1
|
Xie Y, Gong S, Wang L, Yang Z, Yang C, Li G, Zha H, Lv S, Xiao B, Chen X, Di Z, He Q, Wang J, Weng Q. Unraveling the treatment effects of huanglian jiedu decoction on drug-induced liver injury based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:219. [PMID: 38849824 PMCID: PMC11157734 DOI: 10.1186/s12906-024-04517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.
Collapse
Affiliation(s)
- Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhenning Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Akbari G, Abasi MR, Gharaghani M, Nouripoor S, Shakerinasab N, Azizi M, Salahi M, Karimi F, Eftekhari M, Razmjoue D, Doustimotlagh AH. Antioxidant and hepatoprotective activities of Juniperus excelsa M. Bieb against bile duct ligation-induced cholestasis. Res Pharm Sci 2024; 19:217-227. [PMID: 39035584 PMCID: PMC11257206 DOI: 10.4103/rps.rps_52_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 03/12/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Cholestasis is caused by a malfunction of the biliary liver system. Oxidative stress plays an essential role in the progression of cholestasis. This study aimed to investigate the antioxidant and hepatoprotective effects of ethanolic extract of Juniperus excelsa M. Bieb (JE) fruits on hepatic impairment induced by bile duct ligation (BDL) in rats. Experimental approach Forty male Wistar rats were randomly divided into 4 groups; sham control + vehicle (SC), BDL + vehicle (BDL), BDL + JE extract (BDL + JE), and SC + extract (SC + JE). One day after surgery, the animals were treated with vehicle or ethanolic extract of JE (500 mg/kg/day) for 7 days. Finally, the blood was taken for biochemical and oxidative stress analysis. Furthermore, the liver tissue of rats was removed for histological examination. Findings/Results Treatment with the extract of JE decreased the ALP level, whereas it enhanced total protein content compared to the BDL group. Also, JE increased the activity of SOD and GPx, as well as FRAP content compared to the BDL group; while it did not significantly affect the levels of MDA and inflammation markers. However, JE could not improve BDL-induced histopathological alterations in hepatic tissue. Conclusion and implication This study demonstrated that JE may be useful as an adjuvant therapy by attenuating ALP activity, increasing serum total protein and FRAP content, as well as improving the antioxidant enzymes activity of SOD and GPx. However, further research is warranted to explore the other underlying mechanisms of action.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Reza Abasi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maral Gharaghani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sadegh Nouripoor
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Shakerinasab
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marjan Salahi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Karimi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Meng HH, Liu WY, Zhao WL, Zheng Q, Wang JS. Study on the acute toxicity of trichlorfon and its breakdown product dichlorvos to goldfish (Carassius auratus) based on 1H NMR metabonomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125664-125676. [PMID: 38001290 DOI: 10.1007/s11356-023-31012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Trichlorfon, one of the most widely used organophosphate insecticides, is commonly employed in aquaculture and agriculture to combat parasitic infestations. However, its inherent instability leads to rapid decomposition into dichlorvos (DDVP), increasing its toxicity by eightfold. Therefore, the environmental effects of trichlorfon in real-world scenarios involve the combined effects of trichlorfon and its degradation product, DDVP. In this study, we systematically investigated the degradation of trichlorfon in tap water over time using HPLC and LC-MS/MS analysis. Subsequently, an experiment was conducted to assess the acute toxicity of trichlorfon and DDVP on goldfish (Carassius auratus), employing a 1H NMR-based metabolic approach in conjunction with serum biochemistry, histopathological inspection, and correlation network analysis. Exposure to trichlorfon and its degradation product DDVP leads to increased lipid peroxidation, reduced antioxidant activity, and severe hepatotoxicity and nephrotoxicity in goldfish. Based on the observed pathological changes and metabolite alterations, short-term exposure to trichlorfon significantly affected the liver and kidney functions of goldfish, while exerting minimal influence on the brain, potentially due to the presence of the blood-brain barrier. The changes in the metabolic profile indicated that trichlorfon and DDVP influenced several pathways, including oxidative stress, protein synthesis, energy metabolism, and nucleic acid metabolism. This study demonstrated the applicability and potential of 1H NMR-based metabonomics in pesticide environmental risk assessment, providing a feasible method for the comprehensive study of pesticide toxicity in water environments.
Collapse
Affiliation(s)
- Hui-Hui Meng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Ya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wen-Long Zhao
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
4
|
Chen X, Shi J, Lai Y, Xue Y, Ung COL, Hu H. Systematic analysis of randomised controlled trials of Chinese herb medicine for non-alcoholic steatohepatitis (NASH): implications for future drug development and trial design. Chin Med 2023; 18:58. [PMID: 37208742 DOI: 10.1186/s13020-023-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a liver disease currently lacking an approved therapy, resulting in significant clinical demand. Traditional Chinese medicines (TCMs) have been commonly used to manage NASH. This study aimed to systematically analyse the randomised controlled trials (RCTs) using TCMs for NASH management. METHODS A systematic literature review was performed by following PRISMA guidelines 2020 in six electronic databases: PubMed, Web of Science, Scopus, Embase, the Cochrane Library, and China National Knowledge Infrastructure, from inception until August 2022. RCTs using TCMs for NASH were included in the analysis, irrespective of language or blinding. RESULTS 112 RCTs were included in this review, with 10,573 NASH participants. 108 RCTs were conducted in China, and 4 RCTs were in other countries. Herbal medicine decoction was the major dosage form used for treating NASH (82/112). 11 TCMs products have been approved for NASH treatment (8 in China, 2 in Iran, and 1 in Japan). Classic prescriptions, such as "Huang Lian Jie Du decoction", "Yin Chen Hao decoction", and "Yi Guan Jian" were used in some studies. The TCMs treatment of NASH involved the use of 199 different plants, with the top 5 herbs being Salviae Miltiorrhizae Radix Et Rhizoma, Alismatis Rhizoma, Bupleuri Radix, Poria, and Curcumae Radix. "Salviae Miltiorrhizae Radix Et Rhizoma + Bupleuri Radix/Alismatis Rhizoma" were the mostly common drug-pair in the herbs network analysis. Nowadays, "Bupleuri Radix/Alismatis Rhizoma + Atractylodis Macrocephalae Rhizoma" are increasingly applied in herbal formulas for NASH. Based on the PICOS principles, the included studies varied in terms of the population, intervention, comparator, outcomes, and study design. However, some studies reported unstandardised results and failed to report diagnostic standards, inclusion or exclusion criteria, or sufficient patient information. CONCLUSION Adopting Chinese classic prescriptions or drug-pair may provide a basis for developing new drugs of NASH management. Further research is needed to refine the clinical trial design and obtain more convincing evidence for using TCMs to treat NASH.
Collapse
Affiliation(s)
- Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
5
|
NMR-based metabolomic investigation on antimicrobial mechanism of Salmonella on cucumber slices treated with organic acids. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108973] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Chen M, Wang P, Li T, Li L, Li J, Bai H, Lei H, Ma Q. Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate. J Pharm Biomed Anal 2020; 195:113820. [PMID: 33303266 DOI: 10.1016/j.jpba.2020.113820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
The current study presents a comprehensive analysis to explore the compositions of both the supernatant and naturally-occurring precipitate of Huanglian Jiedu decoction employing ultra-high-performance liquid chromatography hyphenated with quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Totally 109 constituents (32 alkaloids, 39 flavonoids, 12 iridoids, 9 phenolic acids, and 17 other compounds) were identified from accurate-mass measurements in full-scan MS/data-dependent MS/MS mode of acquisition. Furthermore, a quantitative method was developed for determination of 14 marker compounds in Huanglian Jiedu decoction. Experimental results revealed that all of these marker compounds were present in both the supernatant and naturally-occurring precipitate. Most notably, the contents of baicalin and berberine were significantly higher in the naturally-occurring precipitate than supernatant, presumably due to self-assembly complexation. The formation of the baicalin/berberine complex was comprehensively investigated by electrospray ionization (ESI)-MS, nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy, etc. The morphology and size distribution of the baicalin/berberine self-assembled nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). This study provides fundamental scientific evidence of the presence of a self-assembled phytochemical complex in the naturally-occurring precipitate, enabling better understanding of Huanglian Jiedu decoction.
Collapse
Affiliation(s)
- Meng Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linsen Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junfang Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
7
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Zhu G, Feng F. UPLC-MS-based metabonomic analysis of intervention effects of Da-Huang-Xiao-Shi decoction on ANIT-induced cholestasis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111860. [PMID: 30965080 DOI: 10.1016/j.jep.2019.111860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis, caused by hepatic accumulation of bile acids, is a serious manifestation of liver diseases resulting in liver injury, fibrosis, and liver failure with limited therapies. Da-Huang-Xiao-Shi decoction (DHXSD) is a representative formula for treating jaundice and displays bright prospects in liver protective effect. AIM OF THE STUDY This study was designed to assess the effects and possible mechanisms of DHXSD against alpha-naphthylisothiocyanate-induced liver injury based on ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap MS) metabonomic approach. MATERIALS AND METHODS The effects of DHXSD on serum indices (TBIL, DBIL, AST, ALT, ALP, TBA, and γ-GT) and the histopathology of the liver were analyzed. Moreover, UHPLC-Q-Orbitrap MS was performed to identify the possible effect of DHXSD on metabolites. The pathway analysis was conducted to illustrate the pathways and network by which DHXSD treats cholestasis. RESULTS The results demonstrated that DHXSD could significantly regulate serum biochemical indices and alleviate histological damage to the liver. Twelve endogenous components, such as glycocholic acid, taurocholic acid and indoleacetaldehyde, were identified as potential biomarkers of the therapeutic effect of DHXSD. A systematic network analysis of their corresponding pathways indicates that the anti-cholestatic effect of DHXSD on alpha-naphthylisothiocyanate-induced cholestasis rats occurs mainly through regulating primary bile acid biosynthesis, arginine and proline metabolism, and arachidonic acid metabolism. CONCLUSIONS DHXSD has exhibited favorable pharmacological effect on serum biochemical indices and pathological observation on cholestatic model by partially regulating the perturbed pathways. Moreover, these findings may help better understand the mechanisms of disease and provide a potential therapy for cholestasis.
Collapse
Affiliation(s)
- Guoxue Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Liu XJ, Zhang CE, Yu XH, Liu RX, Qin XM, Jia JD, Ma ZJ. Serum metabonomics characterization of liver fibrosis induced by bile duct-ligated in rats and the intervention effects of herb compound 861. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1574815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xiao-Jie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P. R. China
| | - Cong-En Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiao-Hong Yu
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Rui-Xia Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P. R. China
| | - Ji-Dong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis
| | - Zhi-Jie Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis
| |
Collapse
|
10
|
Wei DD, Wang JS, Duan JA, Kong LY. Metabolomic Assessment of Acute Cholestatic Injuries Induced by Thioacetamide and by Bile Duct Ligation, and the Protective Effects of Huang-Lian-Jie-Du-Decoction. Front Pharmacol 2018; 9:458. [PMID: 29867467 PMCID: PMC5952270 DOI: 10.3389/fphar.2018.00458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction, a traditional Chinese formula, has been reported to protect liver from various injuries. Two cholestasis models of rats induced by thioacetamide and by bile duct ligation were established and treated with Huang-Lian-Jie-Du-Decoction. Nuclear Magnetic Resonance-based urinary metabolic profiles were analyzed by orthogonal partial least squares discriminant analysis and univariate analysis to excavate differential metabolites associated with the injuries of the two models and the treatment effects of Huang-Lian-Jie-Du-Decoction. The two cholestatic models shared common metabolic features of excessive fatty acid oxidation, insufficient glutathione regeneration and disturbed gut flora, with specific characteristics of inhibited urea cycle and DNA damage in thioacetamide-intoxicated model, and perturbed Kreb's cycle and inhibited branched chain amino acid oxidation in bile duct ligation model. With good treatment effects, Huang-Lian-Jie-Du-Decoction could regain the balance of the disturbed metabolic status common in the two cholestasis injuries, e.g., unbalanced redox system and disturbed gut flora; and perturbed urea cycle in thioacetamide-intoxicated model and energy crisis (disturbed Kreb's cycle and oxidation of branched chain amino acid) in bile duct ligation model, respectively.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Guo Y, Li Z, Liu X, Su X, Li Y, Zhu J, Song Y, Zhang P, Chen JDZ, Wei R, Yang J, Wei W. 1H NMR-Based Metabonomic Study of Functional Dyspepsia in Stressed Rats Treated with Chinese Medicine Weikangning. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4039425. [PMID: 29234392 PMCID: PMC5637829 DOI: 10.1155/2017/4039425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
1H NMR-based metabolic profiling combined with multivariate data analysis was used to explore the metabolic phenotype of functional dyspepsia (FD) in stressed rats and evaluate the intervention effects of the Chinese medicine Weikangning (WKN). After a 7-day period of model establishment, a 14-day drug administration schedule was conducted in a WKN-treated group of rats, with the model and normal control groups serving as negative controls. Based on 1H NMR spectra of urine and serum from rats, PCA, PLS-DA, and OPLS-DA were performed to identify changing metabolic profiles. According to the key metabolites determined by OPLS-DA, alterations in energy metabolism, stress-related metabolism, and gut microbiota were found in FD model rats after stress stimulation, and these alterations were restored to normal after WKN administration. This study may provide new insights into the relationship between FD and psychological stress and assist in research into the metabolic mechanisms involved in Chinese medicine.
Collapse
Affiliation(s)
- Yu Guo
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North Road, Haidian District, Beijing 100048, China
| | - Xinfeng Liu
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North Road, Haidian District, Beijing 100048, China
| | - Xiaolan Su
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Yijie Li
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Jiajie Zhu
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Yilin Song
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Ping Zhang
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, MD 21224, USA
| | - Ruhan Wei
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Jianqin Yang
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Wei Wei
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| |
Collapse
|
12
|
Li A, Guo X, Xie J, Liu X, Zhang Z, Li Y, Zhang Y. Validation of biomarkers in cardiotoxicity induced by Periplocin on neonatal rat cardiomyocytes using UPLC-Q-TOF/MS combined with a support vector machine. J Pharm Biomed Anal 2016; 123:179-85. [DOI: 10.1016/j.jpba.2016.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
|
13
|
Zhang CE, Niu M, Li RY, Feng WW, Ma X, Dong Q, Ma ZJ, Li GQ, Meng YK, Wang Y, Yin P, He LZ, Li YM, Tan P, Zhao YL, Wang JB, Dong XP, Xiao XH. Untargeted Metabolomics Reveals Dose-Response Characteristics for Effect of Rhubarb in a Rat Model of Cholestasis. Front Pharmacol 2016; 7:85. [PMID: 27065293 PMCID: PMC4814850 DOI: 10.3389/fphar.2016.00085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Cholestasis is a serious manifestation of liver diseases with limited therapies. Rhubarb, a widely used herbal medicine, has been frequently used at a relatively large dose for treating cholestasis. However, whether large doses are optimal and the therapeutic mechanism remain unclear. To explore these questions, the anti-cholestatic effect of five doses of rhubarb (0.21, 0.66, 2.10, 6.60, and 21.0 g/kg) in an alpha-naphthylisothiocyanate (ANIT)-induced rat model of cholestasis was examined by histopathology and serum biochemistry. A dose-dependent anti-cholestatic effect of rhubarb (0.21–6.6 g/kg) was observed, and an overdose of 21.0 g/kg showed a poor effect. LC-MS-based untargeted metabolomics together with pathway analysis were further applied to characterize the metabolic alterations induced by the different rhubarb doses. Altogether, 13 biomarkers were identified. The dose-response curve based on nine important biomarkers indicated that doses in the 0.42–6.61 g/kg range (EC20–EC80 range, corresponding to 4.00–62.95 g in the clinic) were effective for cholestasis treatment. The pathway analysis showed that bile acid metabolism and excretion, inflammation and amino acid metabolism were altered by rhubarb in a dose-dependent manner and might be involved in the dose-response relationship and therapeutic mechanism of rhubarb for cholestasis treatment.
Collapse
Affiliation(s)
- Cong-En Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Rui-Yu Li
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Wu-Wen Feng
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Qin Dong
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Zhi-Jie Ma
- China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China; Department of Pharmacy, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Guang-Quan Li
- College of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Ya-Kun Meng
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ya Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ping Yin
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Lan-Zhi He
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yu-Meng Li
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Peng Tan
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Xiao-Ping Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| |
Collapse
|
14
|
Zhang Q, Guo P, Wang J, Yang M, Kong L. Gender-specific metabolic responses in focal cerebral ischemia of rats and Huang-Lian-Jie-Du decoction treatment. RSC Adv 2015. [DOI: 10.1039/c5ra19934d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1H NMR based metabolomics approach combined with biochemical, histological and immunohistochemistry observations was successfully applied to explore gender-specific metabolic differences in ischemic stroke and the protective effect of HLJDD.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Pingping Guo
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Junsong Wang
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|