfaces. We designed and fabricated large-area (14 × 14 mm), photolithography-based, template-stripped plasmonic substrates that are nanosecond laser-activated to form transient pores in cells for cargo entry. We optimized fabrication to produce plasmonic structures that are ultrasmooth and precisely patterned over large areas. We used flow cytometry to characterize the delivery efficiency of cargos ranging in size from 0.6 to 2000 kDa to cells (up to 95% for the smallest molecule) and viability of cells (up to 98%). This technique offers a throughput of 50000 cells/min, which can be scaled up as necessary. This technique is also cost-effective as each large-area photolithography substrate can be used to deliver cargo to millions of cells, and switching to a nanosecond laser makes the setup cheaper and easier to use. The approach we present offers additional desirable features: spatial selectivity, reproducibility, minimal residual fragments, and cost-effective fabrication. This research supports the development of safer genetic and viral disease therapies as well as research tools for fundamental biological research that rely on effectively delivering molecules to millions of living cells.
Collapse
Affiliation(s)
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich , 80539 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bucharskaya A, Maslyakova G, Terentyuk G, Yakunin A, Avetisyan Y, Bibikova O, Tuchina E, Khlebtsov B, Khlebtsov N, Tuchin V. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. Int J Mol Sci 2016; 17:E1295. [PMID: 27517913 PMCID: PMC5000692 DOI: 10.3390/ijms17081295] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/24/2023] Open
Abstract
Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.
Collapse
Affiliation(s)
- Alla Bucharskaya
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
| | - Galina Maslyakova
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
| | - Georgy Terentyuk
- Research Institute for Fundamental and Clinical Uronephrology, Saratov State Medical University, n.a. V.I. Razumovsky, 410012 Saratov, Russia.
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
| | - Alexander Yakunin
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
| | - Yuri Avetisyan
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
| | - Olga Bibikova
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
- Artphotonics GmbH, 12489 Berlin, Germany.
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90014 Oulu, Finland.
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany.
| | - Elena Tuchina
- Department of Biology, Saratov National Research State University, 410012 Saratov, Russia.
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 410049 Saratov, Russia.
- Department of Nano- and Biomedical Technologies, Saratov National Research State University, 410012 Saratov, Russia.
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 410049 Saratov, Russia.
- Department of Nano- and Biomedical Technologies, Saratov National Research State University, 410012 Saratov, Russia.
| | - Valery Tuchin
- Research-Education Institute of Optics and Biophotonics, Saratov National Research State University, 410012 Saratov, Russia.
- Institute of Precision Mechanics and Control, RAS, 410028 Saratov, Russia.
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050 Tomsk, Russia.
| |
Collapse
|
28
|
Bergeron É, Patskovsky S, Rioux D, Meunier M. 3D multiplexed immunoplasmonics microscopy. NANOSCALE 2016; 8:13263-13272. [PMID: 27336475 DOI: 10.1039/c6nr01257d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.
Collapse
Affiliation(s)
- Éric Bergeron
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | | | | | | |
Collapse
|
29
|
Minai L, Zeidan A, Yeheskely-Hayon D, Yudovich S, Kviatkovsky I, Yelin D. Experimental Proof for the Role of Nonlinear Photoionization in Plasmonic Phototherapy. NANO LETTERS 2016; 16:4601-7. [PMID: 27266996 DOI: 10.1021/acs.nanolett.6b01901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Targeting individual cells within a heterogeneous tissue is a key challenge in cancer therapy, encouraging new approaches for cancer treatment that complement the shortcomings of conventional therapies. The highly localized interactions triggered by focused laser beams promise great potential for targeting single cells or small cell clusters; however, most laser-tissue interactions often involve macroscopic processes that may harm healthy nearby tissue and reduce specificity. Specific targeting of living cells using femtosecond pulses and nanoparticles has been demonstrated promising for various potential therapeutic applications including drug delivery via optoporation, drug release, and selective cell death. Here, using an intense resonant femtosecond pulse and cell-specific gold nanorods, we show that at certain irradiation parameters cell death is triggered by nonlinear plasmonic photoionization and not by thermally driven processes. The experimental results are supported by a physical model for the pulse-particle-medium interactions. A good correlation is found between the calculated total number and energy of the generated free electrons and the observed cell death, suggesting that femtosecond photoionization plays the dominant role in cell death.
Collapse
Affiliation(s)
- Limor Minai
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| | - Adel Zeidan
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| | - Daniella Yeheskely-Hayon
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| | - Shimon Yudovich
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| | - Inna Kviatkovsky
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| | - Dvir Yelin
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology , Technion City, Haifa, 3200003, Israel
| |
Collapse
|
30
|
Lachaine R, Boutopoulos C, Lajoie PY, Boulais É, Meunier M. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation. NANO LETTERS 2016; 16:3187-94. [PMID: 27048763 DOI: 10.1021/acs.nanolett.6b00562] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment. The methodology developed here thus provides a general strategy for the systematic design of nanoparticles for nanomedical applications and should be broadly applicable to bioimaging and cell nanosurgery.
Collapse
Affiliation(s)
- Rémi Lachaine
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| | - Christos Boutopoulos
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
- School of Physics and Astronomy, SUPA, University of St. Andrews , North Haugh, St. Andrews, KY16 9SS, United Kingdom
| | - Pierre-Yves Lajoie
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| | - Étienne Boulais
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
- Department of Chemistry, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal , Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
31
|
Soloperto A, Palazzolo G, Tsushima H, Chieregatti E, Vassalli M, Difato F. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool. Front Neurosci 2016; 10:101. [PMID: 27013962 PMCID: PMC4786546 DOI: 10.3389/fnins.2016.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Hanako Tsushima
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Evelina Chieregatti
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy Genoa, Italy
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
32
|
Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca²⁺ signaling in neurons. Sci Rep 2016; 6:20619. [PMID: 26857748 PMCID: PMC4746645 DOI: 10.1038/srep20619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling.
Collapse
|