1
|
Song Y, Chen N, Jiang Q, Mukhopadhyay T, Wondmagegn W, Klausen RS, Katz HE. Selective Detection of Functionalized Carbon Particles based on Polymer Semiconducting and Conducting Devices as Potential Particulate Matter Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310527. [PMID: 38050933 DOI: 10.1002/smll.202310527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/07/2023]
Abstract
This paper reports a new mechanism for particulate matter detection and identification. Three types of carbon particles are synthesized with different functional groups to mimic the real particulates in atmospheric aerosol. After exposing polymer-based organic devices in organic field effect transistor (OFET) architectures to the particle mist, the sensitivity and selectivity of the detection of different types of particles are shown by the current changes extracted from the transfer curves. The results indicate that the sensitivity of the devices is related to the structure and functional groups of the organic semiconducting layers, as well as the morphology. The predominant response is simulated by a model that yielded values of charge carrier density increase and charge carriers delivered per unit mass of particles. The research points out that polymer semiconductor devices have the ability to selectively detect particles with multiple functional groups, which reveals a future direction for selective detection of particulate matter.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Nan Chen
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Qifeng Jiang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Tushita Mukhopadhyay
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Wudyalew Wondmagegn
- Department of Electrical and Computer Engineering, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Lu B, Stolte M, Liu D, Zhang X, Zhao L, Tian L, Frisbie CD, Würthner F, Tao X, He T. High Sensitivity and Ultra-Broad-Range NH 3 Sensor Arrays by Precise Control of Step Defects on The Surface of Cl 2-Ndi Single Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308036. [PMID: 38308194 PMCID: PMC11005746 DOI: 10.1002/advs.202308036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Indexed: 02/04/2024]
Abstract
Vapor sensors with both high sensitivity and broad detection range are technically challenging yet highly desirable for widespread chemical sensing applications in diverse environments. Generally, an increased surface-to-volume ratio can effectively enhance the sensitivity to low concentrations, but often with the trade-off of a constrained sensing range. Here, an approach is demonstrated for NH3 sensor arrays with an unprecedentedly broad sensing range by introducing controllable steps on the surface of an n-type single crystal. Step edges, serving as adsorption sites with electron-deficient properties, are well-defined, discrete, and electronically active. NH3 molecules selectively adsorb at the step edges and nearly eliminate known trap-like character, which is demonstrated by surface potential imaging. Consequently, the strategy can significantly boost the sensitivity of two-terminal NH3 resistance sensors on thin crystals with a few steps while simultaneously enhancing the tolerance on thick crystals with dense steps. Incorporation of these crystals into parallel sensor arrays results in ppb-to-% level detection range and a convenient linear relation between sheet conductance and semi-log NH3 concentration, allowing for the precise localization of vapor leakage. In general, the results suggest new opportunities for defect engineering of organic semiconductor crystal surfaces for purposeful vapor or chemical sensing.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Matthias Stolte
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Dong Liu
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Xiaojing Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Lihui Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Liehao Tian
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesota55455USA
| | - Frank Würthner
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Tao He
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
3
|
Microstructural Control of Soluble Acene Crystals for Field-Effect Transistor Gas Sensors. NANOMATERIALS 2022; 12:nano12152564. [PMID: 35893530 PMCID: PMC9331709 DOI: 10.3390/nano12152564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022]
Abstract
Microstructural control during the solution processing of small-molecule semiconductors (namely, soluble acene) is important for enhancing the performance of field-effect transistors (FET) and sensors. This focused review introduces strategies to enhance the gas-sensing properties (sensitivity, recovery, selectivity, and stability) of soluble acene FET sensors by considering their sensing mechanism. Defects, such as grain boundaries and crystal edges, provide diffusion pathways for target gas molecules to reach the semiconductor-dielectric interface, thereby enhancing sensitivity and recovery. Representative studies on grain boundary engineering, patterning, and pore generation in the formation of soluble acene crystals are reviewed. The phase separation and microstructure of soluble acene/polymer blends for enhancing gas-sensing performance are also reviewed. Finally, flexible gas sensors using soluble acenes and soluble acene/polymer blends are introduced, and future research perspectives in this field are suggested.
Collapse
|
4
|
Hou S, Shao B, Yu X, Yu J. Gold nanorods doping induced performance improvement of room temperature OTFT NO 2sensors. NANOTECHNOLOGY 2021; 32:325503. [PMID: 33957611 DOI: 10.1088/1361-6528/abfe90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Solution-processed organic thin-film transistors (OTFTs) are regarded as the promising candidates for low-cost gas sensors due to their advantages of high throughput, large-area and sensitive to various gas analytes. Microstructure control of organic active layers in OTFTs is an effective route to improve the sensing performance. In this work, we report a simple method to modify the morphology of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) thin films via doping gold nanorods (Au NRs) for enhancing the performance of the corresponding OTFT sensors for nitrogen dioxide (NO2) detection. With the optimized doping ratio of Au nanorods, the TIPS-pentacene OTFT snesors not only exhibit a 3-fold increase in mobility, but also obtain a high sensitivity of 70% to 18 ppm NO2with a detection limit of 270 ppb. The microstructures and morphologies of the modified TIPS-pentacene thin film characterized by atomic force microscopy and field scanning electron microscope. The experimental results indicate that the proper addition of Au NRs could effectively regulate the grain size of TIPS-pentacene, and therein control the density of grain boundaries during the crystallization, which is essential for the high-performance gas sensors.
Collapse
Affiliation(s)
- Sihui Hou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Bingyao Shao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Zhang J, Zhang S, Huang J. OFET chemical sensors: Chemical sensors based on ultrathin organic field‐effect transistors. POLYM INT 2020. [DOI: 10.1002/pi.6095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan Wang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering Tongji University Shanghai P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering Tongji University Shanghai P. R. China
| | - Shiqi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering Tongji University Shanghai P. R. China
| | - Jia Huang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering Tongji University Shanghai P. R. China
| |
Collapse
|
6
|
Zhang X, Wang B, Huang L, Huang W, Wang Z, Zhu W, Chen Y, Mao Y, Facchetti A, Marks TJ. Breath figure-derived porous semiconducting films for organic electronics. SCIENCE ADVANCES 2020; 6:eaaz1042. [PMID: 32232157 PMCID: PMC7096165 DOI: 10.1126/sciadv.aaz1042] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/06/2020] [Indexed: 05/19/2023]
Abstract
Porous semiconductor film morphologies facilitate fluid diffusion and mass transport into the charge-carrying layers of diverse electronic devices. Here, we report the nature-inspired fabrication of several porous organic semiconductor-insulator blend films [semiconductor: P3HT (p-type polymer), C8BTBT (p-type small-molecule), and N2200 (n-type polymer); insulator: PS] by a breath figure patterning method and their broad and general applicability in organic thin-film transistors (OTFTs), gas sensors, organic electrochemical transistors (OECTs), and chemically doped conducting films. Detailed morphological analysis of these films demonstrates formation of textured layers with uniform nanopores reaching the bottom substrate with an unchanged solid-state packing structure. Device data gathered with both porous and dense control semiconductor films demonstrate that the former films are efficient TFT semiconductors but with added advantage of enhanced sensitivity to gases (e.g., 48.2%/ppm for NO2 using P3HT/PS), faster switching speeds (4.7 s for P3HT/PS OECTs), and more efficient molecular doping (conductivity, 0.13 S/m for N2200/PS).
Collapse
Affiliation(s)
- Xinan Zhang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Binghao Wang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Lizhen Huang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123, P. R. China
| | - Wei Huang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Zhi Wang
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Weigang Zhu
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yao Chen
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - YanLi Mao
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
- Corresponding author. (Y.M.); (A.F.); (T.J.M.)
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Flexterra Inc., 8025 Lamon Avenue, Skokie, IL 60077, USA
- Corresponding author. (Y.M.); (A.F.); (T.J.M.)
| | - Tobin J. Marks
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Corresponding author. (Y.M.); (A.F.); (T.J.M.)
| |
Collapse
|
7
|
Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Adv Colloid Interface Sci 2020; 275:102080. [PMID: 31809990 DOI: 10.1016/j.cis.2019.102080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022]
Abstract
Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.
Collapse
|
8
|
Zhang S, Zhao Y, Du X, Chu Y, Zhang S, Huang J. Gas Sensors Based on Nano/Microstructured Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805196. [PMID: 30730106 DOI: 10.1002/smll.201805196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/13/2019] [Indexed: 05/27/2023]
Abstract
Benefiting from the advantages of organic field-effect transistors (OFETs), including synthetic versatility of organic molecular design and environmental sensitivity, gas sensors based on OFETs have drawn much attention in recent years. Potential applications focus on the detection of specific gas species such as explosive, toxic gases, or volatile organic compounds (VOCs) that play vital roles in environmental monitoring, industrial manufacturing, smart health care, food security, and national defense. To achieve high sensitivity, selectivity, and ambient stability with rapid response and recovery speed, the regulation and adjustment of the nano/microstructure of the organic semiconductor (OSC) layer has proven to be an effective strategy. Here, the progress of OFET gas sensors with nano/microstructure is selectively presented. Devices based on OSC films one dimensional (1D) single crystal nanowires, nanorods, and nanofibers are introduced. Then, devices based on two dimensional (2D) and ultrathin OSC films, fabricated by methods such as thermal evaporation, dip-coating, spin-coating, and solution-shearing methods are presented, followed by an introduction of porous OFET sensors. Additionally, the applications of nanostructured receptors in OFET sensors are given. Finally, an outlook in view of the current research state is presented and eight further challenges for gas sensors based on OFETs are suggested.
Collapse
Affiliation(s)
- Shiqi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yiwei Zhao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaowen Du
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yingli Chu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shen Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jia Huang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Putuo District People's Hospital, Tongji University, Shanghai, 200060, P. R. China
| |
Collapse
|
9
|
Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A. High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem Rev 2018; 118:5690-5754. [PMID: 29785854 DOI: 10.1021/acs.chemrev.8b00045] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , China
| | - Wei Huang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , China
| | - Mohammed Al-Hashimi
- Department of Chemistry , Texas A&M University at Qatar , PO Box 23874, Doha , Qatar
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Flexterra Corporation , 8025 Lamon Avenue , Skokie , Illinois 60077 , United States
| |
Collapse
|
10
|
Zhou X, Niu K, Wang Z, Huang L, Chi L. An ammonia detecting mechanism for organic transistors as revealed by their recovery processes. NANOSCALE 2018; 10:8832-8839. [PMID: 29714381 DOI: 10.1039/c8nr01275j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic thin film transistor (OTFT) based gas sensors have demonstrated promising applications, owing to their advantages of high selectivity and room temperature operation, accompanied by their low cost, large scale manufacture, and flexibility. However, the understanding of the sensing mechanism is far from clear. Herein, we reveal the sensing mechanism of an organic transistor sensor for ammonia (NH3) detection through studying the recovery behavior in various atmospheres. Inspired by the significant difference in the recovery of the transistor sensor in N2 and in air, we deduced that the operation mechanism should not only involve the NH3-film interaction. Among a series of recovery processes, only upon exposure to wet air can the sensors completely recover in a certain time. Such a phenomenon, coupled with the transistor's performance evolution under vacuum, directly evidenced the existence of a pre-doping effect in the transistor by water (H2O) in ambient air. As a result, the response to the NH3 analyte is actually a de-doping process via reaction with the H2O. The full recovery in wet air is attributable to re-doping by H2O. Density functional theory (DFT) calculations were employed to assist the understanding of such a sensing mechanism. This study could help in the understanding of the sensing processes in many organic semiconductor based sensors.
Collapse
Affiliation(s)
- Xu Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
11
|
Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors. NANOMATERIALS 2018; 8:nano8040203. [PMID: 29596331 PMCID: PMC5923533 DOI: 10.3390/nano8040203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 11/24/2022]
Abstract
Nitrogen dioxide (NO2) sensors based on organic thin-film transistors (OTFTs) were fabricated by conventional annealing (horizontal) and vertical annealing processes of organic semiconductor (OSC) films. The NO2 responsivity of OTFTs to 15 ppm of NO2 is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO2, while showing a preferential response to NO2 compared with SO2, NH3, CO, and H2S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) films were characterized by atomic force microscopy (AFM) in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO2 gas sensing performance.
Collapse
|
12
|
Zeng L, Turrisi R, Fu B, Emery JD, Walker AR, Ratner MA, Hersam MC, Facchetti AF, Marks TJ, Bedzyk MJ. Measuring Dipole Inversion in Self-Assembled Nano-Dielectric Molecular Layers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6484-6490. [PMID: 29378110 DOI: 10.1021/acsami.7b16160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A self-assembled nanodielectric (SAND) is an ultrathin film, typically with periodic layer pairs of high-k oxide and phosphonic-acid-based π-electron (PAE) molecular layers. IPAE, having a molecular structure similar to that of PAE but with an inverted dipole direction, has recently been developed for use in thin-film transistors. Here we report that replacing PAE with IPAE in SAND-based thin-film transistors induces sizable threshold and turn-on voltage shifts, indicating the flipping of the built-in SAND polarity. The bromide counteranion (Br-) associated with the cationic stilbazolium portion of PAE or IPAE is of great importance, because its relative position strongly affects the electric dipole moment of the organic layer. Hence, a set of X-ray synchrotron measurements were designed and performed to directly measure and compare the Br- distributions within the PAE and IPAE SANDs. Two trilayer SANDs, consisting of a PAE or IPAE layer sandwiched between an HfOx and a ZrOx layer, were deposited on the SiOx surface of Si substrates or periodic Si/Mo multilayer substrates for X-ray reflectivity and X-ray standing wave measurements, respectively. Along with complementary DFT simulations, the spacings, elemental (Hf, Br, and Zr) distributions, molecular orientations, and Mulliken charge distributions of the PAE and IPAE molecules within each of the SAND trilayers were determined and correlated with the dipole inversion.
Collapse
Affiliation(s)
- Li Zeng
- Materials Research Science and Engineering Center, Northwestern University , Evanston, Illinois 60208, United States
| | - Riccardo Turrisi
- Materials Science Department, University of Milano-Bicocca , Via R. Cozzi 53, 20126 Milan, Italy
| | | | | | | | - Mark A Ratner
- Materials Research Science and Engineering Center, Northwestern University , Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Materials Research Science and Engineering Center, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Tobin J Marks
- Materials Research Science and Engineering Center, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael J Bedzyk
- Materials Research Science and Engineering Center, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Jun J, Oh J, Shin DH, Kim SG, Lee JS, Kim W, Jang J. Wireless, Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33139-33147. [PMID: 27934182 DOI: 10.1021/acsami.6b08344] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to rapid advances in technology which have contributed to the development of portable equipment, highly sensitive and selective sensor technology is in demand. In particular, many approaches to the modification of wireless sensor systems have been studied. Wireless systems have many advantages, including unobtrusive installation, high nodal densities, low cost, and potential commercial applications. In this study, we fabricated radio frequency identification (RFID)-based wireless sensor systems using carboxyl group functionalized polypyrrole (C-PPy) nanoparticles (NPs). The C-PPy NPs were synthesized via chemical oxidation copolymerization, and then their electrical and chemical properties were characterized by a variety of methods. The sensor system was composed of an RFID reader antenna and a sensor tag made from a commercially available ultrahigh frequency RFID tag coated with C-PPy NPs. The C-PPy NPs were covalently bonded to the tag to form a passive sensor. This type of sensor can be produced at a very low cost and exhibits ultrahigh sensitivity to ammonia, detecting concentrations as low as 0.1 ppm. These sensors operated wirelessly and maintained their sensing performance as they were deformed by bending and twisting. Due to their flexibility, these sensors may be used in wearable technologies for sensing gases.
Collapse
Affiliation(s)
- Jaemoon Jun
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Jungkyun Oh
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Dong Hoon Shin
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Sung Gun Kim
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Jun Seop Lee
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Wooyoung Kim
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU) , 599 Gwanangno, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|