1
|
Jdanova S, Guthrie JG, Taylor MS. Site-Selective O-Arylation of Carbohydrate Derivatives through Nickel-Photoredox Catalysis. J Org Chem 2025; 90:479-492. [PMID: 39689901 DOI: 10.1021/acs.joc.4c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Site-selective O-arylations of glycoside-derived diols have been achieved by couplings with bromoarenes upon irradiation with blue LEDs in the presence of an iridium photocatalyst and a nickel complex. The use of hexamethylenetetramine (hexamine) in place of quinuclidine, along with the application of a methoxy-substituted 2,2'-bipyridine ligand, provided improvements in yield for this relatively challenging substrate class. Selective arylation took place at the less sterically hindered OH group, as determined by the substitution pattern and configuration of the glycoside substrate. Percent buried volume calculations were used to quantify the relative levels of steric hindrance at the two reactive sites.
Collapse
Affiliation(s)
- Sofia Jdanova
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - James G Guthrie
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Belikov MY, Milovidova AG, Ievlev MY, Fedoseev SV. Synthesis of the first 4-oxobutane-1,1,2,2-tetracarbonitriles containing a phenol fragment and their transformation into cyano-substituted pyrrol-2-ones showing three-position molecular switching. Org Biomol Chem 2024; 22:4757-4765. [PMID: 38804092 DOI: 10.1039/d4ob00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The first example of the synthesis of 4-oxobutane-1,1,2,2-tetracarbonitriles (OTCs) containing a phenolic moiety has been described. The synthesis is based on the reaction between tetracyanoethylene and 4-hydroxyphenyl-substituted ketones under mild conditions. Due to the presence of a phenolic hydroxyl group, these compounds are more functionalized derivatives of the well-known OTC substrates used for diversity-oriented synthesis (DOS). The preserved synthetic potential of the OTCs for the preparation of phenol-containing derivatives with enhanced capabilities for tuning optical properties has been shown using the targeted synthesis of 2-(2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)malononitriles. Based on the obtained pyrroles and a model amine (pyrrolidine) a previously unknown type of thermosensitive three-position molecular switch is described. Reversible color changes of the dye are shown in both solution and on filter paper. The results reveal a new research branch of the OTC-based DOS strategy to access functionalized phenol-containing derivatives.
Collapse
Affiliation(s)
- Mikhail Yu Belikov
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| | | | - Mikhail Yu Ievlev
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey V Fedoseev
- Ulyanov Chuvash State University, Moskovsky pr., 15, Cheboksary, Russia.
| |
Collapse
|
3
|
Liu H, Laporte AG, Gónzalez Pinardo D, Fernández I, Hazelard D, Compain P. An Unexpected Lewis Acid-Catalyzed Cascade during the Synthesis of the DEF-Benzoxocin Ring System of Nogalamycin and Menogaril: Mechanistic Elucidation by Intermediate Trapping Experiments and Density Functional Theory Studies. J Org Chem 2024; 89:5634-5649. [PMID: 38554093 DOI: 10.1021/acs.joc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Daniel Gónzalez Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
4
|
Gayke M, Narode H, Bhosale RS, Yadav JS. Stereoselective total synthesis of arachnid harvestmen natural product: (4 S,5 S)‑4-hydroxy-γ-decalactone. Nat Prod Res 2024; 38:1168-1176. [PMID: 36263971 DOI: 10.1080/14786419.2022.2135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Herein, we described the novel synthetic strategy for the total synthesis of harvestmen natural product (4S,5S)‑4-hydroxy-γ-decalactone (minor) from an inexpensive precursor ((R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde) with 31% overall yield. Hydroxy-γ-lactones represent a special class of harvestmen exocrine defense compounds. The present convergent synthesis utilizes classical reactions like the Barbier reaction, the Grignard reaction, and the employment of an olefin as a masked carboxylic acid functionality followed by lactone formation as key steps.
Collapse
Affiliation(s)
- Manoj Gayke
- Department of Chemistry, School of Science, Indrashil University, Rajpur Mehsana, Gujarat, 382715, India
| | - Hanuman Narode
- Department of Chemistry, School of Science, Indrashil University, Rajpur Mehsana, Gujarat, 382715, India
| | - Rajesh S Bhosale
- Department of Chemistry, School of Science, Indrashil University, Rajpur Mehsana, Gujarat, 382715, India
| | - Jhillu Singh Yadav
- Department of Chemistry, School of Science, Indrashil University, Rajpur Mehsana, Gujarat, 382715, India
| |
Collapse
|
5
|
Balo R, Fernández AG, Chopdat A, Ayadi SE, Kato A, Estévez RJ, Fleet GWJ, Estévez JC. Stable D-xylose ditriflate in divergent syntheses of dihydroxy prolines, pyrrolidines, tetrahydrofuran-2-carboxylic acids, and cyclic β-amino acids. Org Biomol Chem 2022; 20:9447-9459. [PMID: 36408757 DOI: 10.1039/d2ob01255c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Double nucleophilic displacement of D-xylo-ditriflate by amines, water and alkyl cyanoacetates, respectively, gave a series of bicyclic divergent intermediates for the synthesis of a wide range of highly functionalized targets, including hydroxylated prolines, pyrrolidines, furanoic acids, and cyclopentanes.
Collapse
Affiliation(s)
- Rosalino Balo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto G Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Adam Chopdat
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soufian El Ayadi
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Ramón J Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Juan C Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
7
|
Lin LZ, Yang S, Liu WH, Shie JJ. Dichotomous Selectivity in Indium-Mediated Aza-Barbier-Type Allylation of 2- N-Acetyl Glycosyl Sulfinylimines in Brine: Convenient Access to Potent Anti-Influenza Agents. J Org Chem 2022; 87:2324-2335. [PMID: 35075895 DOI: 10.1021/acs.joc.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly diastereoselective indium-mediated allylation of 2-N-acetyl glycosyl sulfinylimines in brine under mild reaction conditions is reported. The method allows the achievement of a highly remarkable dichotomous selectivity for substrates, providing a single diastereoisomer of the product in 80-98% yield. With chiral (S)-homoallylic sulfinamide (RS)-5 and (RS)-8 formed as key intermediates, two potent anti-influenza agents, zanamivir and zanaphosphor, were synthesized in 50% and 41% overall yields, respectively.
Collapse
Affiliation(s)
- Long-Zhi Lin
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Hsuan Liu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
8
|
Wang J, Zhang Y, Lu Q, Xing D, Zhang R. Exploring Carbohydrates for Therapeutics: A Review on Future Directions. Front Pharmacol 2021; 12:756724. [PMID: 34867374 PMCID: PMC8634948 DOI: 10.3389/fphar.2021.756724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates are important components of foods and essential biomolecules performing various biological functions in living systems. A variety of biological activities besides providing fuel have been explored and reported for carbohydrates. Some carbohydrates have been approved for the treatment of various diseases; however, carbohydrate-containing drugs represent only a small portion of all of the drugs on the market. This review summarizes several potential development directions of carbohydrate-containing therapeutics, with the hope of promoting the application of carbohydrates in drug development.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yukun Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qi Lu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Bhuyan S, Das D, Chakraborty A, Mandal S, Dhanabal K, Roy BG. A Carbohydrate-based Synthetic Approach to Diverse Structurally and Stereochemically Complex Chiral Polyheterocycles. Chem Asian J 2021; 16:4108-4121. [PMID: 34706155 DOI: 10.1002/asia.202101123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/22/2021] [Indexed: 12/27/2022]
Abstract
Chiral polyheterocycles are one of the most frequently encountered scaffolds in natural products and in current drugs repertoire. A carbohydrate-based diversity oriented synthetic (DOS) approach has been employed for gaining access to many structurally diverse and stereochemically complex rigid polyheterocyclic molecules with multiple chiral hydroxyl groups to enhance aqueous solubility. Inexpensive chiral pool of D-Glucose has been judiciously exploited to get access of complex chiral polyheterocyclic structures using inexpensive, common achiral reagents and domino-Knoevenagel hetero-Diels-Alder (DKHDA) reaction as one of the key synthetic tools. Stereochemistry of newly generated stereocenters of polycyclic structures are unambiguously determined through NMR and X-ray crystallographic study. A chemoinformatic comparison (PCA and PMI) with 40 branded blockbuster drugs showed that newly generated polyheterocycles have good three-dimensional scaffold diversity and most of these pass the Lipinski filter of drug-likeness.
Collapse
Affiliation(s)
- Samuzal Bhuyan
- Department of Chemistry, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Dharmendra Das
- Department of Chemistry, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Amit Chakraborty
- Department of Mathematics, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | - Susanta Mandal
- Department of Chemistry, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim, 737102, India
| | | | - Biswajit Gopal Roy
- Department of Chemistry, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim, 737102, India
| |
Collapse
|
10
|
Semghouli A, Benke Z, Remete AM, Novák TT, Fustero S, Kiss L. Selective Transformation of Norbornadiene into Functionalized Azaheterocycles and β-Amino Esters with Stereo- and Regiocontrol. Chem Asian J 2021; 16:3873-3881. [PMID: 34498420 DOI: 10.1002/asia.202100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Indexed: 11/06/2022]
Abstract
Novel functionalized azaheterocycles with multiple chiral centers have been accessed from readily available norbornene β-amino acids or β-lactams across a stereocontrolled synthetic route, based on ring-opening metathesis (ROM) of the staring unsaturated bicyclic amino esters, followed by selective cyclization through ring-closing metathesis (RCM). The RCM transformations have been studied under various experimental conditions to assess the scope of conversion, catalyst, yield, and substrate influence. The structure of the starting norbornene β-amino acids predetermined the structure of the new azaheterocycles, and the developed synthetic route took place with the conservation of the configuration of the chiral centers.
Collapse
Affiliation(s)
- Anas Semghouli
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Tamás T Novák
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, 46100-Burjassot, Valencia, Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
11
|
Ramesh NG. From Glycals to Nitrogen Heterocycles and Carbocycles via "Cleavage-Intramolecular Recombination Strategy". CHEM REC 2021; 21:2930-2957. [PMID: 34472196 DOI: 10.1002/tcr.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Glycals (carbohydrate enol-ethers) have enjoyed profound applications in organic synthesis for more than a century. They not only serve as versatile glycosyl donors or as substrates for Ferrier rearrangement, but also find extensive synthetic applications especially as a "chiral pool" for accomplishing the synthesis of a variety of natural and biologically important compounds. As cyclic enol ethers, they demonstrate high reactivity and are among the most and variously transformable monosaccharide derivatives. The uniqueness of the reactivity of glycals is that they can be synthetically tuned to get a library of derivatives through stereo- and regioselective introduction of a variety of functional groups at C1, C2, C3 as well as C4 carbons of the sugar. We have developed a practical approach for stereoselective mono- and diamination of glycals and over the years utilized these scaffolds for the synthesis of a variety of biologically important nitrogen heterocycles and carbocycles through a "Diversity Oriented Approach". Our synthetic strategy in this direction mainly relied on the cleavage of ring O-C bond of the sugar followed by an "intramolecular recombination" reaction. Utilizing this strategy, we have accomplished the synthesis of several biologically important natural products, their analogues and related unnatural derivatives. Examples of such compounds reported from our group include polyhydroxypyrrolidines, DMDP, anisomycin, steviamine, pochonicine, conduramines, bulgecinine, aminocyclitols, azepanes, 4-hydroxy-D-proline, azanucleosides and their analogues. A personal account highlighting these syntheses is presented here.
Collapse
Affiliation(s)
- Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
12
|
Abstract
Glycomimetics are structural mimics of naturally occurring carbohydrates and represent important therapeutic leads in several disease treatments. However, the structural and stereochemical complexity inherent to glycomimetics often challenges medicinal chemistry efforts and is incompatible with diversity-oriented synthesis approaches. Here, we describe a one-pot proline-catalyzed aldehyde α-functionalization/aldol reaction that produces an array of stereochemically well-defined glycomimetic building blocks containing fluoro, chloro, bromo, trifluoromethylthio and azodicarboxylate functional groups. Using density functional theory calculations, we demonstrate both steric and electrostatic interactions play key diastereodiscriminating roles in the dynamic kinetic resolution. The utility of this simple process for generating large and diverse libraries of glycomimetics is demonstrated in the rapid production of iminosugars, nucleoside analogues, carbasugars and carbohydrates from common intermediates.
Collapse
|
13
|
Melo de Oliveira VN, Flávia do Amaral Moura C, Peixoto ADS, Gonçalves Ferreira VP, Araújo HM, Lapa Montenegro Pimentel LM, Pessoa CDÓ, Nicolete R, Versiani Dos Anjos J, Sharma PP, Rathi B, Pena LJ, Rollin P, Tatibouët A, Nascimento de Oliveira R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur J Med Chem 2021; 220:113472. [PMID: 33940463 DOI: 10.1016/j.ejmech.2021.113472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
A total of forty-three compounds were synthesized, including thirty-two new ones. Among those compounds, seventeen were selected and tested on human tumor cell lines: PC-3 (prostate adenocarcinoma), HCT-116 (colorectal tumor), NCIH-460 (lung carcinoma), SKMEL-103 (melanoma) and AGP-01 (gastric tumor). Alkynylated 1,2,4-oxadiazoles 2m, 3g and 3k exhibited antiproliferative activities against NCIH-460 in culture. Alkynylated N-cyclohexyl-1,2,4-oxadiazoles 3a-m and bis-heterocycle glucoglycero-1,2,3-triazole-N-cyclohexyl-1,2,4-oxadiazole derivatives 5a-k and 6-11 were evaluated for their in vitro efficacy towards Mycobacterium tuberculosis (Mtb) H37Ra and H37Rv strains. In general, glycerosugars conjugated to 1,2,4-oxadiazole via a 1,2,3-triazole linkage (5a, 5e, 5j, 5k, and 7) showed in vitro inhibitory activity against Mtb (H37Rv). The largest molecules bis-triazoles 10 and 11, proved inactive against TB. Probably, the absence of the N-cyclohexyl group in compound 8 and 1,2,4-oxadiazole nucleus in compound 9 were responsible for its low activity. Glucoglycero-triazole-oxadiazole derivatives 5e (10 μM) and 7 (23.9 μM) were the most promising antitubercular compounds, showing a better selective index than when tested against RAW 264.7 and HepG2 cells. Vero cell were used to investigate cytotoxicity of compounds 5a, 5h, 5j, 5k, and these compounds showed good cell viability. Further, in silico studies were performed for most active compounds (5e and 7) with potential drug targets, DprE1 and InhA of Mtb to understand possible interactions aided with molecular dynamic simulation (100ns).
Collapse
Affiliation(s)
| | | | | | - Vanessa Pinheiro Gonçalves Ferreira
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | - Héverton Mendes Araújo
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | | | - Claudia do Ó Pessoa
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil
| | - Roberto Nicolete
- Laboratorio de Oncologia Experimental, Nucleo de Pesquisa Em Desenvolvimento de Medicamentos (NPDM), Universidade Federal Do Ceara, Fortaleza, Brazil; Oswaldo Cruz Foundation (Fiocruz), Eusebio, Brazil
| | | | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Lindomar José Pena
- Department of Virology, Oswaldo Cruz Foundation, Fiocruz, 50740-465, Recife, PE, Brazil
| | - Patrick Rollin
- Universite D'Orleans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orleans, France
| | - Arnaud Tatibouët
- Universite D'Orleans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orleans, France
| | | |
Collapse
|
14
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
15
|
Gangani AJ, Kumar P, Fernandes RA. Concise Stereoselective Synthesis of β-Hydroxy-γ-lactones: (4 R,5 R)-4-Hydroxy-γ-decalactone from the Japanese Orange Fly and Enantiomers of Arachnid Harvestmen Isolates. JOURNAL OF NATURAL PRODUCTS 2021; 84:120-125. [PMID: 33390009 DOI: 10.1021/acs.jnatprod.0c01207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The naturally occurring (4R,5R)-4-hydroxy-γ-decalactone from the Japanese orange fly and the antipode of (4S,5R)-4-hydroxy-γ-dodecalactone from the harvestmen arachnid and their stereoisomers are synthesized from the chiral pool material d-glucono-δ-lactone in a few steps. The one-pot conversion of the latter to γ-vinyl-β-hydroxy-γ-lactone, cross-metathesis with requisite olefin, and hydrogenation enabled the synthesis of syn-lactones in just a two-pot operation. An additional efficient Pd-catalyzed allylic isomerization of γ-vinyl-β-hydroxy-γ-lactone led to the anti-lactones in high yields.
Collapse
Affiliation(s)
- Ashvin J Gangani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 Maharashtra, India
| |
Collapse
|
16
|
Fernandes RA, Gangani AJ, Kumari A, Kumar P. A Decade of Muricatacin Synthesis and Beyond. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Ashvin J. Gangani
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Anupama Kumari
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai Maharashtra India
| |
Collapse
|
17
|
Fernandes RA, Kumar P, Choudhary P. Evolution of Strategies in Protecting‐Group‐Free Synthesis of Natural Products: A Recent Update. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Priyanka Choudhary
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| |
Collapse
|
18
|
Fox KA, Chadda R, Cardona F, Barron S, McArdle P, Murphy PV. Building blocks from monosaccharides for synthesis of scaffolds, including macrocycles. Application of allylic azide rearrangement, azide-alkyne cycloaddition and ring closing metathesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Mukherjee MM, Maity SK, Ghosh R. One-pot construction of carbohydrate scaffolds mediated by metal catalysts. RSC Adv 2020; 10:32450-32475. [PMID: 35516477 PMCID: PMC9056687 DOI: 10.1039/d0ra05355d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the environmental concern worldwide and also due to cost, time and labour issues, use of one-pot reactions [domino/cascade/tandem/multi-component (MC) or sequential] has gained much attention among the scientific and industrial communities for the generation of compound libraries having different scaffolds. Inclusion of sugars in such compounds is expected to increase the pharmacological efficacy because of the possibility of better interactions with the receptors of such unnatural glycoconjugates. In many of the one-pot transformations, the presence of a metal salt/complex can improve the reaction/change the course of reaction with remarkable increase in chemo-/regio-/stereo-selectivity. On the other hand because of the importance of natural polymeric glycoconjugates in life processes, the development and efficient synthesis of related oligosaccharides, particularly utilising one-pot MC-glycosylation techniques are necessary. The present review is an endeavour to discuss one-pot transformations involving carbohydrates catalysed by a metal salt/complex.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health Bethesda MD 20892 USA
| | | | - Rina Ghosh
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| |
Collapse
|
21
|
Lenci E, Bellini Puglielli R, Bucaletti E, Innocenti R, Trabocchi A. A Glucose‐Derived α‐Hydroxy Aldehyde for the Petasis Reaction: Facile Access to Polyfunctional δ‐Amino Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Raffaele Bellini Puglielli
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Elisabetta Bucaletti
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Riccardo Innocenti
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia 13 50019 Florence Sesto Fiorentino Italy
- Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM) University of Florence Viale Morgagni 85 50134 Florence Italy
| |
Collapse
|
22
|
Salunke RV, Ramesh NG. Divergent Synthesis of Amino-Substituted Indolizidine Alkaloids, Decahydropyrazino[2,1,6-cd]pyrrolizine Triols, and (-)-Pochonicine Stereoisomers. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rahul Vilas Salunke
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas; 110016 New Delhi - India
| | - Namakkal G. Ramesh
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas; 110016 New Delhi - India
| |
Collapse
|
23
|
Fernandes RA. The Potential of β-Hydroxy-γ-vinyl-γ-lactone in the Synthesis of Natural Products and Beyond. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry; Indian Institute of Technology Bombay; Powai 400076 Mumbai Maharashtra India
| |
Collapse
|
24
|
Abstract
Diverse syntheses of disparlure and its stereoisomers and analogues encompassing various strategies are compiled in this perspective.
Collapse
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Naveen Chandra
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Ashvin J. Gangani
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| |
Collapse
|
25
|
Kinfe HH. Versatility of glycals in synthetic organic chemistry: coupling reactions, diversity oriented synthesis and natural product synthesis. Org Biomol Chem 2019; 17:4153-4182. [PMID: 30893410 DOI: 10.1039/c9ob00343f] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycals, 1,2-unsaturated sugar derivatives, are versatile starting materials for the synthesis of natural products and the generation of novel structural features in Diversity Oriented Synthesis (DOS). The versatility of glycals in synthesis emanates, among others, from the presence of the ring oxygen and the enol-ether type unsaturation, the different types of stable conformations they can adopt depending on the nature of the protecting groups present and the ease with which the protecting groups of the three hydroxy groups could be tailored to suite for a desired manipulation. This review summarizes the literature on the different transformations of the endo glycals into biologically relevant compounds such as chromans, thiochromans, chromenes, thiochromenes, peptidomimetics, bridged benzopyrans etc., as well as on the use of glycals as chiral building blocks for the synthesis of various natural products such as aspicilin, reblastatin, diospongins, decytospolides, osmundalactones, paclitaxel, isatisine, d-fagomine, and spliceostatin, reported post 2014.
Collapse
Affiliation(s)
- Henok H Kinfe
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa.
| |
Collapse
|
26
|
Singh K, Malviya BK, Jaiswal PK, Verma VP, Chimni SS, Sharma S. Phenanthridine-Fused Tetracyclic Ring System: Metal-Free Diastereoselective Modular Construction of Highly Constrained Polyheterocycles via Post-Ugi Tandem Modifications. Org Lett 2019; 21:6726-6730. [DOI: 10.1021/acs.orglett.9b02340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karandeep Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | | | - Pradeep K. Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali 304022, India
| | | | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| |
Collapse
|
27
|
Castellanos A, Osante I, Fernández J, Fernández de la Pradilla R, Viso A. Oxidative reactions of sulfinyl dienes as an entry to functionalized carbohydrate-like products and furans. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Harit VK, Ramesh NG. Ring closing metathesis (RCM) approach to the synthesis of conduramine B-2, ent-conduramine F-2, aminocyclopentitol and trihydroxyazepane. Org Biomol Chem 2019; 17:5951-5961. [PMID: 31166343 DOI: 10.1039/c9ob01010f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of conduramine B-2, ent-conduramine F-2, aminocyclopentitol and trihydroxyazepane were accomplished from a common precursor, through a divergent approach using ring closing metathesis (RCM) as the key step. Tri-O-benzyl-d-glucal was converted to 3,4,6-tri-O-benzyl-1,2-dideoxy-2-iodo-1-p-toluenesulfonamido-α-d-mannose. Exposure to NaBH4 in MeOH resulted in a facile 1,2-transposition of the -NHTs group with concomitant glycosylation to give methyl 3,4,6-tri-O-benzyl-2-deoxy-2-p-toluenesulfonamido-β-d-glucoside, which was converted into methyl 6-deoxy-6-iodo-glucoside in three steps. Zinc-mediated Vasella's rearrangement proceeded smoothly to give the pluripotent formyl-olefin, possessing both electrophilic and nucleophilic sites, which was used as a common precursor in our diversity-oriented approach. Vinylation of the carbonyl group followed by RCM and subsequent deprotection resulted in the successful synthesis of conduramine B-2 and ent-conduramine F-2 for the first time. On the other hand, the Wittig reaction of the formyl-olefin affords the diene that undergoes Grubbs' I catalyzed RCM and deprotection/reduction to provide 3-amino-cyclopentan-1,2-diol. Utilizing the nucleophilic site at the nitrogen of the common precursor, base mediated N-allylation was carried out to obtain the corresponding diene that underwent a smooth RCM to afford trihydroxyazepane.
Collapse
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | | |
Collapse
|
29
|
Wamhoff EC, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger FF, Rademacher J, Hermann M, Del Frari B, van Dalen R, Hartmann D, van Sorge NM, Seitz O, Stoitzner P, Rademacher C. A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS CENTRAL SCIENCE 2019; 5:808-820. [PMID: 31139717 PMCID: PMC6535779 DOI: 10.1021/acscentsci.9b00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 05/30/2023]
Abstract
Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Jessica Schulze
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Lydia Bellmann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Mareike Rentzsch
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gunnar Bachem
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Juliane Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Martin Hermann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Del Frari
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Rob van Dalen
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - David Hartmann
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nina M. van Sorge
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Oliver Seitz
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
30
|
Suresh A, Baiju TV, Kumar T, Namboothiri INN. Synthesis of Spiro- and Fused Heterocycles via (4+4) Annulation of Sulfonylphthalide with o-Hydroxystyrenyl Derivatives. J Org Chem 2019; 84:3158-3168. [PMID: 30776237 DOI: 10.1021/acs.joc.8b03039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An expedient one-pot protocol for the synthesis of functionalized benzofuran containing fused and spiro-heterocycles has been accomplished by the modified Hauser-Kraus (HK) annulation of sulfonylphthalide with o-hydroxychalcones and o-hydroxynitrostyrylisoxazoles. The multicascade process involves Michael addition, Dieckmann cyclization, and a series of cyclizations, eliminations, and rearrangements to deliver the fused and spiro-heterocyclic products. An unusual transformation of fused indenofuran to naphthoquinone, the classical HK adduct, unraveled a novel pathway for the synthesis unsymmetrical naphthoquinones.
Collapse
Affiliation(s)
- Alati Suresh
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Thekke V Baiju
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Tarun Kumar
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Irishi N N Namboothiri
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| |
Collapse
|
31
|
Si Y, Xu D, Bum-Erdene K, Ghozayel MK, Yang B, Clemons PA, Meroueh SO. Chemical Space Overlap with Critical Protein-Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries. ChemMedChem 2019; 14:119-131. [PMID: 30548204 PMCID: PMC7175409 DOI: 10.1002/cmdc.201800537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/29/2018] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of structure-based virtual screening to identify small molecules that inhibit challenging protein-protein interactions (PPIs). In this study, we investigated how effectively chemical library members docked at the PPI interface mimic the position of critical side-chain residues known as "hot spots". Three compound collections were considered, a commercially available screening collection (ChemDiv), a collection of diversity-oriented synthesis (DOS) compounds that contains natural-product-like small molecules, and a library constructed using established reactions (the "screenable chemical universe based on intuitive data organization", SCUBIDOO). Three different tight PPIs for which hot-spot residues have been identified were selected for analysis: uPAR⋅uPA, TEAD4⋅Yap1, and CaV α⋅CaV β. Analysis of library physicochemical properties was followed by docking to the PPI receptors. A pharmacophore method was used to measure overlap between small-molecule substituents and hot-spot side chains. Fragment-like conformationally restricted small molecules showed better hot-spot overlap for interfaces with well-defined pockets such as uPAR⋅uPA, whereas better overlap was observed for more complex DOS compounds in interfaces lacking a well-defined binding site such as TEAD4⋅Yap1. Virtual screening of conformationally restricted compounds targeting uPAR⋅uPA and TEAD4⋅Yap1 followed by experimental validation reinforce these findings, as the best hits were fragment-like and had few rotatable bonds for the former, while no hits were identified for the latter. Overall, such studies provide a framework for understanding PPIs in the context of additional chemical matter and new PPI definitions.
Collapse
Affiliation(s)
- Yubing Si
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
32
|
Yi S, Varun BV, Choi Y, Park SB. A Brief Overview of Two Major Strategies in Diversity-Oriented Synthesis: Build/Couple/Pair and Ring-Distortion. Front Chem 2018; 6:507. [PMID: 30406085 PMCID: PMC6204370 DOI: 10.3389/fchem.2018.00507] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
In the interdisciplinary research field of chemical biology and drug discovery, diversity-oriented synthesis (DOS) has become indispensable in the construction of novel small-molecule libraries rich in skeletal and stereochemical diversity. DOS aims to populate the unexplored chemical space with new potential bioactive molecules via forward synthetic analysis. Since the introduction of this concept by Schreiber, DOS has evolved along with many significant breakthroughs. It is therefore important to understand the key DOS strategies to build molecular diversity with maximized biological relevancy. Due to the length limitations of this mini review, we briefly discuss the recent DOS plans using build/couple/pair (B/C/P) and ring-distortion strategies for the synthesis of major biologically relevant target molecules like natural products and their related compounds, macrocycles, and privileged structures.
Collapse
Affiliation(s)
- Sihyeong Yi
- Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul, South Korea
| | - Begur Vasanthkumar Varun
- Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul, South Korea
| | - Yoona Choi
- Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul, South Korea
| | - Seung Bum Park
- Department of Chemistry, CRI Center for Chemical Proteomics, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Halder J, Das D, Nanda S. A distinctive transformation based diversity oriented synthesis of small ring carbocycles and heterocycles from biocatalytically derived enantiopure α-substituted-β-hydroxyesters. Org Biomol Chem 2018; 16:2549-2575. [DOI: 10.1039/c8ob00233a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of structurally novel small ring carbocyclic and heterocyclic molecules were accessed in an enantiopure fashion.
Collapse
Affiliation(s)
- Joydev Halder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Debabrata Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Samik Nanda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
35
|
Dubbu S, Vankar YD. Diversity-Oriented Synthesis of Carbohydrate Scaffolds through the Prins Cyclization of Differently Protectedd-Mannitol-Derived Homoallylic Alcohols. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
36
|
Dimakos V, Garrett GE, Taylor MS. Site-Selective, Copper-Mediated O-Arylation of Carbohydrate Derivatives. J Am Chem Soc 2017; 139:15515-15521. [DOI: 10.1021/jacs.7b09420] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Graham E. Garrett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
37
|
El Bouakher A, Tasserie J, Le Goff R, Lhoste J, Martel A, Comesse S. Chemo-, Regio-, and Stereoselective Synthesis of Polysusbtituted Oxazolo[3,2-d][1,4]oxazepin-5(3H)ones via a Domino oxa-Michael/aza-Michael/Williamson Cycloetherification Sequence. J Org Chem 2017; 82:5798-5809. [PMID: 28467063 DOI: 10.1021/acs.joc.7b00629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jordan Tasserie
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| | - Ronan Le Goff
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| | - Jérôme Lhoste
- IMMM,
UMR 6283 CNRS, Université du Maine, 72088 Le Mans, France
| | - Arnaud Martel
- IMMM,
UMR 6283 CNRS, Université du Maine, 72088 Le Mans, France
| | - Sébastien Comesse
- FR
3032 CNRS, URCOM EA 3221, Normandie Univ, UNIHAVRE, 76600 Le Havre, France
| |
Collapse
|
38
|
Moya JF, Rosales C, Fernández I, Khiar N. Pyrene-tagged carbohydrate-based mixed P/S ligand: spacer effect on the Rh(i)-catalyzed hydrogenation of methyl α-acetamidocinnamate. Org Biomol Chem 2017; 15:5772-5780. [DOI: 10.1039/c7ob01085k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chain length between the pyrene group and the rhodium atom in mixed P/S catalysts is crucial in the enantioselective hydrogenation of enamides, and the most active catalyst can be used in catch and release process.
Collapse
Affiliation(s)
- Juan Francisco Moya
- Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| | - Christian Rosales
- Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica
- Universidad de Sevilla
- 41012 Seville
- Spain
| | - Noureddine Khiar
- Instituto de Investigaciones Químicas (IIQ)
- CSIC and Universidad de Sevilla
- Seville
- Spain
| |
Collapse
|
39
|
Leiro V, Moreno P, Sarmento B, Durão J, Gales L, Pêgo A, Barrias C. Design and preparation of biomimetic and bioinspired materials. BIOINSPIRED MATERIALS FOR MEDICAL APPLICATIONS 2017:1-44. [DOI: 10.1016/b978-0-08-100741-9.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Harit VK, Ramesh NG. A Chiron Approach to Diversity-Oriented Synthesis of Aminocyclitols, (−)-Conduramine F-4 and Polyhydroxyaminoazepanes from a Common Precursor. J Org Chem 2016; 81:11574-11586. [DOI: 10.1021/acs.joc.6b01790] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vimal Kant Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Namakkal G. Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
41
|
Lenci E, Innocenti R, Biagioni A, Menchi G, Bianchini F, Trabocchi A. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library. Molecules 2016; 21:molecules21101405. [PMID: 27775632 PMCID: PMC6273552 DOI: 10.3390/molecules21101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/16/2023] Open
Abstract
The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Riccardo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
42
|
Enantiopure Trisubstituted Tetrahydrofurans with Appendage Diversity: Vinyl Sulfone- and Vinyl Sulfoxide-Modified Furans Derived from Carbohydrates as Synthons for Diversity Oriented Synthesis. Molecules 2016; 21:molecules21060690. [PMID: 27240328 PMCID: PMC6274046 DOI: 10.3390/molecules21060690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Enantiomerically pure 2-substituted-2,5-dihydro-3-(aryl) sulfonyl/sulfinyl furans have been prepared from the easily accessible carbohydrate derivatives. The orientation of the substituents attached at the C-2 position of furans is sufficient to control the diastereoselectivity of the addition of various nucleophiles to the vinyl sulfone/sulfoxide-modified tetrahydrofurans, irrespective of the size of the group. The orientation of the substituents at the C-2 center also suppresses the influence of sulfoxides on the diastereoselectivity of the addition of various nucleophiles. The strategy leads to the creation of appendage diversity, affording a plethora of enantiomerically pure trisubstituted furanics for the first time.
Collapse
|