1
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
3
|
Wang D, Wang W, Wang P, Wang C, Niu J, Liu Y, Chen Y. Research progress of colon-targeted oral hydrogel system based on natural polysaccharides. Int J Pharm 2023; 643:123222. [PMID: 37454829 DOI: 10.1016/j.ijpharm.2023.123222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The quality of life is significantly impacted by colon-related diseases. There have been a lot of interest in the oral colon-specific drug delivery system (OCDDS) as a potential carrier to decrease systemic side effects and protect drugs from degradation in the upper gastrointestinal tract (GIT). Hydrogels are effective oral colon-targeted drug delivery carriers due to their high biodegradability, substantial drug loading, and great biocompatibility. Natural polysaccharides give the hydrogel system unique structure and function to effectively respond to the complex environment of the GIT and deliver drugs to the colon. In this paper, the physiological factors of colonic drug delivery and the pathological characteristics of common colonic diseases are summarized, and the latest advances in the design, preparation and characterization of natural polysaccharide hydrogels are reviewed, which are expected to provide new references for colon-targeted oral hydrogel systems using natural polysaccharides as raw materials.
Collapse
Affiliation(s)
- Dingding Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuang Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Poláková L, Raus V, Cuchalová L, Poręba R, Hrubý M, Kučka J, Větvička D, Trhlíková O, Sedláková Z. SHARP hydrogel for the treatment of inflammatory bowel disease. Int J Pharm 2021; 613:121392. [PMID: 34933083 DOI: 10.1016/j.ijpharm.2021.121392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a relapsing and remitting inflammatory disease affecting millions of people worldwide. The active phase of IBD is characterized by excessive formation of reactive oxygen species (ROS) in the intestinal mucosa, which further accelerates the inflammatory process. A feasible strategy for the IBD treatment is thus breaking the oxidation-inflammation vicious circle by scavenging excessive ROS with the use of a suitable antioxidant. Herein, we have developed a novel hydrogel system for oral administration utilizing sterically hindered amine-based redox polymer (SHARP) incorporating covalently bound antioxidant SHA groups. SHARP was prepared via free-radical polymerization by covalent crosslinking of 2-hydroxyethyl methacrylate (HEMA), poly(ethylene oxide) methyl ether methacrylate (PEGMA) and a SHA-based monomer, N-(2,2,6,6-tetramethyl-piperidin-4-yl)-methacrylamide. The SHARP hydrogel was resistant to hydrolysis and swelled considerably (∼90% water content) under the simulated gastrointestinal tract (GIT) conditions, and exhibited concentration-dependent antioxidant properties in vitro against different ROS. Further, the SHARP hydrogel was found to be non-genotoxic, non-cytotoxic, non-irritating, and non-absorbable from the gastrointestinal tract. Most importantly, SHARP hydrogel exhibited a statistically significant, dose-dependent therapeutic effect in the mice model of dextran sodium sulfate (DSS)-induced acute colitis. Altogether, the obtained results suggest that the SHARP hydrogel strategy holds a great promise with respect to IBD treatment.
Collapse
Affiliation(s)
- Lenka Poláková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Lucie Cuchalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Rafał Poręba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - David Větvička
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
5
|
Acid-resistant ROS-responsive hyperbranched polythioether micelles for ulcerative colitis therapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Yan Y, Sun Y, Wang P, Zhang R, Huo C, Gao T, Song C, Xing J, Dong Y. Mucoadhesive nanoparticles-based oral drug delivery systems enhance ameliorative effects of low molecular weight heparin on experimental colitis. Carbohydr Polym 2020; 246:116660. [PMID: 32747292 DOI: 10.1016/j.carbpol.2020.116660] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Low molecular weight heparin (LMWH) is reported to have therapeutic action on ulcerative colitis (UC). To facilitate its oral administration and improve the colon-targeting property, LMWH-loaded nanoparticles (TMC-NPs and SA-TMC-NPs) are prepared and evaluated by a series of studies, including their stabilities, drug release profiles, mucosal permeation, mucoadhesion, cytotoxicities, cellular uptake profiles, anticoagulant and anti-inflammatory activities, mucosal healing properties, biosafety and ameliorative effects on experimental colitis. Consequently, oral administration of LMWH-loaded NPs for 5 days perform significant therapeutic effects on mice, which are manifested as improved body weight gains, colon length, DAI score, MPO activity and histological characteristics. Besides, SA-TMC-NPs show better colon-targeting property than TMC-NPs that is demonstrated by lower oral absorption (ATPP 38.95 s) and stronger mucoadhesion (kcps reduces 36.46 %) to inflamed colon tissues. Therefore, TMC-based NPs are proved to be as promising oral colon-targeting drug delivery systems of LMWH and has potential application in UC treatment.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Sun
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengchong Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Zhang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chuanchuan Huo
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tingting Gao
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenghua Song
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yalin Dong
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Yan Y, Sun J, Xie X, Wang P, Sun Y, Dong Y, Xing J. Colon-targeting mutual prodrugs of 5-aminosalicylic acid and butyrate for the treatment of ulcerative colitis. RSC Adv 2018; 8:2561-2574. [PMID: 35541446 PMCID: PMC9077470 DOI: 10.1039/c7ra13011b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to design and synthesize four colon-targeting mutual prodrugs of 5-aminosalicylic acid (5-ASA) and butyrate, and evaluate their therapeutic effects on ulcerative colitis.
Collapse
Affiliation(s)
- Yan Yan
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jinyao Sun
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | - Xianting Xie
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | | | - Ying Sun
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yalin Dong
- Department of Pharmacy
- The First Affiliated Hospital of Xi'an Jiaotong University
- Xi'an
- China
| | - Jianfeng Xing
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|
8
|
In vitro and in vivo study of pH-sensitive and colon-targeting P(LE-IA-MEG) hydrogel microspheres used for ulcerative colitis therapy. Eur J Pharm Biopharm 2017; 122:70-77. [PMID: 29017953 DOI: 10.1016/j.ejpb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Hydrocortisone sodium succinate (HSS) is an anti-inflammatory drug, but its application on ulcerative colitis (UC) treatment is limited by its associated side-effects. To solve this problem, a kind of pH-sensitive P(LE-IA-MEG) hydrogel microspheres (HMSs) were prepared as the drug carrier of hydrocortisone sodium succinate (HSS) for the treatment of UC. The P(LE-IA-MEG) HMSs were spherical in shape with good dispersion and the mean particle size was 34.87±0.90μm. HSS was successfully loaded into the P(LE-IA-MEG) HMSs. The in vitro release study of HSS-loaded HMSs (HSS-HMSs) revealed that the HSS-HMSs possessed desirable pH-sensitivity, the cumulative release rate was 4.07% and 94.64% in the solution with pH 1.2 and pH 7.4 solution during 12h, respectively. Furthermore, the study on pharmacokinetic, gastrointestinal drug residue and side-effects were conducted to evaluate the in vivo colon-targeting property of the HSS-HMSs. All the results showed that the HSS-HMSs could deliver HSS to the colon as well as reduce its premature absorption in the upper gastrointestinal tract. Finally, the HSS-HMSs showed better ameliorative effects and therapeutic effects on mice with experimental colitis as compared to HSS. In conclusion, the HSS-HMSs had great potential in the treatment of UC.
Collapse
|
9
|
Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers (Basel) 2017; 9:137. [PMID: 30970818 PMCID: PMC6432076 DOI: 10.3390/polym9040137] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Improving the safety efficacy ratio of existing drugs is a current challenge to be addressed rather than the development of novel drugs which involve much expense and time. The efficacy of drugs is affected by a number of factors such as their low aqueous solubility, unequal absorption along the gastrointestinal (GI) tract, risk of degradation in the acidic milieu of the stomach, low permeation of the drugs in the upper GI tract, systematic side effects, etc. This review aims to enlighten readers on the role of pH sensitive hydrogels in drug delivery, their mechanism of action, swelling, and drug release as a function of pH change along the GI tract. The basis for the selection of materials, their structural features, physical and chemical properties, the presence of ionic pendant groups, and the influence of their pKa and pKb values on the ionization, consequent swelling, and targeted drug release are also highlighted.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rosiyah Yahya
- Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Aziz Hassan
- Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, 54000 Lahore, Pakistan.
| | | | - Vidhya Selvanathan
- Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Faridah Sonsudin
- Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheyma Naceur Abouloula
- Department of Physics, Faculty of Science Semlalia Marrakesh, Cadi Ayyad University, 40000 Marrakesh, Morocco.
| |
Collapse
|