1
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
2
|
Rashid N, Khalid SH, Ullah Khan I, Chauhdary Z, Mahmood H, Saleem A, Umair M, Asghar S. Curcumin-Loaded Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-inflammatory Cytokines to Expedite Healing of Full-Thickness Wounds. ACS OMEGA 2023; 8:7575-7586. [PMID: 36872957 PMCID: PMC9979366 DOI: 10.1021/acsomega.2c07018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Curcumin (Cur) entrapped poly(vinyl alcohol) (PVA)/gelatin composite films were prepared by cross-linking with tannic acid (TA) as bioactive dressings for rapid wound closure. Films were evaluated for mechanical strength, swelling index, water vapor transmission rate (WVTR), film solubility, and in-vitro drug release studies. SEM revealed uniform and smooth surfaces of blank (PG9) and Cur-loaded composite films (PGC4). PGC4 exhibited excellent mechanical strength (tensile strength (TS) and Young's modulus (YM) were 32.83 and 0.55 MPa, respectively), swelling ability (600-800% at pH 5.4, 7.4, and 9), WVTR (2003 ± 26), and film solubility (27.06 ± 2.0). Sustained release (81%) of the encapsulated payload was also observed for 72 h. The antioxidant activity determined by DPPH free radical scavenging showed that the PGC4 possessed strong % inhibition. The PGC4 formulation displayed higher antibacterial potential against S. aureus (14.55 mm zone of inhibition) and E. coli (13.00 mm zone of inhibition) compared to blank and positive control by the agar well diffusion method. An in-vivo wound healing study was carried out on rats using a full-thickness excisional wound model. Wounds treated with PGC4 showed very rapid healing about 93% in just 10 days post wounding as compared to 82.75% by Cur cream and 80.90% by PG9. Furthermore, histopathological studies showed ordered collagen deposition and angiogenesis along with fibroblast formation. PGC4 also exerted a strong anti-inflammatory effect by downregulating the expression of pro-inflammatory cytokines (TNF-α and IL-6 were lowered by 76% and 68% as compared to the untreated group, respectively). Therefore, Cur-loaded composite films can be an ideal delivery system for effective wound healing.
Collapse
Affiliation(s)
- Nida Rashid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hira Mahmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Ahmadi H, Ghamsarizade R, Haddadi-Asl V, Eivaz Mohammadloo H, Ramezanzadeh B. Designing a novel bio-compatible hydroxyapatite (HA)/hydroxyquinoline (8-HQ)-inbuilt polyvinylalcohol (PVA) composite coatings on Mg AZ31 implants via electrospinning and immersion protocols: smart anti-corrosion and anti-bacterial properties reinforcements. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Valarmathi N, Sumathi S. Zinc substituted hydroxyapatite/silk fiber/methylcellulose nanocomposite for bone tissue engineering applications. Int J Biol Macromol 2022; 214:324-337. [PMID: 35691428 DOI: 10.1016/j.ijbiomac.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 01/19/2023]
Abstract
Fibrous bio-composite based on silk fiber (SF), methylcellulose (MC) and zinc substituted hydroxyapatite (ZnxCa5-x (PO4)3(OH) (x = 0.1, 0.2, 0.5 and 1.0)) were obtained with the use of electrospinning (E-Spin) method. XRD, FTIR, SEM-EDAX, swelling, porosity and mechanical properties of the composites were analyzed. The elongation at break (%) (20.97-317.20 %) and tensile strength (29.85-110.92 MPa) of nanocomposites was increased with an increase in the wt% of Zn-HAP in SF/MC. An increase in the zone of inhibition with an increase in the wt% of Zn-HAP into the SF/MC was observed against E. coli (34 ± 0.33 to 47 ± 1.15), S. aureus (28 ± 0.24 to 38 ± 1.32) and C. albicans (24 ± 0.36 to 39 ± 2.36). The in-vitro biomineralization study using SBF (simulated body fluid) showed apatite layer formation on the nano-composite. In addition, the optimized (20 wt % of Zn1.0Ca4.0(PO4)3(OH)/SF/MC) nano-composite showed good cell viability against human bone osteosarcoma (MG-63) cells.
Collapse
Affiliation(s)
- N Valarmathi
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - S Sumathi
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India.
| |
Collapse
|
5
|
Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition. COATINGS 2022. [DOI: 10.3390/coatings12050702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, the effectiveness of vacuum deposition technique for obtaining composite thin films based on chitosan-coated magnesium-doped hydroxyapatite Ca10−xMgx(PO4)6 (OH)2 with xMg = 0.025 (MgHApCh) was proved for the first time. The prepared samples were exposed to three doses (0, 3, and 6 Gy) of gamma irradiation. The MgHApCh composite thin films nonirradiated and irradiated were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) studies. The biological evaluation of the samples was also presented. All the results obtained from this study showed that the vacuum deposition method allowed for obtaining uniform and homogeneous layers. Fine cracks were observed on the MgHApCh composite thin films’ surface after exposure to a 6 Gy irradiation dose. Additionally, after gamma irradiation, a decrease in Ca, P, and Mg content was noticed. The MgHApCh composite thin films with doses of 0 and 3 Gy of gamma irradiation showed a cellular viability similar to that of the control. Samples with 6 Gy doses of gamma irradiation did not cause significantly higher fibroblast cell death than the control (p > 0.05). On the other hand, the homogeneous distribution of pores that appeared on the surface of coatings after 6 Gy doses of gamma irradiation did not prevent the adhesion of fibroblast cells and their spread on the coatings. In conclusion, we could say that the thin films could be suitable both for use in bone implants and for other orthopedic and dentistry applications.
Collapse
|
6
|
Lv Y, Xu Y, Sang X, Li C, Liu Y, Guo Q, Ramakrishna S, Wang C, Hu P, Nanda HS. PLLA-gelatin composite fiber membranes incorporated with functionalized CeNPs as a sustainable wound dressing substitute promoting skin regeneration and scar remodelling. J Mater Chem B 2022; 10:1116-1127. [DOI: 10.1039/d1tb02677a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need of wound dressing material that can accelerate wound healing is increasing and will last a long time. In this study, Cerium Oxide Nanoparticles (CeNPs) incorporated poly-L-lactic acid (PLLA)-gelatin...
Collapse
|
7
|
Ponnusamy S, Subramani R, Elangomannan S, Louis K, Periasamy M, Dhanaraj G. Novel Strategy for Gallium-Substituted Hydroxyapatite/ Pergularia daemia Fiber Extract/Poly( N-vinylcarbazole) Biocomposite Coating on Titanium for Biomedical Applications. ACS OMEGA 2021; 6:22537-22550. [PMID: 34514226 PMCID: PMC8427647 DOI: 10.1021/acsomega.1c02186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The current work mainly focuses on the innovative nature of nano-gallium-substituted hydroxyapatite (nGa-HAp)/Pergularia daemia fiber extract (PDFE)/poly(N-vinylcarbazole) (PVK) biocomposite coating on titanium (Ti) metal in an eco-friendly and low-cost way through electrophoretic deposition for metallic implant applications. Detailed analysis of this nGa-HAp/PDFE/PVK biocomposite coating revealed many encouraging functional properties like structure and uniformity of the coating. Furthermore, gallium and fruit extract of PDFE-incorporated biocomposite enhance the in vitro antimicrobial, cell viability, and bioactivity studies. In addition, the mechanical and anticorrosion tests of the biocomposite material proved improved adhesion, hardness, and corrosion resistance properties, which were found to be attributed to the presence of PDFE and PVK. Also, the swelling and degradation behaviors of the as-developed material were evaluated in simulated body fluids (SBF) solution. The results revealed that the as-developed composite exhibited superior swelling and lower degradation properties, which evidences the stability of composite in the SBF solution. Overall, the results of the present study indicate that these nGa-HAp/PDFE/PVK biocomposite materials with improved mechanical, corrosion resistance, antibacterial, cell viability, and bioactivity properties appear as promising materials for biomedical applications.
Collapse
Affiliation(s)
| | - Ramya Subramani
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Shinyjoy Elangomannan
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Kavitha Louis
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Manoravi Periasamy
- Materials
Chemistry and Metal Fuel Cycle Group, Indira
Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil
Nadu, India
| | - Gopi Dhanaraj
- Department
of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| |
Collapse
|
8
|
Wang Y, Teng W, Zhang Z, Zhou X, Ye Y, Lin P, Liu A, Wu Y, Li B, Zhang C, Yang X, Li W, Yu X, Gou Z, Ye Z. A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. Bioact Mater 2021; 6:1853-1866. [PMID: 33336116 PMCID: PMC7732879 DOI: 10.1016/j.bioactmat.2020.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023] Open
Abstract
Bacteria-associated infection represents one of the major threats for orthopedic implants failure during their life cycles. However, ordinary antimicrobial treatments usually failed to combat multiple waves of infections during arthroplasty and prosthesis revisions etc. As these incidents could easily introduce new microbial pathogens in/onto the implants. Herein, we demonstrate that an antimicrobial trilogy strategy incorporating a sophisticated multilayered coating system leveraging multiple ion exchange mechanisms and fine nanotopography tuning, could effectively eradicate bacterial infection at various stages of implantation. Early stage bacteriostatic effect was realized via nano-topological structure of top mineral coating. Antibacterial effect at intermediate stage was mediated by sustained release of zinc ions from doped CaP coating. Strong antibacterial potency was validated at 4 weeks post implantation via an implanted model in vivo. Finally, the underlying zinc titanate fiber network enabled a long-term contact and release effect of residual zinc, which maintained a strong antibacterial ability against both Staphylococcus aureus and Escherichia coli even after the removal of top layer coating. Moreover, sustained release of Sr2+ and Zn2+ during CaP coating degradation substantially promoted implant osseointegration even under an infectious environment by showing more peri-implant new bone formation and substantially improved bone-implant bonding strength.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Zengjie Zhang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Peng Lin
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - An Liu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Wu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Binghao Li
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, 10016, USA
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Weixu Li
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xiaohua Yu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| |
Collapse
|
9
|
Thilagam R, Gnanamani A. Preparation, characterization and cell response studies on bioconjugated 3D protein hydrogels with wide-range stiffness: An approach on cell therapy and cell storage. Colloids Surf B Biointerfaces 2021; 205:111843. [PMID: 34022701 DOI: 10.1016/j.colsurfb.2021.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
The present study emphasizes the preparation and characterization of bioconjugated keratin-gelatin (KG) 3D hydrogels with wide-range stiffness to study cell response for cell therapy and cell storage applications. In brief, human hair keratin and bovine gelatin at different ratios bioconjugated using EDC/NHS provide five hydrogels (KG-1, KG-2.5, KG -5, KG-7.5 and KG-9) with modulus ranging from 0.9 ± 0.1 to 10.9 ± 0.4 kPa. Based on swelling, stability, porosity, and degradation parameters KG-5 and KG-9 are employed to assess the human dermal fibroblast (HDF) cell response, cell delivery and cell storage respectively. Characterization studies revealed the concentration of keratin determines the modulus/stiffness of the hydrogels, whereas gelatin concentration plays a vital role in porosity, swelling percentage, and degradation properties. HDF cell behaviour in the chosen hydrogels assessed based on cell adhesion, cell proliferation, PCNA expression, MTT assay, and DNA quantification. We observed the best cell behaviour in KG-5 hydrogels than in the KG-9 matrix. In cell storage and cell delivery studies, the KG-9 matrix displayed promising results. Thus, the present study concludes bioconjugated keratin-gelatin 3D hydrogel with modulus below 3.0 kPa facilitates the proliferation of HDFs, whereas matrix above 10 kPa modulus supports cell storage and cell recovery. The observations of the present study suggest the suitability of bioconjugated fibrous protein 3D hydrogel for cell therapy and cell storage.
Collapse
Affiliation(s)
- R Thilagam
- Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India
| | - A Gnanamani
- Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India.
| |
Collapse
|
10
|
Goldmann WH. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol Int 2021; 45:1624-1632. [PMID: 33818836 DOI: 10.1002/cbin.11604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Metallic materials are commonly used for load-bearing implants and as internal fixation devices. It is customary to use austenitic stainless steel, especially surgical grade type 316L SS as temporary and Ti alloys as permanent implants. However, long-term, poor bonding with bone, corrosion, and release of metal ions, such as chromium and nickel occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital biomedical material, which can form a biologically active phase of hydroxycarbonate apatite on their surface when in contact with physiological fluids. To reduce the high coefficient of friction and the brittle nature of BGs, polymers are normally incorporated to avoid the high-temperature sintering/densification of ceramic-only coatings. For medical application, electrophoretic deposition (EPD) is now used for polymer (organic) and ceramic (inorganic) components at room temperature due to its simplicity, control of coating thickness and uniformity, low cost of equipment, ability to coat substrates of intricate shape and to supply thick films in composite form, high purity of deposits as well as no phase transformation during coating. Although extensive research has been conducted on polymer/inorganic composite coatings, only some studies have reported multifunctional properties, such as biological antibacterial activity, enhanced cell adhesion, controlled drug release ability, and mechanical properties. This review will focus on biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with antibacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/PLLA layers), which have the potential of multifunctional coating for metallic implants.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Biophysics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
11
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
12
|
Narayanan V, Sumathi S, Narayanasamy ANR. Tricomponent composite containing copper–hydroxyapatite/chitosan/polyvinyl pyrrolidone for bone tissue engineering. J Biomed Mater Res A 2020; 108:1867-1880. [DOI: 10.1002/jbm.a.36950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
|
13
|
Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107:25-49. [PMID: 32084600 DOI: 10.1016/j.actbio.2020.02.022] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Globally, chronic wounds impose a notable burden to patients and healthcare systems. Such skin wounds are readily subjected to bacteria that provoke inflammation and hence challenge the healing process. Furthermore, bacteria induce infection impeding re-epithelialization and collagen synthesis. With an estimated global market of $20.4 billion by 2021, appropriate wound dressing materials e.g. those composed of biopolymers originating from nature, are capable of alleviating the infection incidence and of accelerating the healing process. Particularly, biopolymeric nanofibrous dressings are biocompatible and mostly biodegradable and biomimic the extracellular matrix structure. Such nanofibrous dressings provide a high surface area and the ability to deliver antibiotics and antibacterial agents locally into the wound milieu to control infection. In this regard, with the dangerous evolution of antibiotic resistant bacteria, antibiotic delivery systems are being gradually replaced with antibacterial biohybrid nanofibrous wound dressings. This emerging class of wound dressings comprises biopolymeric nanofibers containing antibacterial nanoparticles, nature-derived compounds and biofunctional agents. Here, the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings, particularly those made of biohybrids, are reviewed and their antibacterial efficiency is evaluated based on a comprehensive literature analysis. Lastly, the prospects and challenges are discussed to draw a roadmap for further progresses and to open up future research avenues in this area. STATEMENT OF SIGNIFICANCE: With a global market of $20.4 billion by 2021, skin wound dressings are a crucial segment of the wound care industry. As an advanced class of bioactive wound dressing materials, natural polymeric nanofibers loaded with antibacterial agents, e.g. antimicrobial nanoparticles/ions, nature-derived compounds and biofunctional agents, have shown a remarkable potential for replacement of their classic counterparts. Also, given the expanding concern regarding antibiotic resistant bacteria, such biohybrid nanofibrous wound dressings can outperform classical drug delivery systems. Here, an updated overview of the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings is presented. In this review, while discussing about the antibacterial efficiency of such systems, the prospects and challenges are highlighted to draw a roadmap for further progresses in this area.
Collapse
|
14
|
Yang Y, Wang H, Zhu JC, Shao YF, Bai FJ, Chen XM, Li X, Guo M, Shao Z, Zhang KQ. Silk-Fibroin-Assisted Cathodic Electrolytic Deposition of Calcium Phosphate for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:4302-4310. [DOI: 10.1021/acsbiomaterials.9b00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Hui Wang
- Jiangsu Industrial Technology Research Institute of Textile & Silk, Nantong Textile & Silk Industrial Technology Research Institute, Nantong, PR China
| | | | | | | | | | | | | | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ke-Qin Zhang
- Jiangsu Industrial Technology Research Institute of Textile & Silk, Nantong Textile & Silk Industrial Technology Research Institute, Nantong, PR China
| |
Collapse
|
15
|
Touny AH, Saleh MM, Abd El-Lateef HM, Saleh MM. Electrochemical methods for fabrication of polymers/calcium phosphates nanocomposites as hard tissue implants. APPLIED PHYSICS REVIEWS 2019; 6. [DOI: 10.1063/1.5045339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing and manipulating new biomaterials is an ongoing topic for their needs in medical uses. The evolution and development of new biomaterials, in both the academic and industrial sectors, have been encouraged due to the dramatic improvement in medicine and medical-related technologies. Due to the drawbacks associated with natural biomaterials, the use of synthetic biomaterials is preferential due to basic and applied aspects. Various techniques are involved in fabricating biomaterials. Among them are the electrochemical-based methods, which include electrodeposition and electrophoretic methods. Although electrospinning and electrospraying are not typical electrochemical methods, they are also reviewed in this article due to their importance. Many remarkable features can be acquired from this technique. Electrodeposition and electrophoretic deposition are exceptional and valuable processes for fabricating thin or thick coated films on a surface of metallic implants. Electrodeposition and electrophoretic deposition have some common positive features. They can be used at low temperatures, do not affect the structure of the implant, and can be applied to complex shapes, and they can produce superior properties, such as quick and uniform coating. Furthermore, they can possibly control the thickness and chemical composition of the coatings. Electrospinning is a potentially emerging and efficient process for producing materials with nanofibrous structures, which have exceptional characteristics such as mechanical properties, pore size, and superior surface area. These specialized characteristics induce these nanostructured materials to be used in different technologies.
Collapse
Affiliation(s)
- Ahmed H. Touny
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Helwan University 2 , Helwan, Egypt
| | - Mohamed M. Saleh
- Wake Forest Institute for Regenerative Medicine 3 , Winston Salem, North Carolina 27103, USA
| | - Hany M. Abd El-Lateef
- Department of Chemistry, Faculty of Science, King Faisal University 1 , Al-Hassa, Saudi Arabia
- Chemistry Department, College of Science, Sohag University 4 , Sohag, Egypt
| | - Mahmoud M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University 5 , Cairo, Egypt
| |
Collapse
|
16
|
|
17
|
Karthika A. Aliovalent ions substituted hydroxyapatite coating on titanium for improved medical applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2017.12.304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Yao CH, Lee CY, Huang CH, Chen YS, Chen KY. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629050 DOI: 10.1016/j.msec.2017.05.076] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Chia-Yu Lee
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
19
|
Thomas MB, Metoki N, Geuli O, Sharabani-Yosef O, Zada T, Reches M, Mandler D, Eliaz N. Quickly Manufactured, Drug Eluting, Calcium Phosphate Composite Coating. ChemistrySelect 2017. [DOI: 10.1002/slct.201601954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Midhun Ben Thomas
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering; Tel-Aviv University; Ramat Aviv 6997801 Israel
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering; Tel-Aviv University; Ramat Aviv 6997801 Israel
| | - Ori Geuli
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| | - Orna Sharabani-Yosef
- Department of Biomedical Engineering, Faculty of Engineering; Tel Aviv University; Ramat Aviv 6997801 Israel
| | - Tal Zada
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| | - Meital Reches
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 9190401 Israel
| | - Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering; Tel-Aviv University; Ramat Aviv 6997801 Israel
| |
Collapse
|
20
|
Sathishkumar S, Louis K, Shinyjoy E, Gopi D. Tailoring the Sm/Gd-Substituted Hydroxyapatite Coating on Biomedical AISI 316L SS: Exploration of Corrosion Resistance, Protein Profiling, Osteocompatibility, and Osteogenic Differentiation for Orthopedic Implant Applications. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04329] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Saravanan Sathishkumar
- Department
of Chemistry, Periyar University, Salem 636011, India
- Centre
for Nanoscience and Nanotechnology, Periyar University, Salem 636011, India
| | - Kavitha Louis
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur 610101, India
| | | | - Dhanaraj Gopi
- Department
of Chemistry, Periyar University, Salem 636011, India
- Centre
for Nanoscience and Nanotechnology, Periyar University, Salem 636011, India
| |
Collapse
|
21
|
Li CW, Pan WT, Ju JC, Wang GJ. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation. ACTA ACUST UNITED AC 2016; 11:025015. [PMID: 27068738 DOI: 10.1088/1748-6041/11/2/025015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation.
Collapse
Affiliation(s)
- Ching-Wen Li
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
22
|
Criado M, Rey JM, Mijangos C, Hernández R. Double-membrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties. RSC Adv 2016. [DOI: 10.1039/c6ra25053j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel methodology to obtain thermoresponsive mechanically strong hydrogels of gelatin and chondroitin sulphate organized in layers.
Collapse
Affiliation(s)
- M. Criado
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - J. M. Rey
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| | - R. Hernández
- Instituto de Ciencia y Tecnología de Polímeros
- Consejo Superior de Investigaciones Científicas
- 28006 Madrid
- Spain
| |
Collapse
|
23
|
Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv 2016. [DOI: 10.1039/c5ra25391h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AgNP-HAC has the potential to be used on the surfaces of orthopedic and dental implants for infection prophylaxis.
Collapse
Affiliation(s)
- Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Wei Chen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yufeng Dong
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - John V. Marymont
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - Yong Lei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|