1
|
Gomzyak VI, Sedush NG, Puchkov AA, Polyakov DK, Chvalun SN. Linear and Branched Lactide Polymers for Targeted Drug Delivery Systems. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The review presents modern advances in the synthesis of biodegradable polymers based on lactide of various topologies and also analyzes the main methods for preparation of nanoparticles that show promise for the creation of targeted drug delivery systems.
Collapse
|
2
|
Zhou S, Pan Y, Zhang J, Li Y, Neumann F, Schwerdtle T, Li W, Haag R. Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells. NANOSCALE 2020; 12:24006-24019. [PMID: 33242041 DOI: 10.1039/d0nr06570f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate.
Collapse
Affiliation(s)
- Suqiong Zhou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin, 14195, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kravicz MH, Balogh DT, Kar M, Wedepohl S, Bentley MVLB, Calderón M. Influence of Alkyl Chains of Modified Polysuccinimide‐Based Polycationic Polymers on Polyplex Formation and Transfection. Macromol Biosci 2019; 19:e1900117. [PMID: 31402631 DOI: 10.1002/mabi.201900117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marcelo H. Kravicz
- School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São Paulo Avenida do Café, s/n 14040903 Ribeirão Preto SP Brazil
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Debora T. Balogh
- São Carlos Institute of PhysicsUniversity of São Paulo CP 369 13560‐970 São Carlos SP Brazil
| | - Mrityunjoy Kar
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Stefanie Wedepohl
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Maria Vitoria L. B. Bentley
- School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São Paulo Avenida do Café, s/n 14040903 Ribeirão Preto SP Brazil
| | - Marcelo Calderón
- Institute of Chemistry and BiochemistryFreie Universität Berlin Takustraße 3 14195 Berlin Germany
- IKERBASQUEBasque Foundation for Science 48013 Bilbao Spain
- POLYMAT and Applied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| |
Collapse
|
4
|
Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics 2019; 11:pharmaceutics11070351. [PMID: 31323863 PMCID: PMC6680565 DOI: 10.3390/pharmaceutics11070351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Small interfering RNAs (siRNAs) represent a new approach towards the inhibition of gene expression; as such, they have rapidly emerged as promising therapeutics for a plethora of important human pathologies including cancer, cardiovascular diseases, and other disorders of a genetic etiology. However, the clinical translation of RNA interference (RNAi) requires safe and efficient vectors for siRNA delivery into cells. Dendrimers are attractive nanovectors to serve this purpose, as they present a unique, well-defined architecture and exhibit cooperative and multivalent effects at the nanoscale. This short review presents a brief introduction to RNAi-based therapeutics, the advantages offered by dendrimers as siRNA nanocarriers, and the remarkable results we achieved with bio-inspired, structurally flexible covalent dendrimers. In the companion paper, we next report our recent efforts in designing, characterizing and testing a series of self-assembled amphiphilic dendrimers and their related structural alterations to achieve unprecedented efficient siRNA delivery both in vitro and in vivo.
Collapse
|
5
|
Laurini E, Marson D, Aulic S, Fermeglia M, Pricl S. Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled in Silico-Experimental Studies. Part II: Self-Assembled siRNA Nanocarriers. Pharmaceutics 2019; 11:pharmaceutics11070324. [PMID: 31295912 PMCID: PMC6680776 DOI: 10.3390/pharmaceutics11070324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
In part I of this review, the authors showed how poly(amidoamine) (PAMAM)-based dendrimers can be considered as promising delivering platforms for siRNA therapeutics. This is by virtue of their precise and unique multivalent molecular architecture, characterized by uniform branching units and a plethora of surface groups amenable to effective siRNA binding and delivery to e.g., cancer cells. However, the successful clinical translation of dendrimer-based nanovectors requires considerable amounts of good manufacturing practice (GMP) compounds in order to conform to the guidelines recommended by the relevant authorizing agencies. Large-scale GMP-standard high-generation dendrimer production is technically very challenging. Therefore, in this second part of the review, the authors present the development of PAMAM-based amphiphilic dendrons, that are able to auto-organize themselves into nanosized micelles which ultimately outperform their covalent dendrimer counterparts in in vitro and in vivo gene silencing.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
6
|
Hyperbranched polyglycerols containing amine groups — Synthesis, characterization and carbon dioxide capture. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
|
8
|
Krivitsky A, Krivitsky V, Polyak D, Scomparin A, Eliyahu S, Gibori H, Yeini E, Pisarevsky E, Blau R, Satchi-Fainaro R. Molecular Weight-Dependent Activity of Aminated Poly(α)glutamates as siRNA Nanocarriers. Polymers (Basel) 2018; 10:E548. [PMID: 30966582 PMCID: PMC6415365 DOI: 10.3390/polym10050548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) can contribute immensely to the area of personalized medicine by its ability to target any gene of interest. Nevertheless, its clinical use is limited by lack of efficient delivery systems. Polymer therapeutics can address many of the challenges encountered by the systemic delivery of RNAi, but suffer from inherent drawbacks such as polydispersity and batch to batch heterogeneity. These characteristics may have far-reaching consequences when dealing with therapeutic applications, as both the activity and the toxicity may be dependent on the length of the polymer chain. To investigate the consequences of polymers' heterogeneity, we have synthesized two batches of aminated poly(α)glutamate polymers (PGAamine), differing in their degree of polymerization, but not in the monomer units or their conjugation. Isothermal titration calorimetry study was conducted to define the binding affinity of these polymers with siRNA. Molecular dynamics simulation revealed that Short PGAamine:siRNA polyplexes exposed a higher amount of amine moieties to the surroundings compared to Long PGAamine. This resulted in a higher zeta potential, leading to faster degradation and diminished gene silencing. Altogether, our study highlights the importance of an adequate physico-chemical characterization to elucidate the structure⁻function-activity relationship, for further development of tailor-designed RNAi delivery vehicles.
Collapse
Affiliation(s)
- Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Vadim Krivitsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
9
|
Juch H, Nikitina L, Reimann S, Gauster M, Dohr G, Obermayer-Pietsch B, Hoch D, Kornmueller K, Haag R. Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Nanotoxicology 2018; 12:90-103. [PMID: 29334310 PMCID: PMC5815307 DOI: 10.1080/17435390.2018.1425496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A thorough understanding of nanoparticle bio-distribution at the feto-maternal interface will be a prerequisite for their diagnostic or therapeutic application in women of childbearing age and for teratologic risk assessment. Therefore, the tissue interaction of biocompatible dendritic polyglycerol nanoparticles (dPG-NPs) with first- trimester human placental explants were analyzed and compared to less sophisticated trophoblast-cell based models. First-trimester human placental explants, BeWo cells and primary trophoblast cells from human term placenta were exposed to fluorescence labeled, ∼5 nm dPG-NPs, with differently charged surfaces, at concentrations of 1 µM and 10 nM, for 6 and 24 h. Accumulation of dPGs was visualized by fluorescence microscopy. To assess the impact of dPG-NP on trophoblast integrity and endocrine function, LDH, and hCG releases were measured. A dose- and charge-dependent accumulation of dPG-NPs was observed at the early placental barrier and in cell lines, with positive dPG-NP-surface causing deposits even in the mesenchymal core of the placental villi. No signs of plasma membrane damage could be detected. After 24 h we observed a significant reduction of hCG secretion in placental explants, without significant changes in trophoblast apoptosis, at low concentrations of charged dPG-NPs. In conclusion, dPG-NP’s surface charge substantially influences their bio-distribution at the feto-maternal interface, with positive charge facilitating trans-trophoblast passage, and in contrast to more artificial models, the first-trimester placental explant culture model reveals potentially hazardous influences of charged dPG-NPs on early placental physiology.
Collapse
Affiliation(s)
- Herbert Juch
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Liudmila Nikitina
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Sabine Reimann
- b Institute of Chemistry and Biochemistry-Organic Chemistry , Freie Universität Berlin , Berlin , Germany
| | - Martin Gauster
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | - Gottfried Dohr
- a Institute of Cell Biology, Histology and Embryology , Medical University of Graz , Graz , Austria
| | | | - Denise Hoch
- d Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Karin Kornmueller
- e Institute of Biophysics , Medical University of Graz , Graz , Austria
| | - Rainer Haag
- b Institute of Chemistry and Biochemistry-Organic Chemistry , Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
10
|
Ahn G, Kweon S, Yang C, Hwang JE, Kim K, Kim BS. One-pot synthesis of hyperbranched polyamines based on novel amino glycidyl ether. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gyunhyeok Ahn
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Songa Kweon
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Chungmi Yang
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| |
Collapse
|
11
|
Sahle FF, Giulbudagian M, Bergueiro J, Lademann J, Calderón M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. NANOSCALE 2017; 9:172-182. [PMID: 27905610 DOI: 10.1039/c6nr06435c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticles with a size of several hundred nanometers can effectively penetrate into the hair follicles and may serve as depots for controlled drug delivery. However, they can neither overcome the hair follicle barrier to reach the viable cells nor release the loaded drug adequately. On the other hand, small drug molecules cannot penetrate deep into the hair follicles. Thus, the most efficient way for drug delivery through the follicular route is to employ nanoparticles that can release the drug close to the target structure upon exposure to some external or internal stimuli. Accordingly, 100-700 nm sized thermoresponsive nanogels with a phase transition temperature of 32-37 °C were synthesized by the precipitation polymerization technique using N-isopropylacrylamide as a monomer, acrylated dendritic polyglycerol as a crosslinker, VA-044 as an initiator, and sodium dodecyl sulphate as a stabilizer. The follicular penetration of the indodicarbocyanine (IDCC) labeled nanogels into the hair follicles and the release of coumarin 6, which was loaded as a model drug, in the hair follicles were assessed ex vivo using porcine ear skin. Confocal laser scanning microscopy (CLSM) enabled independent tracking of the nanogels and the loaded dye, although it is not as precise and accurate as standard analytical methods. The results showed that, unlike smaller nanogels (<100 nm), medium and larger sized nanogels (300-500 nm) penetrated effectively into the hair follicles with penetration depths proportional to the nanogel size. The release of the loaded dye in the hair follicles increased significantly when the investigation on penetration was carried out above the cloud point temperature of the nanogels. The follicular penetration of the nanogels from the colloidal dispersion and a 2.5% hydroxyethyl cellulose gel was not significantly different.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Song S, Lee J, Kweon S, Song J, Kim K, Kim BS. Hyperbranched Copolymers Based on Glycidol and Amino Glycidyl Ether: Highly Biocompatible Polyamines Sheathed in Polyglycerols. Biomacromolecules 2016; 17:3632-3639. [DOI: 10.1021/acs.biomac.6b01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Suhee Song
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Joonhee Lee
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Songa Kweon
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jaeeun Song
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kyuseok Kim
- Department
of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Korea
| | - Byeong-Su Kim
- Department
of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
13
|
De León AS, Molina M, Wedepohl S, Muñoz-Bonilla A, Rodríguez-Hernández J, Calderón M. Immobilization of Stimuli-Responsive Nanogels onto Honeycomb Porous Surfaces and Controlled Release of Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1854-1862. [PMID: 26818564 DOI: 10.1021/acs.langmuir.5b04166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this article, we describe the formation of functional honeycomb-like porous surfaces fabricated by the breath figures technique using blends of either amino-terminated poly(styrene) or a poly(styrene)-b-poly(acrylic acid) block copolymer with homopoly(styrene). Thus, the porous interfaces exhibited either amino or acid groups selectively located inside of the holes, which were subsequently employed to anchor stimuli-responsive nanogels by electrostatic interactions. These nanogels were prepared from poly(N-isopropylacrylamide) (PNIPAM) cross-linked with dendritic polyglycerol (dPG) and semi-interpenetrated with either 2-(dimethylamino)ethyl methacrylate (DMAEMA) or 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) to produce positively and negatively charged nanogel surfaces, respectively. The immobilization of these semi-interpenetrated networks onto the surfaces allowed us to have unique stimuli-responsive surfaces with both controlled topography and composition. More interestingly, the surfaces exhibited stimuli-responsive behavior by variations on the pH or temperature. Finally, the surfaces were evaluated regarding their capacity to induce a thermally triggered protein release at temperatures above the cloud point temperature (T(cp)) of the nanogels.
Collapse
Affiliation(s)
- A S De León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - M Molina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| | - S Wedepohl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| | - A Muñoz-Bonilla
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid , C/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - J Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - M Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
14
|
Han Y, Qian Y, Zhou X, Hu H, Liu X, Zhou Z, Tang J, Shen Y. Facile synthesis of zwitterionic polyglycerol dendrimers with a β-cyclodextrin core as MRI contrast agent carriers. Polym Chem 2016. [DOI: 10.1039/c6py01404f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile synthesis method of a zwitterionic polyglycerol dendrimer was developed, providing an ideal carrier for drug and imaging probe delivery.
Collapse
Affiliation(s)
- Yuxin Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Yue Qian
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Xiaoxuan Zhou
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Hongjie Hu
- Department of Radiology
- Sir Run Run Shaw Hospital (SRRSH) of School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- Center for Bionanoengineering
- and College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
| |
Collapse
|