1
|
Ball LE, Smith MP, Klumperman B. Bioderived copolymer alternatives to poly(styrene- co-maleic anhydride) via RAFT-mediated copolymerization. Polym Chem 2025; 16:1019-1023. [PMID: 39831173 PMCID: PMC11740854 DOI: 10.1039/d4py01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Poly(styrene-co-maleic anhydride) (SMAnh) is a petroleum-based copolymer with desirable properties that afford utility in both industrial and academic fields. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of the bioderived comonomers, indene and itaconic anhydride, was explored using three chain transfer agents with varying activity, and generally well-controlled (Đ < 1.40) polymerizations were observed.
Collapse
Affiliation(s)
- Lauren Elaine Ball
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| | - Michael-Phillip Smith
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland 7602 South Africa
| |
Collapse
|
2
|
Ball L, Smith MP, Pfukwa R, Klumperman B. An Exploration of the Universal and Switchable RAFT-Mediated Synthesis of Poly(styrene- alt-maleic acid)- b-poly( N-vinylpyrrolidone) Block Copolymers. Macromolecules 2025; 58:1060-1076. [PMID: 39897052 PMCID: PMC11781032 DOI: 10.1021/acs.macromol.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
The synthesis of poly(styrene-alt-maleic anhydride) (SMAnh) and poly(4-tert-butylstyrene-alt-maleic anhydride) (tBuSMAnh) macro-RAFT agents was investigated using universal 3,5-dimethylpyrazole dithiocarbamate and stimuli-responsive N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents. SMAnh/tBuSMAnh macro-RAFT agents of targeted molecular weight and narrow molecular weight distribution could be synthesized with intentional variation of the terminal monomer unit, allowing for the assessment of two distinctive macro-R-groups. SMAnh macro-RAFT agents were utilized to mediate the thermally initiated polymerization of N-vinylpyrrolidone (NVP), yielding SMAnh-b-PVP, but with significant thermolysis and hydrolysis of dithiocarbamate ω-chain ends. Alternatively, the redox-initiated RAFT-mediated polymerization of NVP at ambient temperatures using hydrolyzed macro-RAFT agents, i.e., poly(styrene-alt-maleic acid) (SMA) and poly(4-tert-butylstyrene-alt-maleic acid) (tBuSMA), was explored. Double hydrophilic SMA-b-PVP and tBuSMA-b-PVP block copolymers could be synthesized but with significant broadening of the molecular weight distribution. This is a result of the formation of dead chains derived from the alkaline hydrolysis of macro-RAFT agents prepolymerization and hydrolysis of dithiocarbamate chain ends throughout the polymerization. The latter is exacerbated by the insertion of NVP at the ω-chain end, which was subsequently investigated via the kinetic analysis of the xanthate- and dithiocarbamate-mediated aqueous homopolymerization of NVP.
Collapse
Affiliation(s)
- Lauren
E. Ball
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Michael-Phillip Smith
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Hakobyan K, Ishizuka F, Corrigan N, Xu J, Zetterlund PB, Prescott SW, Boyer C. RAFT Polymerization for Advanced Morphological Control: From Individual Polymer Chains to Bulk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412407. [PMID: 39502004 DOI: 10.1002/adma.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Control of the morphology of polymer systems is achieved through reversible-deactivation radical polymerization techniques such as Reversible Addition-Fragmentation chain Transfer (RAFT). Advanced RAFT techniques offer much more than just "living" polymerization - the RAFT toolkit now enables morphological control of polymer systems across many decades of length-scale. Morphological control is explored at the molecular-level in the context of syntheses where individual monomer unit insertion provides sequence-defined polymers (single unit monomer insertion, SUMI). By being able to define polymer architectures, the synthesis of bespoke shapes and sizes of nanostructures becomes possible by leveraging self-assembly (polymerization induced self-assembly, PISA). Finally, it is seen that macroscopic materials can be produced with nanoscale detail, based on phase-separated nanostructures (polymerization induced microphase separation, PIMS) and microscale detail based on 3D-printing technologies. RAFT control of morphology is seen to cross from molecular level to additive manufacturing length-scales, with complete morphological control over all length-scales.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Fumi Ishizuka
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Per B Zetterlund
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
4
|
Wang Z, Zhang Z, Wu C, Wang Z, Liu W. Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects. Molecules 2024; 29:2377. [PMID: 38792240 PMCID: PMC11124407 DOI: 10.3390/molecules29102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650-700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization.
Collapse
Affiliation(s)
- Zhilei Wang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Zipeng Zhang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| |
Collapse
|
5
|
Ayurini M, Haridas D, Mendoza DJ, Garnier G, Hooper JF. RAFT Polymerisation by the Radical Decarboxylation of Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202317071. [PMID: 37990056 DOI: 10.1002/anie.202317071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
The controlled grafting of polymers from small- and macro-molecular substrates is an essential process for many advanced polymer applications. This usually requires the pre-functionalisation of substrates with an appropriate functional group, such as a RAFT agent or ATRP initiator, which requires additional synthetic steps. In this paper, we describe the direct grafting of RAFT polymers from carboxylate containing small molecules and polymers via photochemical radical decarboxylation. This method utilises the innate functional groups present in the substrates, and achieves efficient polymer initiation in a single step with excellent control of molecular weight and dispersity.
Collapse
Affiliation(s)
- Meri Ayurini
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| | - Darsan Haridas
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Joel F Hooper
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
6
|
Knox ST, Parkinson SJ, Wilding CYP, Bourne R, Warren NJ. Autonomous polymer synthesis delivered by multi-objective closed-loop optimisation. Polym Chem 2022. [DOI: 10.1039/d2py00040g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Application of artificial intelligence and machine learning for polymer discovery offers an opportunity to meet the drastic need for the next generation high performing and sustainable polymer materials. Here, these...
Collapse
|
7
|
Narumi A, Sato SI, Shen X, Kakuchi T. Precision synthesis for well-defined linear and/or architecturally controlled thermoresponsive poly(N-substituted acrylamide)s. Polym Chem 2022. [DOI: 10.1039/d1py01449h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the progress in precision polymerizations of specific kinds of N-alkylacrylamides and N,N-dialkylacrylamides to produce polymers showing thermoresponsive properties in aqueous media, which representatively include the reversible-deactivation radical polymerizations...
Collapse
|
8
|
Naguib M, Nixon K, Keddie D. Effect of Radical Copolymerization of the (Oxa)norbornene End-group of RAFT-prepared Macromonomers on Bottlebrush Copolymer Synthesis via ROMP. Polym Chem 2022. [DOI: 10.1039/d1py01599k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers are attractive for use in a variety of different applications. Here we report synthesis of two novel trithiocarbonate RAFT agents bearing either a oxanorbornyl or norbornenyl moiety for...
Collapse
|
9
|
Hirama A, Chou LC, Kakuchi R. Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction. Polym J 2021. [DOI: 10.1038/s41428-021-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
|
11
|
Robles Grana AL, Maldonado-Textle H, Torres-Lubián JR, St Thomas C, Díaz de León R, Olivares-Romero JL, Valencia L, Enríquez-Medrano FJ. Controlled (Co)Polymerization of Methacrylates Using a Novel Symmetrical Trithiocarbonate RAFT Agent Bearing Diphenylmethyl Groups. Molecules 2021; 26:4618. [PMID: 34361771 PMCID: PMC8347122 DOI: 10.3390/molecules26154618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Herein, we report a novel type of symmetrical trithiocarbonate chain transfer agent (CTA) based diphenylmethyl as R groups. The utilization of this CTA in the Reversible Addition-Fragmentation chain Transfer (RAFT) process reveals an efficient control in the polymerization of methacrylic monomers and the preparation of block copolymers. The latter are obtained by the (co)polymerization of styrene or butyl acrylate using a functionalized macro-CTA polymethyl methacrylate (PMMA) previously synthesized. Data show low molecular weight dispersity values (Đ < 1.5) particularly in the polymerization of methacrylic monomers. Considering a typical RAFT mechanism, the leaving groups (R) from the fragmentation of CTA should be able to re-initiate the polymerization (formation of growth chains) allowing an efficient control of the process. Nevertheless, in the case of the polymerization of MMA in the presence of this symmetrical CTA, the polymerization process displays an atypical behavior that requires high [initiator]/[CTA] molar ratios for accessing predictable molecular weights without affecting the Đ. Some evidence suggests that this does not completely behave as a common RAFT agent as it is not completely consumed during the polymerization reaction, and it needs atypical high molar ratios [initiator]/[CTA] to be closer to the predicted molecular weight without affecting the Đ. This work demonstrates that MMA and other methacrylic monomers can be polymerized in a controlled way, and with "living" characteristics, using certain symmetrical trithiocarbonates.
Collapse
Affiliation(s)
- Alvaro Leonel Robles Grana
- Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico; (A.L.R.G.); (H.M.-T.); (J.R.T.-L.); (R.D.d.L.)
| | - Hortensia Maldonado-Textle
- Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico; (A.L.R.G.); (H.M.-T.); (J.R.T.-L.); (R.D.d.L.)
| | - José Román Torres-Lubián
- Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico; (A.L.R.G.); (H.M.-T.); (J.R.T.-L.); (R.D.d.L.)
| | - Claude St Thomas
- CONACyT-Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico;
| | - Ramón Díaz de León
- Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico; (A.L.R.G.); (H.M.-T.); (J.R.T.-L.); (R.D.d.L.)
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Campus III, Instituto de Ecología, Xalapa 91073, Mexico;
| | - Luis Valencia
- Biofiber Tech Sweden AB, Norrsken Hourse, Birger Jarlsgatan 57 C, SE-113 56 Stockholm, Sweden;
| | - Francisco Javier Enríquez-Medrano
- Centro de Investigación en Química Aplicada, Enrique Reyna Hermosillo, No. 140, Col. San José de los Cerritos, Saltillo 25294, Mexico; (A.L.R.G.); (H.M.-T.); (J.R.T.-L.); (R.D.d.L.)
| |
Collapse
|
12
|
Karpus A, Harrisson S, Poli R, Mazières S, Manoury E, Destarac M. Well-Defined P III-Terminated Polymers from Phosphorylated Carbodithioate RAFT Agents. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrii Karpus
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, 31077 Toulouse, France
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS UMR 5623, 118 Route de Narbonne, 31062 Toulouse, France
| | - Simon Harrisson
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux/ENSCBP/CNRS UMR 5623, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, 31077 Toulouse, France
| | - Stéphane Mazières
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS UMR 5623, 118 Route de Narbonne, 31062 Toulouse, France
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, 31077 Toulouse, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS UMR 5623, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
13
|
Alex J, Ulbrich J, Rosales-Guzmán M, Weber C, Schubert US, Guerrero-Sanchez C. Kinetic investigations on homo- and co-polymerizations of pentafluorophenyl (meth)acrylates. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Falireas PG, Ladmiral V, Ameduri B. Synthesis, aqueous solution behavior and self-assembly of a dual pH/thermo-responsive fluorinated diblock terpolymer. Polym Chem 2021. [DOI: 10.1039/d0py01515f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of fluorinated dual-responsive block terpolymers via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization is presented.
Collapse
|
15
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
16
|
Khalili Foumeshi M, Haghi R, Beier P, Ziyaei Halimehjani A. A convenient four-component reaction for the synthesis of dithiocarbamates starting from naphthols in water. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1778698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Maryam Khalili Foumeshi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6, Czech Republic
| | | | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6, Czech Republic
| | | |
Collapse
|
17
|
Kakuchi R, Okura Y. The Passerini three-component reaction of aldehyde end-functionalized polymers via RAFT polymerization using chain transfer agents featuring aldehyde. Polym J 2020. [DOI: 10.1038/s41428-020-0368-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Sun Z, Wang M, Li Z, Choi B, Mulder RJ, Feng A, Moad G, Thang SH. Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhonghe Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Mu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
| | - Zhi Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Roger J. Mulder
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Graeme Moad
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
- School of Chemistry, Monash University, Clayton Campus, Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Moad G, Rizzardo E. A 20th anniversary perspective on the life of RAFT (RAFT coming of age). POLYM INT 2019. [DOI: 10.1002/pi.5944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Abstract
Reversible addition–fragmentation chain–transfer (RAFT) polymerization of methyl methacrylate (MMA) is modeled and monitored using a multi-rate multi-delay observer in this work. First, to fit the RAFT reaction rate coefficients and the initiator efficiency in the model, in situ 1 H nuclear magnetic resonance (NMR) experimental data from small-scale (<2 mL) NMR tube reactions is obtained and a least squares optimization is performed. 1 H NMR and size exclusion chromatography (SEC) experimental data from large-scale (>400 mL) reflux reactions is then used to validate the fitted model. The fitted model accurately predicts the polymer properties of the large-scale reactions with slight discordance at late reaction times. Based on the fitted model, a multi-rate multi-delay observer coupled with an inter-sample predictor and dead time compensator is designed, to account for the asynchronous multi-rate measurements with non-constant delays. The multi-rate multi-delay observer shows perfect convergence after a few sampling times when tested against the fitted model, and is in fair agreement with the real data at late reaction times when implemented based on the experimental measurements.
Collapse
|
21
|
Wolpers A, Bergerbit C, Ebeling B, D'Agosto F, Monteil V. Aromatic Xanthates and Dithiocarbamates for the Polymerization of Ethylene through Reversible Addition–Fragmentation Chain Transfer (RAFT). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Arne Wolpers
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Cédric Bergerbit
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Bastian Ebeling
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Franck D'Agosto
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Vincent Monteil
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| |
Collapse
|
22
|
Wolpers A, Bergerbit C, Ebeling B, D'Agosto F, Monteil V. Aromatic Xanthates and Dithiocarbamates for the Polymerization of Ethylene through Reversible Addition–Fragmentation Chain Transfer (RAFT). Angew Chem Int Ed Engl 2019; 58:14295-14302. [DOI: 10.1002/anie.201905629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Arne Wolpers
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Cédric Bergerbit
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Bastian Ebeling
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Franck D'Agosto
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| | - Vincent Monteil
- Université de Lyon, Université Lyon 1 CPE Lyon CNRS UMR 5265 Laboratoire C2P2 Équipe LCPP 69616 Villeurbanne, CEDEX France
| |
Collapse
|
23
|
Creese O, Adoni P, Su G, Romanyuk A, Fernandez-Trillo P. Poly(Boc-acryloyl hydrazide): the importance of temperature and RAFT agent degradation on its preparation. Polym Chem 2019. [DOI: 10.1039/c9py01222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improved conditions for the polymerization of Boc-acryloylhydrazide have been obtained through optimisation of the reaction temperature, achieving this way a compromise between rate of polymerization and rate of degradation of the RAFT agent.
Collapse
Affiliation(s)
- Oliver Creese
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Pavan Adoni
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Guanlong Su
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Andrey Romanyuk
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Paco Fernandez-Trillo
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| |
Collapse
|
24
|
Kulai I, Karpus A, Soroka L, Valyaev DA, Bourdon V, Manoury E, Poli R, Destarac M, Mazières S. Manganese phosphinocarbodithioate for RAFT polymerisation with sunlight-induced chain end post-treatment. Polym Chem 2019. [DOI: 10.1039/c8py01279b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new manganese complex of the formula Cp(CO)2MnP(Ph)2C(S)SCH(CH3)Ph is an efficient RAFT agent for the preparation of SH-terminated polymers by simple visible light photocleavage of the organometallic end-group.
Collapse
Affiliation(s)
- Ihor Kulai
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Andrii Karpus
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Liubov Soroka
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Dmitry A. Valyaev
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Valérie Bourdon
- ICT – Service de spectrométrie de masse – Université Paul Sabatier
- 31062 Toulouse
- France
| | - Eric Manoury
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- Université de Toulouse
- UPS
- INPT
| | - Mathias Destarac
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Stéphane Mazières
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| |
Collapse
|
25
|
Bergerbit C, Farías-Mancilla B, Seiler L, Monteil V, Harrisson S, D'Agosto F, Destarac M. Synthesis of PMMA-based block copolymers by consecutive irreversible and reversible addition–fragmentation chain transfer polymerizations. Polym Chem 2019. [DOI: 10.1039/c9py01181a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Xanthate and dithiocarbamate functionalized PMMAs obtained by free radical polymerization in the presence of xanthogen and dithiuram disulfide were used for chain extension with less activated monomers such as vinyl acetate and ethylene.
Collapse
Affiliation(s)
- Cédric Bergerbit
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | | | - Lucie Seiler
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Vincent Monteil
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Simon Harrisson
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| | - Franck D'Agosto
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Mathias Destarac
- Laboratoire des IMRCP
- Université Paul Sabatier
- CNRS UMR 5623
- 31062 Toulouse
- France
| |
Collapse
|
26
|
Golf H, O'Shea R, Braybrook C, Hutt O, Lupton DW, Hooper JF. RAFT polymer cross-coupling with boronic acids. Chem Sci 2018; 9:7370-7375. [PMID: 30542540 PMCID: PMC6237125 DOI: 10.1039/c8sc01862f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to modify the thiocarbonylthio end-groups of RAFT polymers is important for applications where an inert or highly functionalised material is required. Here we report a copper promoted cross-coupling reaction between RAFT polymer end-groups and aryl boronic acids. This method gives high conversion to the modified polymers, and is compatible with a wide variety of functional molecules.
Collapse
Affiliation(s)
- Hartwig Golf
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | - Riley O'Shea
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | | | - Oliver Hutt
- CSIRO , Research Way , Melbourne , VIC 3168 , Australia
| | - David W Lupton
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| | - Joel F Hooper
- School of Chemistry , Monash University , Clayton , Melbourne , VIC 3800 , Australia . ;
| |
Collapse
|
27
|
A Critical Survey of Dithiocarbamate Reversible Addition‐Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29199] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Tselepy A, Schiller TL, Harrisson S, Guerrero-Sanchez C, Moad G, Keddie DJ. Effect of Scandium Triflate on the RAFT Copolymerization of Methyl Acrylate and Vinyl Acetate Controlled by an Acid/Base “Switchable” Chain Transfer Agent. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ashton Tselepy
- Chemistry,
School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Tara L. Schiller
- International
Institute of Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Simon Harrisson
- IMRCP,
UMR CNRS 5623, Université de Toulouse, 118 route de Narbonne, Cedex 9 31062 Toulouse, France
| | - Carlos Guerrero-Sanchez
- CSIRO Manufacturing
Flagship, Bag 10, Clayton South, VIC 3169, Australia
- Laboratory of Organic and Macromolecular Chemistry (IOMC) & Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena and Polymer Libraries GmbH, Philosophenweg 7, 07743 Jena, Germany
| | - Graeme Moad
- CSIRO Manufacturing
Flagship, Bag 10, Clayton South, VIC 3169, Australia
| | - Daniel J. Keddie
- Chemistry,
School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
- CSIRO Manufacturing
Flagship, Bag 10, Clayton South, VIC 3169, Australia
- School of Sciences, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, United Kingdom
| |
Collapse
|
29
|
Haven JJ, Hendrikx M, Junkers T, Leenaers PJ, Tsompanoglou T, Boyer C, Xu J, Postma A, Moad G. Elements of RAFT Navigation. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1284.ch004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joris J Haven
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
- Insitute for Materials Research, Universiteit Hasselt, B-3590 Diepenbeck, Belgium
| | - Matthew Hendrikx
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Tanja Junkers
- School of Chemistry, Monash University, Clayton, Vic 3800, Australia
- Insitute for Materials Research, Universiteit Hasselt, B-3590 Diepenbeck, Belgium
| | - Pieter J Leenaers
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Theodora Tsompanoglou
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of NSW, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of NSW, NSW 2052, Australia
| | - Almar Postma
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| |
Collapse
|
30
|
Li J, Pan X, Li N, Zhu J, Zhu X. Photoinduced controlled radical polymerization of methyl acrylate and vinyl acetate by xanthate. Polym Chem 2018. [DOI: 10.1039/c8py00050f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A block copolymer of PMA-b-PVAc was successfully synthesized using photo-induced RAFT polymerization with a xanthate.
Collapse
Affiliation(s)
- Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Na Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
31
|
Yang Q, Guerre M, Ladmiral V, Ameduri B. Thermal and photo-RAFT polymerization of 2,2,2-trifluoroethyl α-fluoroacrylate. Polym Chem 2018. [DOI: 10.1039/c8py00571k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RAFT polymerization of 2,2,2-trifluoroethyl α-fluoroacrylate (FATRIFE) was studied under thermal conditions and light irradiation in the presence of four chain transfer agents. Polymers with narrow dispersities were obtained in the presence of trithiocarbonate CTA2, and this further led to fluorinated block copolymers.
Collapse
Affiliation(s)
- Qizhi Yang
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| | - Marc Guerre
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| | | | - Bruno Ameduri
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- 34296 Cedex 5 Montpellier
| |
Collapse
|
32
|
Banerjee S, Guerre M, Améduri B, Ladmiral V. Syntheses of 2-(trifluoromethyl)acrylate-containing block copolymers via RAFT polymerization using a universal chain transfer agent. Polym Chem 2018. [DOI: 10.1039/c8py00655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
2-(Trifluoromethyl)acrylate-containing block copolymers were synthesized via RAFT polymerization using a universal CTA.
Collapse
Affiliation(s)
- Sanjib Banerjee
- Department of Chemistry
- Indian Institute of Technology Bhilai
- Raipur 492015
- India
| | | | | | | |
Collapse
|
33
|
Dong H, Zhu Y, Li Z, Xu J, Liu J, Xu S, Wang H, Gao Y, Guo K. Dual Switching in Both RAFT and ROP for Generation of Asymmetric A2A1B1B2 Type Tetrablock Quaterpolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- He Dong
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yuejia Zhu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Jiaxi Xu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Songquan Xu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Haixin Wang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Yu Gao
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
34
|
Affiliation(s)
- Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
35
|
Gardiner J, Martinez-Botella I, Kohl TM, Krstina J, Moad G, Tyrell JH, Coote ML, Tsanaktsidis J. 4-Halogeno-3,5-dimethyl-1H-pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. POLYM INT 2017. [DOI: 10.1002/pi.5423] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Graeme Moad
- CSIRO Manufacturing; Clayton Victoria Australia
| | - Jason H Tyrell
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry; Australian National University; Canberra Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry; Australian National University; Canberra Australia
| | | |
Collapse
|
36
|
Pearson S, St Thomas C, Guerrero-Santos R, D'Agosto F. Opportunities for dual RDRP agents in synthesizing novel polymeric materials. Polym Chem 2017. [DOI: 10.1039/c7py00344g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual RDRP agents provide access to new polymeric materials by combining ATRP, NMP, and RAFT polymerization without end group transformations.
Collapse
Affiliation(s)
- Samuel Pearson
- Équipe EPCP
- IPREM UMR 5254
- Université de Pau et des Pays de l'Adour (UPPA)
- 64053 Pau
- France
| | - Claude St Thomas
- Centro de Investigación en Química Aplicada (CIQA)
- Polymer Synthesis Department
- Coahuila
- México
| | - Ramiro Guerrero-Santos
- Centro de Investigación en Química Aplicada (CIQA)
- Polymer Synthesis Department
- Coahuila
- México
| | - Franck D'Agosto
- Univ Lyon
- Université Claude Bernard Lyon 1
- CPE Lyon
- CNRS
- UMR 5265
| |
Collapse
|
37
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
38
|
Brendel JC, Gody G, Perrier S. Efficient click-addition sequence for polymer–polymer couplings. Polym Chem 2016. [DOI: 10.1039/c6py00954a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled radical polymerization methods and click chemistry form a versatile toolbox for creating complex polymer architectures.
Collapse
Affiliation(s)
- Johannes C. Brendel
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | - Guillaume Gody
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|