1
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
2
|
Babbal, Mohanty S, Khasa YP. Designing Ubiquitin-like protease 1 (Ulp1) based nano biocatalysts: A promising technology for SUMO fusion proteins. Int J Biol Macromol 2024; 255:128258. [PMID: 37984574 DOI: 10.1016/j.ijbiomac.2023.128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The SUMO proteases (Ulps), a group of cysteine proteases, are well known for their efficient ability to perform structure-based cleavage of SUMO tag from the protein of interest and generation of biotherapeutics with authentic N-terminus. However, the stability of Ulps has remained a challenge for the economical production of difficult-to-produce proteins in E. coli. Therefore, the present study aimed to establish the methodology for developing stable S. pombe Ulp1 preparation using different enzyme immobilization strategies. The whole-cell biocatalyst developed using the Pir1 anchor protein of Pichia cleaved the SUMO tag within 24 h of reaction incubation. The chemical immobilization using commercial epoxy and amino methacrylate beads significantly enhanced the operational reusability of SpUlp1 up to 24 cycles. Silica beads further improved the repetitive usage of the immobilized enzyme for 65 cycles. The SpUlp1 immobilization on laboratory-developed chitosan-coated iron oxide nanoparticles exhibited more than 90 % cleavage of SUMO tag from different substrates even after 100 consecutive reactions. Moreover, an effective SUMO tag removal was observed within 10 min of incubation. The operational stability of the immobilized enzyme was confirmed in a pH range of 5 to 13. The spherical nature of nanoparticles was confirmed by FESEM and TEM results. The successful chitosan coating and subsequent activation with glutaraldehyde were established via FT-IR. Furthermore, HRTEM, SAED, and XRD proved the crystalline nature of nanoparticles, while VSM confirmed the superparamagnetic behavior.
Collapse
Affiliation(s)
- Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Mohamad Sukri N, Abdul Manas NH, Jaafar NR, A Rahman R, Abdul Murad AM, Md Illias R. Effects of electrospun nanofiber fabrications on immobilization of recombinant Escherichia coli for production of xylitol from glucose. Enzyme Microb Technol 2024; 172:110350. [PMID: 37948908 DOI: 10.1016/j.enzmictec.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
A suitable nanofiber sheet was formulated and developed based on its efficacy in the immobilization of recombinant Escherichia coli (E. coli) to enhance xylitol production. The effects of different types of nanofibers and solvents on cell immobilization and xylitol production were studied. The most applicable nanofiber membrane was selected via preliminary screening of four types of nanofiber membrane, followed by the selection of six different solvents. Polyvinylidene fluoride (PVDF) nanofiber sheet synthesized using dimethylformamide (DMF) solvent was found to be the most suitable carrier for immobilization and xylitol production. The thin, beaded PVDF (DMF) nanofibers were more favourable for microbial adhesion, with the number of immobilized cells as high as 96 × 106 ± 3.0 cfu/ml. The attraction force between positively charged PVDF nanofibers and the negatively charged E. coli indicates that the electrostatic interaction plays a significant role in cell adsorption. The use of DMF has also produced PVDF nanofibers biocatalyst capable of synthesizing the highest xylitol concentration (2.168 g/l) and productivity (0.090 g/l/h) and 55-69% reduction in cell lysis compared with DMSO solvent and free cells. This finding suggests that recombinant E. coli immobilized on nanofibers shows great potential as a whole-cell biocatalyst for xylitol production.
Collapse
Affiliation(s)
- Norhamiza Mohamad Sukri
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
4
|
Essien NB, Galvácsi A, Kállay C, Al-Hilaly Y, González-Méndez R, Akien GR, Tizzard GJ, Coles SJ, Besora M, Kostakis GE. Fluorine-based Zn salan complexes. Dalton Trans 2023; 52:4044-4057. [PMID: 36880418 DOI: 10.1039/d2dt04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.
Collapse
Affiliation(s)
- Nsikak B Essien
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Antal Galvácsi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Youssra Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ramón González-Méndez
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo, 1, 43007 Tarragona, Spain.
| | - George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK.
| |
Collapse
|
5
|
Wang MY, Cai SJ, Lin JC, Ji XJ, Zhang ZG. New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones. Molecules 2023; 28:molecules28031422. [PMID: 36771091 PMCID: PMC9921870 DOI: 10.3390/molecules28031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent enantioselectivity was discovered in a soil sample. The strain was subsequently identified as Bacillus cereus TQ-2 based on its physiological characteristics and 16S rDNA sequence analysis. Under optimized reaction conditions, the resting cells of B. cereus TQ-2 converted acetophenone to enantioenriched (R)-1-phenylethanol with 99% enantiometric excess following anti-Prelog's rule, which is scarce in biocatalytic ketone reduction. The optimum temperature for the cells was 30 °C, and considerable catalytic activity was observed over a broad pH range from 5.0 to 9.0. The cells showed enhanced catalytic activity in the presence of 15% (v/v) glycerol as a co-substrate. The catalytic activity can also be substantially improved by adding Ca2+ or K+ ions. Moreover, the B. cereus TQ-2 cell was highly active in reducing several structurally diverse ketones and aldehydes to form corresponding alcohols with good to excellent conversion. Our study provides a versatile whole-cell biocatalyst that can be used in the asymmetric reduction of ketones for the production of chiral alcohol, thereby expanding the biocatalytic toolbox for potential practical applications.
Collapse
Affiliation(s)
- Min-Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shun-Ju Cai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
- Correspondence:
| |
Collapse
|
6
|
Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021. [DOI: 10.3390/catal11070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.
Collapse
|
7
|
Fan Y, Tian X, Zheng L, Jin X, Zhang Q, Xu S, Liu P, Yang N, Bai H, Wang H. Yeast encapsulation in nanofiber via electrospinning: Shape transformation, cell activity and immobilized efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111747. [PMID: 33545889 DOI: 10.1016/j.msec.2020.111747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
To realize encapsulation of living microbial cells and easily evaluation of cell viability after immobilization, the yeast cells were encapsulated in water soluble PAAm nanofiber by a facile and effective electrospinning technology. Firstly, the conductivity, shear viscosity and surface tension of PAAm/yeast electrospinning solution as a function of mass ratios of yeast/PAAm were investigated to determine the optimum solution condition for electrospinning immobilization. After electrospinning, it is interesting to note that the original ellipsoidal structure of yeast cells turns to oblate spheroid structure. To distinguish immobilization structure from the bead appearing during general electrospinning process, immobilization structure and bead structure were compared and analyzed by FESEM and EDX. Free cell activity, the immediate cell activity after electrospinning and cell activity for seven days storage after immobilization were evaluated by dying methods of CTC and methylene blue, respectively. The results show that encapsulation efficiency maintained at about 40%, and immobilized yeast cells remain active even after seven days storage, which provides a promising application prospect for electrospinning immobilization.
Collapse
Affiliation(s)
- Yansheng Fan
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiaokang Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Linbao Zheng
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Xiao Jin
- Yantai Nanshan University, Nanshan Group, Shandong 265706, China
| | - Qingsong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shenyang Xu
- School of Textile, Tiangong University, Tianjin 300387, China
| | - Pengfei Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ning Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haihui Bai
- School of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
8
|
Abstract
Recent years have witnessed a growing interest in the use of biocatalysts in flow reactors. This merging combines the high selectivity and mild operation conditions typical of biocatalysis with enhanced mass transfer and resource efficiency associated to flow chemistry. Additionally, it provides a sound environment to emulate Nature by mimicking metabolic pathways in living cells and to produce goods through the systematic organization of enzymes towards efficient cascade reactions. Moreover, by enabling the combination of enzymes from different hosts, this approach paves the way for novel pathways. The present review aims to present recent developments within the scope of flow chemistry involving multi-enzymatic cascade reactions. The types of reactors used are briefly addressed. Immobilization methodologies and strategies for the application of the immobilized biocatalysts are presented and discussed. Key aspects related to the use of whole cells in flow chemistry are presented. The combination of chemocatalysis and biocatalysis is also addressed and relevant aspects are highlighted. Challenges faced in the transition from microscale to industrial scale are presented and discussed.
Collapse
|
9
|
Andreu C, Gómez-Peinado J, Winandy L, Fischer R, Del Olmo ML. Surface display of HFBI and DewA hydrophobins on Saccharomyces cerevisiae modifies tolerance to several adverse conditions and biocatalytic performance. Appl Microbiol Biotechnol 2021; 105:1505-1518. [PMID: 33484321 DOI: 10.1007/s00253-021-11090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Hydrophobins are relatively small proteins produced naturally by filamentous fungi with interesting biotechnological and biomedical applications given their self-assembly capacity, efficient adherence to natural and artificial surfaces, and to introduce modifications on the hydrophobicity/hydrophilicity of surfaces. In this work we demonstrate the efficient expression on the S. cerevisiae cell surface of class II HFBI of Trichoderma reesei and class I DewA of Aspergillus nidulans, a hydrophobin not previously exposed, using the Yeast Surface Display a-agglutinin (Aga1-Aga2) system. We show that the resulting modifications affect surface properties, and also yeast cells' resistance to several adverse conditions. The fact that viability of the engineered strains increases under heat and osmotic stress is particularly interesting. Besides, improved biocatalytic activity toward the reduction of ketone 1-phenoxypropan-2-one takes place in the reactions carried out at both 30 °C and 40 °C, within a concentration range between 0.65 and 2.5 mg/mL. These results suggest interesting potential applications for hydrophobin-exposing yeasts. KEY POINTS : • Class I hydrophobin DewA can be efficiently exposed on S. cerevisiae cell surfaces. • Yeast exposure of HFBI and DewA increases osmotic and heat resistance. • Engineered strains show modified biocatalytic behavior.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - Javier Gómez-Peinado
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, València, Spain
| | - Lex Winandy
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)-South Campus, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT)-South Campus, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Marcel Li Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, València, Spain.
| |
Collapse
|
10
|
Immobilized Cell Physiology Imaging and Stabilization of Enzyme Cascade Reaction Using Recombinant Cells Escherichia coli Entrapped in Polyelectrolyte Complex Beads by Jet Break-Up Encapsulator. Catalysts 2020. [DOI: 10.3390/catal10111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel, high performance, and scalable immobilization protocol using a laminar jet break-up technique was developed for the production of polyelectrolyte complex beads with entrapped viable Escherichia coli cells expressing an enzyme cascade of alcohol dehydrogenase, enoate reductase, and cyclohexanone monooxygenase. A significant improvement of operational stability was achieved by cell immobilization, which was manifested as an almost two-fold higher summative product yield of 63% after five cascade reaction cycles as compared to the yield using free cells of 36% after the maximum achievable number of three cycles. Correspondingly, increased metabolic activity was observed by multimodal optical imaging in entrapped cells, which was in contrast to a complete suppression of cell metabolism in free cells after five reaction cycles. Additionally, a high density of cells entrapped in beads had a negligible effect on bead permeability for low molecular weight substrates and products of cascade reaction.
Collapse
|
11
|
Silva ALP, da Silva Caridade TN, Magalhães RR, de Sousa KT, de Sousa CC, Vale JA. Biocatalytic production of Ɛ-caprolactone using Geotrichum candidum cells immobilized on functionalized silica. Appl Microbiol Biotechnol 2020; 104:8887-8895. [PMID: 32902680 DOI: 10.1007/s00253-020-10875-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
Immobilization of the Geotrichum candidum (CCT 1205) cell with functionalized silica creates promising biocatalysts for production of ɛ-caprolactone. The results obtained by immobilization of the whole cell on SiO2-NH2 and SiO2-SH supports indicate that the presence of reactive functional groups on the support may promote effective chemical bonds with the cell walls resulting the decreased dehydrogenases enzyme activity (5% yield in less than 2h) and consequently, increased Baeyer-Villiger monooxygenases enzyme activity with redacting of 25% of time reaction when is used SiO2-NH2 as support and 50% through use of SiO2-SH as support relative to free cells when cyclohexanone is used as a substrate. The catalysts SiO2-NH2-Geotrichum candidum and SiO2-SH-Geotrichum candidum were recycling and reused in the ɛ-caprolactone synthesis from cyclohexanone, and the biocatalysts promoted a quantitative conversion up to the eighth reaction cycle. KEY POINTS: • Immobilized microorganism is more efficient than free cell in the caprolactone synthesis. • The reaction times for amino and thiol groups in support were 3 h and 2 h, respectively. • These catalysts showed higher ɛ-caprolactone conversion at higher concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Alves Vale
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, 58051-970, Brazil.
| |
Collapse
|
12
|
Wang YS, Wang XL, Zhou HY, Hu HF, Xue YP, Zheng YG. Production of ( R)-2-(4-hydroxyphenoxy) propionic acid by Beauveria bassiana ZJB16007 in solid state fermentation using rice bran. Prep Biochem Biotechnol 2020; 50:781-787. [DOI: 10.1080/10826068.2020.1737939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuan-Shan Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xian-Lin Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hai-Yan Zhou
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hai-Feng Hu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Sánta-Bell E, Molnár Z, Varga A, Nagy F, Hornyánszky G, Paizs C, Balogh-Weiser D, Poppe L. "Fishing and Hunting"-Selective Immobilization of a Recombinant Phenylalanine Ammonia-Lyase from Fermentation Media. Molecules 2019; 24:E4146. [PMID: 31731791 PMCID: PMC6891789 DOI: 10.3390/molecules24224146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.
Collapse
Affiliation(s)
- Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Zsófia Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Fermentia Microbiological Ltd., 1405 Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Science, 1117 Budapest, Hungary
| | - Andrea Varga
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- SynBiocat Ltd., 1172 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary; (E.S.-B.); (Z.M.); (F.N.); (G.H.)
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, 400028 Cluj-Napoca, Romania; (A.V.); (C.P.)
- SynBiocat Ltd., 1172 Budapest, Hungary
| |
Collapse
|
14
|
Enantioselective Resolution of (±)-1-Phenylethyl Acetate by Using the Whole Cells of Deep-sea Bacterium Bacillus sp. DL-2. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Morlighem JÉRL, Radis-Baptista G. The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Curr Protein Pept Sci 2019; 20:334-355. [PMID: 30255754 DOI: 10.2174/1389203719666180926121722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| | - Gandhi Radis-Baptista
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| |
Collapse
|
16
|
Zhang Q, Wu ZM, Liu S, Tang XL, Zheng RC, Zheng YG. Efficient Chemoenzymatic Synthesis of Optically Active Pregabalin from Racemic Isobutylsuccinonitrile. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Szelwicka A, Zawadzki P, Sitko M, Boncel S, Czardybon W, Chrobok A. Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Szelwicka
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Magdalena Sitko
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry, and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
18
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
19
|
Magnetic Combined Cross-Linked Enzyme Aggregates of Ketoreductase and Alcohol Dehydrogenase: An Efficient and Stable Biocatalyst for Asymmetric Synthesis of (R)-3-Quinuclidinol with Regeneration of Coenzymes In Situ. Catalysts 2018. [DOI: 10.3390/catal8080334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymes are biocatalysts. In this study, a novel biocatalyst consisting of magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of 3-quinuclidinone reductase (QNR) and glucose dehydrogenase (GDH) for enantioselective synthesis of (R)-3-quinuclidinolwith regeneration of cofactors in situ was developed. The magnetic combi-CLEAs were fabricated with the use of ammonium sulfate as a precipitant and glutaraldehyde as a cross-linker for direct immobilization of QNR and GDH from E. coli BL(21) cell lysates onto amino-functionalized Fe3O4 nanoparticles. The physicochemical properties of the magnetic combi-CLEAs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and magnetic measurements. Field emission scanning electron microscope (FE-SEM) images revealed a spherical structure with numerous pores which facilitate the movement of the substrates and coenzymes. Moreover, the magnetic combi-CLEAs exhibited improved operational and thermal stability, enhanced catalytic performance for transformation of 3-quinuclidinone (33 g/L) into (R)-3-quinuclidinol in 100% conversion yield and 100% enantiomeric excess (ee) after 3 h of reaction. The activity of the biocatalysts was preserved about 80% after 70 days storage and retained more than 40% of its initial activity after ten cycles. These results demonstrated that the magnetic combi-CLEAs, as cost-effective and environmentally friendly biocatalysts, were suitable for application in synthesis of (R)-3-quinuclidinol essential for the production of solifenacin and aclidinium with better performance than those currently available.
Collapse
|
20
|
Osawa T, Wakasugi M, Kizawa T, Borovkov V, Inoue Y. Enantio-differentiating hydrogenation of alkyl 3-oxobutanoates over tartaric acid-modified Ni catalyst: Enthalpy-entropy compensation effect as a tool for elucidating mechanistic features. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Serafin-Lewańczuk M, Klimek-Ochab M, Brzezińska-Rodak M, Żymańczyk-Duda E. Fungal synthesis of chiral phosphonic synthetic platform - Scope and limitations of the method. Bioorg Chem 2018; 77:402-410. [PMID: 29427855 DOI: 10.1016/j.bioorg.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
Chiral hydroxyphosphonates due to their wide range of biological properties are industrially important chemicals. Chemical synthesis of their optical isomers is expensive, time consuming and not friendly to the environment, so biotransformations are under consideration. Among others, these compounds act as enzymes inhibitors. This makes the bioconversions of phosphonates, especially scaling experiments, hard to perform. Biocatalysis is one of the methods that can be applied in synthesis of optically pure compounds. To increase the efficiency of the process with whole cell biocatalysts, it is essential to ensure optimal reaction conditions that minimize cellular stress and can enhance the metabolic activity of cells. The present investigation focuses on the scaling up of the kinetic resolution of racemic mixture of 2-butyryloxy-2-(ethoxy-P-phenylphosphinyl)acetic acid, applying free and immobilized form of the fungal biocatalysts and two operation systems: shake flask and recirculated fixed-bed batch reactor. Protocols of effective mycelium immobilization on polyurethane foams were set for T. purpurogenus IAFB 2512, F. oxysporum, P. commune. The best results of biotransformation were obtained with the immobilized P. commune in the column recirculated fixed-bed batch reactor. The conversion reaches 56% (maximal for the kinetic process) and the enantiomeric enrichment of the isomers mixture ranges between 82 and 93% (93% for ester of RP,R conformation). All biocatalysts exhibit SP-preference toward tested compound, what is essential because of importance of the phosphorus atom chirality for its biological activity.
Collapse
Affiliation(s)
- Monika Serafin-Lewańczuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Brzezińska-Rodak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Żymańczyk-Duda
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
22
|
Zou SP, Huang JW, Xue YP, Zheng YG. Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
El’kin AA, Kylosova TI, Osipenko MA, Nyashin YI, Grishko VV, Ivshina IB. Mathematical Simulating the Biokatalytic Transformation of Methyl Phenyl Sulfide into (R)-Sulfoxide. CATALYSIS IN INDUSTRY 2018. [DOI: 10.1134/s2070050418010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Lechner H, Soriano P, Poschner R, Hailes HC, Ward JM, Kroutil W. Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations. Biotechnol J 2017; 13:e1700542. [DOI: 10.1002/biot.201700542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Horst Lechner
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Pablo Soriano
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Roman Poschner
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| | - Helen C. Hailes
- Department of Chemistry; University College London; 20 Gordon Street, WC1H 0AJ London UK
| | - John M. Ward
- Department of Biochemical Engineering; University College London; Gower Street, WC1E 6BT London UK
| | - Wolfgang Kroutil
- Institute of Chemistry; University of Graz, NAWI Graz, BioTechMed Graz; Heinrichstraße 28 8010 Graz Austria
| |
Collapse
|
25
|
Yin C, Zheng T, Chang X. Biosynthesis of S-Adenosylmethionine by Magnetically Immobilized Escherichia coli Cells Highly Expressing a Methionine Adenosyltransferase Variant. Molecules 2017; 22:E1365. [PMID: 28820476 PMCID: PMC6152220 DOI: 10.3390/molecules22081365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022] Open
Abstract
S-Adenosylmethionine (SAM) is a natural metabolite having important uses in the treatment of various diseases. To develop a simple and effective way to produce SAM, immobilized Escherichia coli cells highly expressing an engineered variant of methionine adenosyltransferase (MAT) were employed to synthesize SAM. The recombinant I303V MAT variant was successfully produced at approximately 900 mg/L in a 10-L bioreactor and exhibited significantly less product inhibition and had a four-fold higher specific activity (14.2 U/mg) than the wild-type MAT (3.6 U/mg). To reduce the mass transfer resistance, the free whole-cells were permeabilized and immobilized using gellan gum gel as support in the presence of 100 mg/L Fe₃O₄ nanoparticles, and the highest activity (4152.4 U/L support) was obtained, with 78.2% of the activity recovery. The immobilized cells were more stable than the free cells under non-reactive conditions, with a half-life of 9.1 h at 50 °C. Furthermore, the magnetically immobilized cells were employed to produce SAM at a 40-mM scale. The residual activity of the immobilized cells was 67% of its initial activity after 10 reuses, and the conversion rate of ATP was ≥95% in all 10 batches. These results indicated that magnetically immobilized cells should be a promising biocatalyst for the biosynthesis of SAM.
Collapse
Affiliation(s)
- Chunli Yin
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Tao Zheng
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Xin Chang
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| |
Collapse
|
26
|
Progress in emerging techniques for characterization of immobilized viable whole-cell biocatalysts. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
28
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1076] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
29
|
Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0146-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Polakovič M, Švitel J, Bučko M, Filip J, Neděla V, Ansorge-Schumacher MB, Gemeiner P. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnol Lett 2017; 39:667-683. [PMID: 28181062 DOI: 10.1007/s10529-017-2300-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
Collapse
Affiliation(s)
- Milan Polakovič
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Juraj Švitel
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Filip
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences Czech Republic, Brno, Czech Republic
| | | | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
31
|
Peschke T, Rabe KS, Niemeyer CM. Orthogonale Oberflächenmarkierungen für die Ganzzellkatalyse. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Theo Peschke
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen-1 (IBG-1); Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Deutschland
| | - Kersten S. Rabe
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen-1 (IBG-1); Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Deutschland
| | - Christof M. Niemeyer
- Karlsruher Institut für Technologie (KIT); Institut für Biologische Grenzflächen-1 (IBG-1); Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
32
|
Peschke T, Rabe KS, Niemeyer CM. Orthogonal Surface Tags for Whole-Cell Biocatalysis. Angew Chem Int Ed Engl 2017; 56:2183-2186. [PMID: 28105787 DOI: 10.1002/anie.201609590] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Indexed: 01/07/2023]
Abstract
We herein describe the engineering of E. coli strains that display orthogonal tags for immobilization on their surface and overexpress a functional heterologous "protein content" in their cytosol at the same time. Using the outer membrane protein Lpp-ompA, cell-surface display of the streptavidin-binding peptide, the SpyTag/SpyCatcher system, or a HaloTag variant allowed us to generate bacterial strains that can selectively bind to solid substrates, as demonstrated with magnetic microbeads. The simultaneous cytosolic expression of functional content was demonstrated for fluorescent proteins or stereoselective ketoreductase enzymes. The latter strains gave high selectivities for specific immobilization onto complementary surfaces and also in the whole-cell stereospecific transformation of a prochiral CS -symmetric nitrodiketone.
Collapse
Affiliation(s)
- Theo Peschke
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
33
|
Soni S, Dwivedee BP, Sharma VK, Banerjee UC. Kinetic resolution of (RS)-1-chloro-3-(4-(2-methoxyethyl)phenoxy)propan-2-ol: a metoprolol intermediate and its validation through homology model of Pseudomonas fluorescens lipase. RSC Adv 2017. [DOI: 10.1039/c7ra06499c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Kinetic resolution of (±)-1-chloro-3-(4-(2-methoxyethyl)phenoxy)propan-2-ol: a metoprolol intermediate and its validation through homology model of Pseudomonas fluorescens lipase.
Collapse
Affiliation(s)
- Surbhi Soni
- Department of Biotechnology
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar
- India
| | - Bharat P. Dwivedee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar 160062
- India
| | - Vishnu K. Sharma
- Department of Pharmacoinformatics
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar 160062
- India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar 160062
- India
| |
Collapse
|
34
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
35
|
Biocatalytic reduction of racemic 2-arenoxycycloalkanones by yeasts P. glucozyma and C. glabrata: one way of achieving chiral 2-arenoxycycloalcohols. Appl Microbiol Biotechnol 2016; 100:4865-73. [PMID: 26754816 DOI: 10.1007/s00253-015-7261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Chiral β-aryloxy alcohols are interesting building blocks that form part of drugs like β adrenergic antagonists. Acquiring cyclic rigid analogs to obtain more selective drugs is interesting. Thus, we used whole cells of yeast strains Pichia glucozyma and Candida glabrata to catalyze the reduction of several 2-arenoxycycloalkanones to produce chiral 2-arenoxycycloalcohols with good/excellent enantioselectivity. In both cases, the alcohol configuration that resulted from the carbonyl group reduction was S. Yeast P. glucozyma allowed the conversion of both enantiomers of the starting material to produce 2-arenoxycycloalcohols with configuration (1S, 2R) and (1S, 2S). The reaction with C. glabrata nearly always allowed the kinetic resolution of the starting ketone, recovering 2-arenoxycycloalkanone with configuration S and (1S, 2R)-2-arenoxycycloalcohol.All the four possible stereoisomers of 2-phenoxycyclohexanol and the two enantiomers of 2-phenoxycyclohexanone were obtained by combining the biocatalyzed reaction with the oxidation/reduction of the chiral compounds with standard reagents. This is a simple approach for the synthesis of the rigid chiral moiety 2-arenoxycycloalcohols contained in putative β-blockers 2-arenoxycycloalkanepropanolamines.
Collapse
|