1
|
Kayranli B, Bilen M, Seckin IY, Yilmaz T, Dinc A, Akkurt F, Simsek H. Peanut shell biochar for Rhodamine B removal: Efficiency, desorption, and reusability. CHEMOSPHERE 2024; 364:143056. [PMID: 39127190 DOI: 10.1016/j.chemosphere.2024.143056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
A high-performance and affordable peanut shell-derived biochar was employed for the efficient removal of Rhodamine B (RhB) from aqueous solutions. The properties of peanut shell biochar (PSB) were investigated through Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller surface area measurements. The FTIR analysis revealed numerous active sites and functional groups for the binding of dye molecules, while the BET surface area was determined to be 351.11 m2g-1. Four different isotherms and kinetic models were applied to determine the equilibrium adsorption of RhB, and the results indicated that the Freundlich isotherm was the most appropriate model. A maximum dye removal rate of 94.0% occurred at a pH of 3 with an adsorbent dose of 0.325 g L-1. The prepared adsorbent showed excellent sorbent behaviour and can be reused multiple times after regeneration, with the surface area decreasing from 351.11 m2g-1 to 140.13 m2g-1 after the third cycle. The negative Gibbs free energy ΔGo at all applied temperatures suggested that spontaneous adsorption occurred and RhB adsorption on the PSB was found exothermic, as evidenced by the negative value of ΔHo. The regenerated PSB can be utilized as an efficient, environmentally friendly, and cost-effective sorbent for the removal of dyes at temperatures lower than ambient temperature, providing both technical and financial advantages for sustainable environmental management.
Collapse
Affiliation(s)
- Birol Kayranli
- Graduate School of Natural and Applied Science, Department of Environmental Science, Gazi University, Ankara, Turkey; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Murat Bilen
- Gazi University, Department of Chemical Engineering, Ankara, Turkey
| | | | - Turan Yilmaz
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Ahmet Dinc
- Graduate School of Natural and Applied Science, Department of Environmental Science, Gazi University, Ankara, Turkey
| | - Fatih Akkurt
- Gazi University, Department of Chemical Engineering, Ankara, Turkey
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Sonawane MR, Chhowala TN, Suryawanshi KE, Fegade U, Naushad M, Bathula C. Statistical physics double-layer models for the experimental study and theoretical modeling of methyl orange dye adsorption on AlMnTiO nanocomposite. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:447-458. [PMID: 36988124 DOI: 10.1080/10934529.2023.2190710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
A Al2O3/MnO2/TiO2 (AlMnTiO) nanocomposite was synthesized using the thermal coprecipitation method and the adsorption performance of methyl orange (MO) dye from aqueous solution was carried out. Single-parameter optimization was used to explore the properties of AlMnTiO nanocomposite parameters on dye adsorption, including dose of adsorbent, solution pH, contact duration, and starting MO concentration. The model is the appropriate adsorption isotherm for the equilibrium process using a pseudo-second-order kinetic model property. Langmuir plot had a Qmax (mg/g) of 198.4 and best fitted (R2=0.990) among different isotherm models. The relevant parameters were computed using the dual-energy binary-layer statistical physics model. The statistical physics binary-layer model yield n (stoichiometric coefficient) values of 0.410, 0.440, and 0.453, all values are below 1, demonstrating the multi-docking process. AlMnTiO nanocomposite was regenerated up to six times, making the material extremely cost-effective. Using AlMnTiO nanocomposite, MO dye was removed from wastewater both in the laboratory and on the industrial scale.
Collapse
Affiliation(s)
- Mahesh R Sonawane
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | | | - K E Suryawanshi
- Department of Applied Science and Humanities, R.C. Patel Institute of Technology, Shirpur, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| |
Collapse
|
3
|
Mamman S, Yaacob SFFS, Raoov M, Mehamod FS, Zain NNM, Suah FBM. Exploring the performance of magnetic methacrylic acid-functionalized β-cyclodextrin adsorbent toward selected phenolic compounds. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractIn this study, the removal of bisphenol A (BPA), 2,4-dinitrophenol (2,4-DNP), and 2,4-dichlorophenol (2,4-DCP) using a new magnetic adsorbent methacrylic acid-functionalized β-cyclodextrin (Fe3O4@MAA-βCD) was evaluated. The materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, and X-ray diffraction. The batch adsorption experiments optimized and evaluated various operational parameters such as pH, contact time, sorbent dosage, initial concentration, and temperature. The result shows that DNP possessed the most excellent affinity toward Fe3O4@MAA-βCD adsorbents compared to BPA and DCP. Also, BPA showed the lowest removal and was used as a model analyte for further study. The adsorption kinetic data revealed that the uptake of these compounds follows the pseudo-second order. Freundlich and Halsey isotherms best-fitted the adsorption equilibrium data. The desorption process was exothermic and spontaneous, and a lower temperature favored the adsorption. Furthermore, hydrogen bonding, inclusion complexion, and π–π interactions contributed to the selected phenolic compound’s adsorption.
Collapse
|
4
|
Fabrication of modified carbon nano tubes based composite using ionic liquid for phenol removal. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Ali A, Siddique M, Chen W, Han Z, Khan R, Bilal M, Waheed U, Shahzadi I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116396. [PMID: 35681981 PMCID: PMC9180375 DOI: 10.3390/ijerph19116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Phenol is the most common organic pollutant in many industrial wastewaters that may pose a health risk to humans due to its widespread application as industrial ingredients and additives. In this study, waste green tea leaves (WGTLs) were modified through chemical activation/carbonization and used as an adsorbent in the presence of ultrasound (cavitation) to eliminate phenol in the aqueous solution. Different treatments, such as cavitation, adsorption, and sono-adsorption were investigated to remove the phenol. The scanning electron microscope (SEM) morphology of the adsorbent revealed that the structure of WGTLs was porous before phenol was adsorbed. A Fourier Transform Infrared (FTIR) analysis showed an open chain of carboxylic acids after the sono-adsorption process. The results revealed that the sono-adsorption process is more efficient with enhanced removal percentages than individual processes. A maximum phenol removal of 92% was obtained using the sono-adsorption process under an optimal set of operating parameters, such as pH 3.5, 25 mg L−1 phenol concentration, 800 mg L−1 adsorbent dosage, 60 min time interval, 30 ± 2 °C temperature, and 80 W cavitation power. Removal of chemical oxygen demand (COD) and total organic carbon (TOC) reached 85% and 53%. The Freundlich isotherm model with a larger correlation coefficient (R2, 0.972) was better fitted for nonlinear regression than the Langmuir model, and the sono-adsorption process confirmed the pseudo-second-order reaction kinetics. The findings indicated that WGTLs in the presence of a cavitation effect prove to be a promising candidate for reducing phenol from the aqueous environment.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Zhixin Han
- Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Tai’an 271000, China;
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 59300, Pakistan;
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| |
Collapse
|
6
|
Jethave G, Inamuddin, Fegade U, Altalhi T, Kanchi S, Dhake R. Double-layer modelling and physicochemical parameters interpretation for chromium adsorption on ZnMnOAC nanocomposite. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ganesh Jethave
- School of Environmental and Earth Science, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
| | - Inamuddin
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, Durban, South Africa
- Department of Chemistry, Sambhram Institute of Technology, Bengaluru, India
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, India
| |
Collapse
|
7
|
Chakraborty S, Simon R, Vadakkekara A, N.L. M. Microwave assisted synthesis of poly(ortho-phenylenediamine-co-aniline) and functionalised carbon nanotube nanocomposites for fabric-based supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Loganathan TM, Hameed Sultan MT, Ahsan Q, Jawaid M, Naveen J, Md Shah AU, Abu Talib AR, Basri AA, Jaafar CNA. Effect of Cyrtostachys renda Fiber Loading on the Mechanical, Morphology, and Flammability Properties of Multi-Walled Carbon Nanotubes/Phenolic Bio-Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3049. [PMID: 34835813 PMCID: PMC8621541 DOI: 10.3390/nano11113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Abstract
This research focuses on evaluating the effect of Cyrtostachys renda (CR) fiber and the impact of adding multi-walled carbon nanotubes (MWCNT) on the morphological, physical, mechanical, and flammability properties of phenolic composites. MWCNT were supplemented with phenolic resin through a dry dispersion ball milling method. Composites were fabricated by incorporating CR fiber in 0.5 wt.% MWCNT-phenolic matrix by hot pressing. Nevertheless, the void content, higher water absorption, and thickness swelling increased with fiber loading to the MWCNT/phenolic composites. The presence of MWCNT in phenolic enhanced the tensile, flexural, and impact strength by as much as 18%, 8%, and 8%, respectively, compared to pristine phenolic. The addition of CR fiber, however, strengthened MWCNT-phenolic composites, improving the tensile, flexural, and impact strength by as much as 16%, 16%, and 266%, respectively, for 50 wt.% loading of CR fiber. The CR fiber may adhere properly to the matrix, indicating that there is a strong interface between fiber and MWCNT-phenolic resin. UL-94 horizontal and limiting oxygen index (LOI) results indicated that all composite materials are in the category of self-extinguishing. Based on the technique for order preference by similarity to the ideal solution (TOPSIS) technique, 50 wt.% CR fiber-reinforced MWCNT-phenolic composite was chosen as the optimal composite for mechanical and flammability properties. This bio-based eco-friendly composite has the potential to be used as an aircraft interior component.
Collapse
Affiliation(s)
- Tamil Moli Loganathan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; (T.M.L.); (A.U.M.S.); (A.R.A.T.); (A.A.B.)
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; (T.M.L.); (A.U.M.S.); (A.R.A.T.); (A.A.B.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia;
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor Darul Ehsan, Malaysia
| | - Qumrul Ahsan
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh;
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia;
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Ain Umaira Md Shah
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; (T.M.L.); (A.U.M.S.); (A.R.A.T.); (A.A.B.)
| | - Abd. Rahim Abu Talib
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; (T.M.L.); (A.U.M.S.); (A.R.A.T.); (A.A.B.)
| | - Adi Azriff Basri
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; (T.M.L.); (A.U.M.S.); (A.R.A.T.); (A.A.B.)
| | - Che Nor Aiza Jaafar
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
9
|
Chakraborty S, Simon R, Antonia Trisha Zac R, Anoop V, Mary NL. Microwave-assisted synthesis of ZnO decorated acid functionalized carbon nanotubes with improved specific capacitance. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Lissaneddine A, Mandi L, El Achaby M, Mousset E, Rene ER, Ouazzani N, Pons MN, Aziz F. Performance and dynamic modeling of a continuously operated pomace olive packed bed for olive mill wastewater treatment and phenol recovery. CHEMOSPHERE 2021; 280:130797. [PMID: 34162119 DOI: 10.1016/j.chemosphere.2021.130797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
The solid waste of olive oil extraction processes (olive pomace, OP) was converted into activated carbon (AC) by treating it with NaOH and then encapsulating it within sodium alginate (SA) in beads by crosslinking (SA-AC beads). The prepared SA-AC beads were utilized as an adsorbent for the elimination and recovery of phenolic compounds (PCs) from olive mill wastewater (OMWW) following a zero liquid and waste discharge approach to implement and promote the circular economy concept. The novel AC and SA-AC beads were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and Brunauer, Emmett and Teller (BET) analysis. The adsorption performance of these beads was evaluated in batch and fixed-bed reactors operated in a concurrent flow system. The results revealed that an adsorption capacity of 68 mg g-1 was attained for 4000 mg L-1 phenolic compounds. The kinetics of the adsorption process of the PCs fit a pseudo second-order model, and the most likely mechanism took place in two stages. The adsorption isotherm conformed to the Langmuir model, representing the monolayer adsorption of the phenolic compounds. The dynamic models were used, and they accurately represented the breakthrough curves. Considering PC recovery and process reusability, a regeneration experiment of SA-AC beads was carried out in fixed-bed reactors. SA-AC beads showed a high percentage desorption >40% using ethanol and were efficient after several cycles of OMWW treatment and phenol recovery.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratoire Réactions et Génie des Procédés (LRGP), CNRS/Université de Lorraine (UMR 7274), Nancy, France
| | - Laila Mandi
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Emmanuel Mousset
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS/Université de Lorraine (UMR 7274), Nancy, France
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, PO. Box 3015, 2601 DA, Delft, the Netherlands
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Marie-Noëlle Pons
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS/Université de Lorraine (UMR 7274), Nancy, France
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| |
Collapse
|
11
|
Ugraskan V, Isik B, Yazici O. Adsorptive removal of methylene blue from aqueous solutions by porous boron carbide: isotherm, kinetic and thermodynamic studies. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1948406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Volkan Ugraskan
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Birol Isik
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Ozlem Yazici
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Fegade U, Kolate S, Dhake R, Altalhi T, Kanchi S. Adsorption of Congo Red on Pb doped Fe xO y: experimental study and theoretical modeling via double-layer statistical physics models. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1714-1727. [PMID: 33843754 DOI: 10.2166/wst.2021.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Size-controlled Pb0.06Fe0.7O3 nanoparticles (Pb-FeONPs) were fabricated by the thermal co-precipitation method and characterized by FE-SEM, EDX, XRD, and IR techniques. The SEM and XRD images showed the average size distribution and average crystallite size of 19.21 nm and 4.9 nm, respectively. The kinetic model of Congo Red (CR) adsorption onto Pb-FeONPs was verified and found to be a pseudo-second-order reaction. The Langmuir plot was better fitted (R2 = 0.990) than other isotherm models with a Qmax (mg/g) of 500 for Congo Red (CR) dye in 40 min. The double-layer statistical physics model based on two energies was used to calculate the significant parameters. The n (stoichiometric coefficient) values obtained from the statistical physics double-layer model were found to be 0.599, 0.593, and 0.565, which are less than 1, indicating the multi-docking process. The regeneration of Pb-FeONPs was used for up to 5 cycles effectively, making the material highly economical. The Pb-FeONPs were fruitfully applied for the removal of CR dye from wastewater on a laboratory and industrial scale.
Collapse
Affiliation(s)
- Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Sachin Kolate
- Department of Chemistry, Bhusawal Arts, Science and P.O. Nahata Commerce College, Bhusawal 425201 (MH), India E-mail:
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon 425201 (MH), India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, Durban 4000, South Africa and Department of Chemistry, Sambhram Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru 560097, India
| |
Collapse
|
13
|
Xiao Y, Wang Y, Xie Y, Ni H, Li X, Zhang Y, Xie T. Shape-controllable synthesis of MnO 2 nanostructures from manganese-contained wastewater for phenol degradation by activating peroxymonosulphate: performance and mechanism. ENVIRONMENTAL TECHNOLOGY 2020; 41:2037-2048. [PMID: 30507346 DOI: 10.1080/09593330.2018.1554708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Nanostructured manganese oxide materials were prepared from manganese-contained wastewater (MW) using a facile hydrothermal method and adopted as a catalyst to degrade phenol via activation of peroxymonosulphate (PMS). In the WM environment, δ-MnO2 (flower-like Mn-2 with nanosheets) was transformed to α-MnO2 (needle-like Mn-4 with nanowires). Catalytic evaluation experiments demonstrated that the needle-like MnO2 was highly efficient for phenol removal, with a degradation efficiency of 100% within 15 min at the optimal conditions of catalyst dosage 0.2 g/L, PMS dosage 1.5 g/L, initial phenol concentration 0.025 g/L, initial pH 3 and temperature 25°C. Moreover, the needle-like MnO2 catalyst could be recycled and the regenerated material after calcination remained excellent catalytic activity. On the surface of catalysts, PMS was activated by MnIV to generate [Formula: see text] which was the major reactive species attacking phenol. Overall, the needle-like MnO2 prepared from MW was an efficient catalyst with low cost for organic wastewater treatment, realizing both Mn resource recycle and organic wastewater treatment.
Collapse
Affiliation(s)
- Yaxiong Xiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Haixiang Ni
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Mishra S, Yadav SS, Rawat S, Singh J, Koduru JR. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:362-373. [PMID: 31195256 DOI: 10.1016/j.jenvman.2019.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/15/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
In this study, waste corn husk was used for the synthesis of an effective adsorbent (cornhusk activated carbon, CHAC) and by treating at two different temperatures, 250 °C (CHAC-250) and 500 °C (CHAC-500) to check adsorption efficiency. The synthesized adsorbents were characterized with the help of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy, Particle size analysis and x-ray diffraction (XRD), which revealed the different properties of the two adsorbents. The synthesized adsorbents were applied for the removal of phenol and p-nitrophenol (PNP) from aqueous solution. CHAC-500 was more efficient than the CHAC-250. The maximum adsorptions of phenol and PNP by CHAC-500 were ∼96% and ∼94%, respectively, while the maximum adsorptions of phenol and PNP by CHAC-250 were ∼81% and ∼84%, respectively. The adsorption processes were best fitted with the Langmuir adsorption isotherm and the pseudo-second-order kinetic model. The adsorption of phenol was an exothermic process, while that of PNP was an endothermic process, on both adsorbents.
Collapse
Affiliation(s)
- Shubham Mishra
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Swati Singh Yadav
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Shalu Rawat
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
16
|
Lawal IA, Lawal MM, Azeez MA, Ndungu P. Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110895] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Sun J, Liu X, Zhang F, Zhou J, Wu J, Alsaedi A, Hayat T, Li J. Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1457-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Masoudian N, Rajabi M, Ghaedi M, Asghari A. Highly efficient adsorption of Naphthol Green B and Phenol Red dye by Combination of Ultrasound wave and Copper-Doped Zinc Sulfide Nanoparticles Loaded on Pistachio-Nut Shell. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Navid Masoudian
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Alireza Asghari
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| |
Collapse
|
20
|
Khakpour R, Tahermansouri H. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions. Int J Biol Macromol 2018; 109:598-610. [DOI: 10.1016/j.ijbiomac.2017.12.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
|
21
|
Pooralhossini J, Zanjanchi MA, Ghaedi M, Asfaram A, Azqhandi MHA. Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaleh Pooralhossini
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
| | - Mohammad Ali Zanjanchi
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
- Department of Chemistry, Faculty of ScienceUniversity of Guilan Rasht 41335‐1914 Iran
| | | | - Arash Asfaram
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
| | | |
Collapse
|
22
|
|
23
|
Mohseni Kafshgari M, Tahermansouri H. Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions: Study of sorption parameters. Colloids Surf B Biointerfaces 2017; 160:671-681. [PMID: 29031227 DOI: 10.1016/j.colsurfb.2017.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/01/2022]
Abstract
The functionalization of graphene oxide (GO) with chitosan (Chi) has been investigated to prepare a nanocomposite material (GO-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, XRD and BET. Batch experiments such as solution pH, amount of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. Isotherm studies showed that the Langmuir isotherm for GO and Freundlich and Halsey models for GO-Chi were found to best represent the measured sorption data. Negative ΔG° values for GO-Chi and positive ones for GO indicated the nature of spontaneous and unspontaneous, respectively for adsorption process. In addition, picric acid molecules can be desorbed from GO-Chi up to 80% at pH=9 and that the consumed GO-Chi could be reutilized up to 5th cycle of regeneration.
Collapse
Affiliation(s)
| | - Hasan Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| |
Collapse
|
24
|
Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions. Sci Rep 2016; 6:23175. [PMID: 26980545 PMCID: PMC4793254 DOI: 10.1038/srep23175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/29/2016] [Indexed: 11/08/2022] Open
Abstract
Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution.
Collapse
|
25
|
Chowdhury S, Balasubramanian R. Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO2 Capture. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04052] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shamik Chowdhury
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Republic of Singapore
| |
Collapse
|
26
|
Dehghani MH, Mostofi M, Alimohammadi M, McKay G, Yetilmezsoy K, Albadarin AB, Heibati B, AlGhouti M, Mubarak N, Sahu J. High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.12.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
|
28
|
Ghaedi M, Daneshyar A, Asfaram A, Purkait MK. Adsorption of naphthalene onto high-surface-area nanoparticle loaded activated carbon by high performance liquid chromatography: response surface methodology, isotherm and kinetic study. RSC Adv 2016. [DOI: 10.1039/c6ra09500c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Naphthalene removal from aqueous solution was investigated using zinc sulfide nanoparticle loaded activated carbon (ZnS-NPs-AC).
Collapse
Affiliation(s)
| | | | - Arash Asfaram
- Chemistry Department
- Yasouj University
- Yasouj 75918-74831
- Iran
| | - Mihir Kumar Purkait
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| |
Collapse
|
29
|
Ye C, Wu Y, Wang Z. Modification of cellulose paper with polydopamine as a thin film microextraction phase for detection of nitrophenols in oil samples. RSC Adv 2016. [DOI: 10.1039/c5ra23232e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polydopamine cellulose paper was used as a novel extraction phase to detect nitrophenols in oil samples.
Collapse
Affiliation(s)
- Cunling Ye
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yujun Wu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Zhike Wang
- School of Environment
- Henan Key Laboratory for Environmental Pollution Control
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Normal University
| |
Collapse
|
30
|
Jahangiri M, Kiani F, Tahermansouri H, Rajabalinezhad A. The removal of lead ions from aqueous solutions by modified multi-walled carbon nanotubes with 1-isatin-3-thiosemicarbazone. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|