1
|
Gorudko IV, Grigorieva DV, Gusakov GA, Baran LV, Reut VE, Sak EV, Baimler IV, Simakin AV, Dorokhov AS, Izmailov AY, Serov DA, Gudkov SV. Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils. Biochim Biophys Acta Gen Subj 2025; 1869:130777. [PMID: 39983791 DOI: 10.1016/j.bbagen.2025.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The influence of selenium (Se) nanoparticles in the form of rods (SeNrs) and spheres (SeSps), synthesized by laser ablation, on the structural and functional properties of human blood erythrocytes and neutrophils was studied for anticancer activity in vitro. SeNrs and SeSps do not have cytotoxicity towards neutrophils and do not cause hemolysis. The elastic modulus and resistance of erythrocytes to HOCl-induced hemolysis increased after binding of Se nanoparticles to the plasma membrane. The interaction of Se nanoparticles with neutrophils is accompanied by their actin-dependent macropinocytosis, triggering intracellular signaling processes leading to the assembly and activation of NADPH oxidase. Comparative analysis of the effects of SeNrs and SeSps on cells showed that they have similar effects. This may be due to the fact that SeNrs interact with the cell surface with their end faces, and, therefore, have the same initial contact with the plasma membrane as SeSps. However, SeSps and SeNrs showed chronic cytotoxicity after 48 h incubation, indicating the need to find ways to reduce their toxicity further. Further use of Se nanoparticles in anisotropic form in biomedical research for the development of therapeutic agents seems promising.
Collapse
Affiliation(s)
- Irina V Gorudko
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | | | - Grigory A Gusakov
- A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Kurchatova St. 7, 220045 Minsk, Belarus
| | - Lyudmila V Baran
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Veronika E Reut
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ekaterina V Sak
- Belarusian State University, Nezavisimosti Av. 4, 220030 Minsk, Belarus
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Alexey S Dorokhov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Andrey Yu Izmailov
- Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; Federal Scientific Agroengineering Center VIM, 1st Institutsky Proezd 5, 109428 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Institute, Gagarin av. 23, 603105 Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Redolfi-Bristol D, Yamamoto K, Zhu W, Mazda O, Riello P, Marin E, Pezzotti G. Mapping Selenium Nanoparticles Distribution Inside Cells through Confocal Raman Microspectroscopy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18124-18133. [PMID: 40098475 PMCID: PMC11956006 DOI: 10.1021/acsami.5c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Selenium nanoparticles (SeNPs) exhibit significant potential in biomedical applications due to their antimicrobial, anticancer, and anti-inflammatory properties. In this study, we synthesized biocompatible SeNPs and employed confocal Raman microspectroscopy to map their distribution within human dermal fibroblast (HDF) cells. SeNPs possess a distinctive Raman band placed outside the cellular fingerprint region, which facilitates its detection and precise Raman imaging. Viability assays revealed that SeNPs exhibit cytotoxic effects only at the highest concentrations and for long exposure times while resulting in no harmful effects during all of the other treatments. For the first time, we achieved three-dimensional (3D) Raman mapping of SeNPs within cells, providing insights into their cellular penetration. Additionally, two-dimensional (2D) Raman mapping performed at different times and at sublethal concentrations demonstrated dynamic uptake and confirmed internalization. These findings highlight the effectiveness of SeNPs for biomedical imaging and therapeutic applications, offering an additional approach to studying nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italia
| | - Kenta Yamamoto
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italia
| | - Elia Marin
- Biomaterials
Engineering Laboratory, Kyoto Institute
of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Biomedical
Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Giuseppe Pezzotti
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italia
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Biomedical
Engineering Center, Kansai Medical University, 1-9-11 Shinmachi, Hirakata, Osaka 573-1191, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho,
Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
3
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Wiita EG, Toprakcioglu Z, Jayaram AK, Knowles TPJ. Selenium-silk microgels as antifungal and antibacterial agents. NANOSCALE HORIZONS 2024; 9:609-619. [PMID: 38288551 PMCID: PMC10962633 DOI: 10.1039/d3nh00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 03/26/2024]
Abstract
Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.
Collapse
Affiliation(s)
- Elizabeth G Wiita
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
5
|
Qazi F, Verma R, Redmond CE, Khalid A, O'Brien-Simpson NM, Tomljenovic-Hanic S. Real-time, label-free detection and identification of bacteria through non-invasive optical imaging. Microbes Infect 2024; 26:105263. [PMID: 38013067 DOI: 10.1016/j.micinf.2023.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Currently, traditional and newer molecular and mass spectrometry techniques of identifying bacteria from biological samples requires lengthy sample preparation, growth and labelling/staining assays. Thus, there is a pressing clinical need for an adjunct method that accurately identifies bacteria in real time. Here we report on the evaluation of confocal microscopy for the identification of clinically important and multi-drug resistant (MDR) bacteria in real time, using their intrinsic fluorescence features, i.e., emission spectra and fluorescence lifetime. The results demonstrate that difference in emission spectra and fluorescence lifetimes can be used as a fingerprint for identification of 12 bacterial species and MDR strains in real-time. Photostability or time-traces of bacteria demonstrated that these parameters could be used for tracking and recording without a need for labelling. Further, dilution experiments demonstrated that using intrinsic fluorescence S. aureus, Klebsiella pneumoniae and Escherichia coli bacteria can be detected and identified at clinically relevant concentrations as low as 2 × 102 CFU/mL. This non-invasive, non-labelling optical methodology may serve as the basis for development of a device that would quickly and accurately identify bacteria in biological samples. Thus, this intrinsic fluorescence technique would provide clinicians information, within minutes from sampling, to base accurate and specific treatments for patients.
Collapse
Affiliation(s)
- Farah Qazi
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rajni Verma
- School of Physics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Connagh E Redmond
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Asma Khalid
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Division of Basic and Clinical Oral Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
6
|
Yu S, Liu H, Yang R, Zhou W, Liu J. Aggregation and stability of selenium nanoparticles: Complex roles of surface coating, electrolytes and natural organic matter. J Environ Sci (China) 2023; 130:14-23. [PMID: 37032031 DOI: 10.1016/j.jes.2022.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/19/2023]
Abstract
The application of selenium nanoparticles (SeNPs) as nanofertilizers may lead to the release of SeNPs into aquatic systems. However, the environmental behavior of SeNPs is rarely studied. In this study, using alginate-coated SeNPs (Alg-SeNPs) and polyvinyl alcohol-coated SeNPs (PVA-SeNPs) as models, we systematically investigated the aggregation and stability of SeNPs under various water conditions. PVA-SeNPs were highly stable in mono- and polyvalent electrolytes, probably due to the strong steric hindrance of the capping agent. Alg-SeNPs only suffered from a limited increase in size, even at 2500 mmol/L NaCl and 200 mmol/L MgCl2, while they underwent apparent aggregation in CaCl2 and LaCl3 solutions. The binding of Ca2+ and La3+ with the guluronic acid part in alginate induced the formation of cross-linking aggregates. Natural organic matter enhanced the stability of Alg-SeNPs in monovalent electrolytes, while accelerated the attachment of Alg-SeNPs in polyvalent electrolytes, due to the cation bridge effects. The long-term stability of SeNPs in natural water showed that the aggregation sizes of Alg-SeNPs and PVA-SeNPs increased to several hundreds of nanometers or above 10 µm after 30 days, implying that SeNPs may be suspended in the water column or further settle down, depending on the surrounding water chemistry. The study may contribute to the deep insight into the fate and mobility of SeNPs in the aquatic environment. The varying fate of SeNPs in different natural waters also suggests that the risks of SeNPs to organisms living in diverse depths in the aquatic compartment should be concerned.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhou
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
8
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
9
|
Chen BB, Liu ML, Zou HY, Liu Y, Li YF, Swihart MT, Huang CZ. In Situ Imaging of Ion Motion in a Single Nanoparticle: Structural Transformations in Selenium Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202210313. [DOI: 10.1002/anie.202210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Bin Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Pharmaceutical Sciences Southwest University Chongqing 400715 P.R. China
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen 2001 Longxiang Boulevard, Longgang District, Shenzhen City Guangdong 518172 China
| | - Meng Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Pharmaceutical Sciences Southwest University Chongqing 400715 P.R. China
- Department of The Second Affiliated Hospital School of Medicine The Chinese University of Hong Kong Shenzhen Guangdong, 518172 P. R. China
- Longgang District People's Hospital of Shenzhen P. R. China
| | - Hong Yan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Pharmaceutical Sciences Southwest University Chongqing 400715 P.R. China
| | - Yang Liu
- Department of Materials Science Fudan University Shanghai 200433 China
- Department of Chemical and Biological Engineering University at Buffalo Buffalo New York 14260-4200 USA
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical System Chongqing Science and Technology Bureau College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P.R. China
| | - Mark T Swihart
- Department of Chemical and Biological Engineering University at Buffalo Buffalo New York 14260-4200 USA
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education College of Pharmaceutical Sciences Southwest University Chongqing 400715 P.R. China
| |
Collapse
|
10
|
Chen BB, Liu ML, Zou HY, Liu Y, Li YF, Swihart MT, Huang CZ. In‐Situ Imaging of Ion Motion in a Single Nanoparticle: Structural Transformations in Selenium Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Bin Chen
- Southwest Univesity College of Pharmaceutical Sciences CHINA
| | - Meng Li Liu
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Hong Yan Zou
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Yang Liu
- Fudan University Department of Materials Science CHINA
| | - Yuan Fang Li
- Southwest Unniversity College of Chemistry and Chemical Engineeing CHINA
| | - Mark T. Swihart
- University at Buffalo Department of Chemical and Biochemical Engineering CHINA
| | - Cheng Zhi Huang
- Southwest University College of Pharmaceutical Sciences No 2, Tiansheng Rd. 400715 Beibei, Chongqing CHINA
| |
Collapse
|
11
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, Darban-Sarokhalil D. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther 2021; 35:102398. [PMID: 34133959 DOI: 10.1016/j.pdpdt.2021.102398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Selenium Nanoparticles (SeNPs) were reported as an agent that may enhance the effectiveness of Photodynamic Antimicrobial Chemotherapy (PACT). This in vitro study evaluates the effect of SeNPs on the efficacy of Methylene Blue (MB)-induced PACT against the biofilm formated in 96-well plates and the dentine tubule biofilm of Enterococcus faecalis. METHODS Chitosan coated SeNPs were synthesized using chemical reduction method and were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Twenty-four-hour biofilms of E. faecalis were developed on 96-well plates and treated with SeNPs, MB, and Light-Emitting Diode (LED). Also, three-week biofilms of E. faecalis were formed on 67 specimens of dentinal tubules, and the antibacterial effects of MB+SeNPs on these biofilms were studied. RESULTS The average hydrodynamic diameter of SeNPs was 80/3 nm according to DLS measurement. The combined use of MB and SeNPs significantly reduced Colony-Forming Units (CFUs) of one-day-old E. faecalis biofilms in comparison with the control group (P value < 0.05). Besides, combination therapy had the most antibacterial effect on root canal E. faecalis biofilms at both 200 and 400 µm depths of dentine tubules (P value < 0.001). Of note, about 50% of human fibroblast cells survived at a concentration of 128 µg/ml of SeNPs, compared to the control group. CONCLUSION The results demonstrated that the photodynamic therapy modified by SeNPs could be an effective disinfection alternative to the destruction of E. faecalis biofilms and root canal treatment.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental school, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Asnaashari
- Department of Endodontics, Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran university of medical sciences, Tehran, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
14
|
Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. NANOMATERIALS 2021; 11:nano11030695. [PMID: 33802102 PMCID: PMC7998877 DOI: 10.3390/nano11030695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Fluorescent nanoparticles (NPs) have been increasingly studied as contrast agents for better understanding of biological processes at the cellular and molecular level. However, their use as bioimaging tools is strongly dependent on their optical emission as well as their biocompatibility. This work reports the fabrication and characterization of silk fibroin (SF) coated magnesium oxide (MgO) nanospheres, containing oxygen, Cr3+ and V2+ related optical defects, as a nontoxic and biodegradable hybrid platform for bioimaging applications. The MgO-SF spheres demonstrated enhanced emission efficiency compared to noncoated MgO NPs. Furthermore, SF sphere coating was found to overcome agglomeration limitations of the MgO NPs. The hybrid nanospheres were investigated as an in vitro bioimaging tool by recording their cellular uptake, trajectories, and mobility in human skin keratinocytes cells (HaCaT), human glioma cells (U87MG) and breast cancer cells (MCF7). Enhanced cellular uptake and improved intracellular mobilities of MgO-SF spheres compared to MgO NPs was demonstrated in three different cell lines. Validated infrared and bright emission of MgO-SF NP indicate their prospects for in vivo imaging. The results identify the potential of the hybrid MgO-SF nanospheres for bioimaging. This study may also open new avenues to optimize drug delivery through biodegradable silk and provide noninvasive functional imaging feedback on the therapeutic processes through fluorescent MgO.
Collapse
|
15
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
16
|
Manoto SL, El-Hussein A, Malabi R, Thobakgale L, Ombinda-Lemboumba S, Attia YA, Kasem MA, Mthunzi-Kufa P. Exploring optical spectroscopic techniques and nanomaterials for virus detection. Saudi J Biol Sci 2021; 28:78-89. [PMID: 32868971 PMCID: PMC7449958 DOI: 10.1016/j.sjbs.2020.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Viral infections pose significant health challenges globally by affecting millions of people worldwide and consequently resulting in a negative impact on both socioeconomic development and health. Corona virus disease 2019 (COVID-19) is a clear example of how a virus can have a global impact in the society and has demonstrated the limitations of detection and diagnostic capabilities globally. Another virus which has posed serious threats to world health is the human immunodeficiency virus (HIV) which is a lentivirus of the retroviridae family responsible for causing acquired immunodeficiency syndrome (AIDS). Even though there has been a significant progress in the HIV biosensing over the past years, there is still a great need for the development of point of care (POC) biosensors that are affordable, robust, portable, easy to use and sensitive enough to provide accurate results to enable clinical decision making. The aim of this study was to present a proof of concept for detecting HIV-1 pseudoviruses by using anti-HIV1 gp41 antibodies as capturing antibodies. In our study, glass substrates were treated with a uniform layer of silane in order to immobilize HIV gp41 antibodies on their surfaces. Thereafter, the HIV pseudovirus was added to the treated substrates followed by addition of anti-HIV gp41 antibodies conjugated to selenium nanoparticle (SeNPs) and gold nanoclusters (AuNCs). The conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies was characterized using UV-vis spectroscopy, transmission electron microscopy (TEM) and zeta potential while the surface morphology was characterized by fluorescence microscopy, atomic force microscopy (AFM) and Raman spectroscopy. The UV-vis and zeta potential results showed that there was successful conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies and fluorescence microscopy showed that antibodies immobilized on glass substrates were able to capture intact HIV pseudoviruses. Furthermore, AFM also confirmed the capturing HIV pseudoviruses and we were able to differentiate between substrates with and without the HIV pseudoviruses. Raman spectroscopy confirmed the presence of biomolecules related to HIV and therefore this system has potential in HIV biosensing applications.
Collapse
Affiliation(s)
- Sello Lebohang Manoto
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Rudzani Malabi
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Lebogang Thobakgale
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Saturnin Ombinda-Lemboumba
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
| | - Yasser A. Attia
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Mohamed A. Kasem
- National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Patience Mthunzi-Kufa
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
17
|
Real-time detection and identification of nematode eggs genus and species through optical imaging. Sci Rep 2020; 10:7219. [PMID: 32350308 PMCID: PMC7190725 DOI: 10.1038/s41598-020-63747-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Nematode eggs are pervasive pathogens that infect billions of people and livestock every year. Adult parasitic nematode worms can be distinguished based on their size and morphology. However, their eggs, particularly their species Ascaris lumbricoides and Ascaris suum cannot be identified from each other. Identifying eggs of helminths from wastewater and sludge is important from a public health perspective to minimize the spread of Ascaris infections. Numerous methods exist for nematode identification, from a morphological-based approach to high throughput sequencing technology. However, these techniques are not consistent and often laborious and time-consuming. In this study, we demonstrate that non-invasive real-time identification of eggs is possible based on their intrinsic fluorescence. Using confocal microscopy, we investigate the autofluorescence properties of five species of nematode eggs and observe clear differences between genus and for the first time their species in sludge samples. This non-invasive imaging technique could lead to better understanding of these species and may assist in early control of diseases.
Collapse
|
18
|
Tzeng WY, Tseng YH, Yeh TT, Tu CM, Sankar R, Chen YH, Huang BH, Chou FC, Luo CW. Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave. OPTICS EXPRESS 2020; 28:685-694. [PMID: 32118991 DOI: 10.1364/oe.381898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
A novel approach for the production of both amorphous and crystalline selenium nanoparticles (SeNPs) using femtosecond laser-induced plasma shock wave on the surface of Bi2Se3 topological insulators at room temperature and ambient pressure is demonstrated. The shape and size of SeNPs can be reliably controlled via the kinetic energy obtained from laser pulses, so these are applicable as active components in nanoscale applications. Importantly, the rapid, low-cost and eco-friendly synthesis strategy developed in this study could also be extendable to other systems.
Collapse
|
19
|
Walia S, Sharma C, Acharya A. Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. NANOMATERIAL - BASED BIOMEDICAL APPLICATIONS IN MOLECULAR IMAGING, DIAGNOSTICS AND THERAPY 2020:27-53. [DOI: 10.1007/978-981-15-4280-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Khalid A, Norello R, N Abraham A, Tetienne JP, J Karle T, W C Lui E, Xia K, A Tran P, J O'Connor A, G Mann B, de Boer R, He Y, Man Ching Ng A, B Djurisic A, Shukla R, Tomljenovic-Hanic S. Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1360. [PMID: 31547487 PMCID: PMC6835516 DOI: 10.3390/nano9101360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Imaging of biological matter by using fluorescent nanoparticles (NPs) is becoming a widespread method for in vitro imaging. However, currently there is no fluorescent NP that satisfies all necessary criteria for short-term in vivo imaging: biocompatibility, biodegradability, photostability, suitable wavelengths of absorbance and fluorescence that differ from tissue auto-fluorescence, and near infrared (NIR) emission. In this paper, we report on the photoluminescent properties of magnesium oxide (MgO) NPs that meet all these criteria. The optical defects, attributed to vanadium and chromium ion substitutional defects, emitting in the NIR, are observed at room temperature in NPs of commercial and in-house ball-milled MgO nanoparticles, respectively. As such, the NPs have been successfully integrated into cultured cells and photostable bright in vitro emission from NPs was recorded and analyzed. We expect that numerous biotechnological and medical applications will emerge as this nanomaterial satisfies all criteria for short-term in vivo imaging.
Collapse
Affiliation(s)
- Asma Khalid
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
- School of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Romina Norello
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Amanda N Abraham
- School of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | | | - Timothy J Karle
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Edward W C Lui
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Kenong Xia
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Phong A Tran
- Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, Melbourne, VIC 3010, Australia.
| | - Andrea J O'Connor
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, Melbourne, VIC 3010, Australia.
| | - Bruce G Mann
- The Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia.
- The Breast Service, Victorian Comprehensive Cancer Centre, Parkville, VIC 3052, Australia.
| | - Richard de Boer
- The Breast Service, Victorian Comprehensive Cancer Centre, Parkville, VIC 3052, Australia.
| | - Yanling He
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Alan Man Ching Ng
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | | | - Ravi Shukla
- School of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | | |
Collapse
|
21
|
Synthesis and investigations of ciprofloxacin loaded engineered selenium lipid nanocarriers for effective drug delivery system for preventing lung infections of interstitial lung disease. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111510. [DOI: 10.1016/j.jphotobiol.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022]
|
22
|
Piacenza E, Presentato A, Ambrosi E, Speghini A, Turner RJ, Vallini G, Lampis S. Physical-Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Front Microbiol 2018; 9:3178. [PMID: 30619230 PMCID: PMC6306038 DOI: 10.3389/fmicb.2018.03178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/22/2023] Open
Abstract
Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite () was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmission electron microscopy (TEM) images show extra- or intra-cellular emergence of SeNS in SeITE02 or MPV1 respectively, revealing the presence of two distinct biological routes of SeNS biogenesis. Indeed, the stress exerted by upon SeITE02 cells triggered the production of membrane vesicles (MVs), which surrounded Se-nanoparticles (SeNPsSeITE02-G_e and SeNPsSeITE02-P_e with average diameter of 179 ± 56 and 208 ± 60 nm, respectively), as highlighted by TEM and scanning electron microscopy (SEM), strongly suggesting that MVs might play a crucial role in the excreting mechanism of the SeNPs in the extracellular environment. On the other hand, MPV1 strain biosynthesized intracellular inclusions likely containing hydrophobic storage compounds and SeNPs (123 ± 32 nm) under pyruvate conditioning, while the growth on glucose as the only source of carbon and energy led to the production of a mixed population of intracellular SeNPs (118 ± 36 nm) and nanorods (SeNRs; average length of 324 ± 89). SEM, fluorescence spectroscopy, and confocal laser scanning microscopy (CLSM) revealed that the biogenic SeNS were enclosed in an organic material containing proteins and amphiphilic molecules, possibly responsible for the high thermodynamic stability of these nanomaterials. Finally, the biogenic SeNS extracts were photoluminescent upon excitation ranging from 380 to 530 nm, whose degree of fluorescence emission (λem = 416–640 nm) was comparable to that from chemically synthesized SeNPs with L-cysteine (L-cys SeNPs). This study offers novel insights into the formation, localization, and release of biogenic SeNS generated by two different Gram-negative bacterial strains under aerobic and metabolically controlled growth conditions. The work strengthens the possibility of using these bacterial isolates as eco-friendly biocatalysts to produce high quality SeNS targeted to possible biomedical applications and other biotechnological purposes.
Collapse
Affiliation(s)
- Elena Piacenza
- Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, Verona, Italy.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Alessandro Presentato
- Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Emmanuele Ambrosi
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University, Venezia, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM, Verona, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Giovanni Vallini
- Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Silvia Lampis
- Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Guan B, Yan R, Li R, Zhang X. Selenium as a pleiotropic agent for medical discovery and drug delivery. Int J Nanomedicine 2018; 13:7473-7490. [PMID: 30532534 PMCID: PMC6241719 DOI: 10.2147/ijn.s181343] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Selenium as a biologically active element lends much support to health maintenance and disease prevention. It is now presenting pleiotropic effects on therapy and drug delivery. In this study, a profiling on the physiological functions, therapeutic significances, clinical/preclinical performances, and biomedical and drug delivery applications of selenium in different modalities was carried out. Major interests focused on selenium-based nanomedicines in confronting various diseases pertaining to selenium or not, especially in antitumor and antidiabetes. Furthermore, the article exclusively discusses selenium nanoparticles featured by ameliorative functions with emphasis on their applications in medical practice and drug delivery. The state-of-the-art in medical discovery as well as research and development on selenium and nano-selenium is discussed in this review.
Collapse
Affiliation(s)
- Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiling Yan
- Fetal Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China,
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China,
| |
Collapse
|
24
|
Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J Biomed Mater Res A 2018; 106:1400-1412. [PMID: 29356322 DOI: 10.1002/jbm.a.36347] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/24/2017] [Accepted: 01/16/2018] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.
Collapse
Affiliation(s)
- David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115.,Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, 02115.,Universitat Rovira I Virgili, Tarragona, Spain
| | - Gujie Mi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115.,Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, 02115
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115.,Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
25
|
Liu ML, Zou HY, Li CM, Li RS, Huang CZ. Aptamer-modified selenium nanoparticles for dark-field microscopy imaging of nucleolin. Chem Commun (Camb) 2017; 53:13047-13050. [DOI: 10.1039/c7cc07664a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium nanoparticles with good water solubility and excellent biocompatibility are used for the first time as a light-scattering nanoprobe with aptamer modification to image nucleolin-overexpressing cancer cells through dark-field microscopy.
Collapse
Affiliation(s)
- Meng Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hong Yan Zou
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400716
| | - Chun Mei Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400716
| | - Rong Sheng Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400716
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
26
|
Ahmed S, Brockgreitens J, Xu K, Abbas A. Sponge-supported synthesis of colloidal selenium nanospheres. NANOTECHNOLOGY 2016; 27:465601. [PMID: 27749282 DOI: 10.1088/0957-4484/27/46/465601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With increasing biomedical and engineering applications of selenium nanospheres (SeNS), new efficient methods are needed for the synthesis and long-term preservation of these nanomaterials. Currently, SeNS are mostly produced through the biosynthesis route using microorganisms or by using wet chemical reduction, both of which have several limitations in terms of nanoparticle size, yield, production time and long-term stability of the nanoparticles. Here, we introduce a novel approach for rapid synthesis and long-term preservation of SeNS on a solid microporous support by combining a mild hydrothermal process with chemical reduction. By using a natural sponge as a solid three-dimensional matrix for nanoparticle growth, we have synthesized highly monodisperse spherical nanoparticles with a wide size range (10-1000 nm) and extremely high yield in a relatively short period of time (1 h). Additionally, the synthesized SeNS can be stored and retrieved whenever needed by simply washing the sponge in water. Keeping the nanospheres in the support offers remarkable long-term stability as particles left on the sponge preserve their morphological and colloidal characteristics even after eight months of storage. Furthermore, this work reveals that SeNS can be used for efficient mercury capture from contaminated waters with a record-breaking mercury removal capacity of 1900 mg g-1.
Collapse
Affiliation(s)
- Snober Ahmed
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, St. Paul, MN 55108-6005, USA
| | | | | | | |
Collapse
|