1
|
Tan R, Yang H, Jiang M, Song P. Visible-Light-Induced Singlet Oxygen-Promoted Arylation and Alkylation of Quinoxalin-2(1H)-ones and Quinolines. Molecules 2024; 29:5113. [PMID: 39519754 PMCID: PMC11547374 DOI: 10.3390/molecules29215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
We report a green and efficient visible-light-driven method for the arylation and alkylation of quinoxalin-2(1H)-ones and quinolines. This catalyst-free process utilizes air as the oxidant, offering mild reaction conditions, environmental sustainability, and broad functional group compatibility. The approach enables the synthesis of aryl and alkyl derivatives of quinoxalin-2(1H)-ones and quinolines with high to excellent yields.
Collapse
Affiliation(s)
- Renjun Tan
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| | - Hequn Yang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Min Jiang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Peijun Song
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| |
Collapse
|
2
|
Bezboruah J, Khator KR, Gayen S, Sanke DM, Mahapatra B, Sahoo A, Nayak A, Reddy CM, Senanayak SP, Zade SS. Pyrazinoquinoxaline derivatives for flexible electronic devices: effect of the mechanical properties of the crystals on device durability. Chem Sci 2024; 15:d4sc04157g. [PMID: 39479169 PMCID: PMC11515934 DOI: 10.1039/d4sc04157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Understanding the interplay between the molecular structure and material properties of emerging p-type organic semiconductors marks a significant stride in the advancement of molecular electronics. Among the array of promising materials, mechanically flexible single crystals of π-conjugated molecules stand out due to their potential for cutting-edge applications in organic electronics. Notably, derivatives of pyrazinoquinoxaline (PQ) are recognized as versatile building blocks for constructing π-conjugated systems, showcasing good semiconductor performance in organic field-effect transistors (OFETs). In this study, we present an exploration into the p-type charge transport and mechanical characteristics of two newly synthesized PQ derivatives: 5,10-diphenyl-2,3,7,8-tetra(thiophen-2-yl)pyrazino[2,3-g]quinoxaline (DPTTQ) and 2,3,5,7,8,10-hexa(thiophen-2-yl)pyrazino[2,3-g]quinoxaline (HTPQ). HTPQ crystals exhibit flexural behaviour under applied stress, effortlessly returning to their initial configuration upon relaxation. Conversely, two polymorphic forms of DPTTQ crystals display brittle fracture when subjected to a similar stress. Specifically, DPTTQ molecules adopt a β-sheet packing, while HTPQ presents a γ-packing with a corrugated arrangement. Field-effect charge transport measurements reveal p-type charge transport in both DPTTQ and HTPQ, with HTPQ showcasing hole mobility up to 0.01 cm2 V-1 s-1, while DPTTQ exhibits mobility that is at least one order of magnitude lower. This variance in the field effect mobility can be directly correlated to the difference in crystal packing, highlighting a clear structure-property correlation. Moreover, taking advantage of the flexural nature of the HTPQ crystals, we fabricated durable electronic devices, which retain their conductivity for over 60 cycles of strain, indicating the efficacy of our chemical design in demonstrating high-performance flexible devices. These findings underscore the promise of semiconducting organics with γ-packing for achieving both better mobility and elasticity for integration into organic electronic devices.
Collapse
Affiliation(s)
- Jasmine Bezboruah
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 Nadia West Bengal India
| | - Kanha Ram Khator
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, OCC of HBNI Jatni 752050 India
| | - Sayantan Gayen
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 Nadia West Bengal India
| | - Devendra Mayurdhwaj Sanke
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 Nadia West Bengal India
| | - Biplab Mahapatra
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, OCC of HBNI Jatni 752050 India
| | - Anshuman Sahoo
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, OCC of HBNI Jatni 752050 India
| | - Amlandeep Nayak
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, OCC of HBNI Jatni 752050 India
| | - C Malla Reddy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 Nadia West Bengal India
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, National Institute of Science Education and Research, School of Physical Sciences, OCC of HBNI Jatni 752050 India
- Center for Interdisciplinary Sciences (CIS), NISER, An OCC of Homi Bhabha National Institute (HBNI) Jatni 752050 Odisha India
| | - Sanjio S Zade
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 Nadia West Bengal India
| |
Collapse
|
3
|
Pan Y, Wang L, Shi Y, Huang G, Bu X, Yang X, Zhao Z. Base-Mediated Visible-Light-Driven C-H Arylation of Quinoxalin-2(1 H)-Ones in Ethanol. J Org Chem 2024; 89:14217-14227. [PMID: 39324442 DOI: 10.1021/acs.joc.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Prior methods for visible-light-driven C-H arylation of quinoxalin-2(1H)-ones relied on external photocatalysts. Herein, we report a photocatalyst-free approach for this arylation. In this approach, β-dicarbonyl iodonium ylides, combined with t-BuOK in ethanol, act as aryl precursors, forming electron donor-acceptor (EDA) complexes. These complexes enhance light absorption, facilitating efficient single electron transfer and aryl radical formation. Consequently, various quinoxalin-2(1H)-ones undergo precise and efficient arylation without external photocatalysts. This protocol exhibits excellent tolerance toward diverse functional groups, with mild reaction conditions and eco-friendly solvents, revealing a high Ecoscale value.
Collapse
Affiliation(s)
- Yitong Pan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Yunhong Shi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Guoqing Huang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
4
|
Wu L, Wang Z, Qiao Y, Xie L, Wang Q. Photoexcited nitroarenes for alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2024; 60:11311-11314. [PMID: 39295587 DOI: 10.1039/d4cc04315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A straightforward method for the dehydrogenative alkylation of quinoxalin-2(1H)-ones with alkylbenzenes has been developed, facilitated by a photoexcited nitroarene. The reaction's success hinges on the dual role of the photoexcited nitroarene molecule, acting as both a hydrogen atom transfer (HAT) reagent and an oxidant. This technique is both atom-economical and cost-effective, due to the readily available nitroarene, which serves as the sole intermediary in the reaction process.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Zhaoxue Wang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Yanling Qiao
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Lei Xie
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
5
|
Ni H, Mao H, Huang Y, Lu Y, Liu Z. Mild Iron-Catalyzed Oxidative Cross-Coupling of Quinoxalinones with Indoles. Molecules 2024; 29:2649. [PMID: 38893523 PMCID: PMC11173961 DOI: 10.3390/molecules29112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Utilizing iron chloride as a Lewis acid catalyst, we developed a straightforward and mild oxidative cross-coupling reaction between quinoxalinones and indoles, yielding a series of versatile 3-(indol-3-yl)quinoxalin-2-one derivatives. This approach allows for the incorporation of a wide array of functional groups into the final products, demonstrating its synthetic versatility. Notably, the method was successfully scaled up to gram-scale reactions while maintaining high yields. Our mechanistic investigation indicates that iron chloride serves as a catalyst to facilitate the formation of key intermediates which subsequently undergo oxidation to afford the desired products. The merits of this protocol include its cost effectiveness, operational simplicity, and the ease of product isolation via filtration.
Collapse
Affiliation(s)
- Hangcheng Ni
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Huang
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Yi Lu
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Zhenxiang Liu
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| |
Collapse
|
6
|
Meng X, Cao L, Li B. Metal-Organic Framework Based on Pyrazinoquinoxaline Tetracarboxylic Acid for Fluorescence Sensing for Nitro Explosives. Inorg Chem 2024; 63:518-525. [PMID: 38109697 DOI: 10.1021/acs.inorgchem.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rapid and selective detection of nitro explosives has become one of the current urgent environmental and safety issues. Fluorescent metal-organic frameworks (MOFs) provide strong support for the development of photoactive materials with excellent sensing performances. In this work, Zn2+ and pyrazinoquinoxaline tetracarboxylic acid with high nitrogen content were selected to construct a MOF structure termed Zn-MOF, which had excellent optical properties. The fluorescence sensing performance of Zn-MOF for nitro explosives was also investigated. The structural advantages of Zn-MOF, such as its porous structure, abundant host-guest interaction sites, and stable framework, ensure the prerequisites for various applications. Zn-MOF is not only capable of responding to a wide range of substrates, such as Fe3+, Cr2O72-, and MnO4-, to achieve fluorescence quenching detection but also able to achieve sensitive fluorescence sensing behavior for nitro explosives. In particular, for trinitrotoluene, the Ksv value can reach 8.72 × 103 M-1. The results show that the introduction of pyrazinoquinoxaline groups into MOFs can be an effective strategy for the preparation of highly efficient fluorescent sensing materials for nitro explosives.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Linghui Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
7
|
Mamedov VA, Mustakimova LV, Qu ZW, Zhu H, Syakaev VV, Galimullina VR, Shamsutdinova LR, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. Divergent Synthesis of 3-(Indol-2-yl)quinoxalin-2-ones and 4-(Benzimidazol-2-yl)-3-methyl(aryl)cinnolines via Polyphosphoric Acid (PPA)-Mediated Intramolecular Rearrangements of 3-(Methyl/aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones. J Org Chem 2023. [PMID: 38033308 DOI: 10.1021/acs.joc.3c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Herein, we report a polyphosphoric acid (PPA)-mediated divergent metal-free operation to access a diverse collection of 3-(indol-2-yl)quinoxalin-2-ones and 4-(benzimidazol-2-yl)-3-methylcinnolines in moderate to excellent overall yields. The described process involves two distinct, and competing rearrangements of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, namely [3,3]-sigmatropic Fischer rearrangement with the formation of an indole ring to produce 3-(indol-2-yl)-quinoxalin-2-ones, and Mamedov rearrangement with simultaneous construction of benzimidazole and cinnoline rings to form the new biheterocyclic system─4-(benzimidazol-2-yl)-3-methylcinnolines. The reaction mechanism of both rearrangement channels is explored by extensive dispersion-corrected DFT calculations. It is partcularly remarkable that when 3-(aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones is used, instead of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, reactions proceed regioselectively with the formation of only rearrangement products─4-(benzimidazol-2-yl)-3-arylcinnolines with high yields. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the new rearrangement found features a promising approach for the design of unique compound libraries for drug design and discovery programs.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Liliya V Mustakimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
8
|
Tran TMC, Lai ND, Bui TTT, Mac DH, Nguyen TTT, Retailleau P, Nguyen TB. DABCO-Catalyzed DMSO-Promoted Sulfurative 1,2-Diamination of Phenylacetylenes with Elemental Sulfur and o-Phenylenediamines: Access to Quinoxaline-2-thiones. Org Lett 2023; 25:7225-7229. [PMID: 37738043 DOI: 10.1021/acs.orglett.3c02835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The oxidative amination of alkynes typically requires transition metal catalysts and strong oxidants. Herein, we alternatively utilize DABCO as a sulfur-activating catalyst to achieve the sulfurative 1,2-diamination of phenylacetylenes with elemental sulfur and o-phenylenediamines. DMSO was found to be particularly suitable for use as a terminal oxidant for this three-component process. A mechanistic study has shown that this cascade reaction is triggered by the addition of active sulfur species to the triple bond of phenylacetylenes.
Collapse
Affiliation(s)
- Thi Minh Chau Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Nang Duy Lai
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thai Thanh Thu Bui
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Thi Thu Tram Nguyen
- Department of Chemistry, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Huang J, Wang L, Tang XY. Oxidative cross-coupling of quinoxalinones with indoles enabled by acidochromism. Org Biomol Chem 2023; 21:2709-2714. [PMID: 36928912 DOI: 10.1039/d3ob00280b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An oxidative cross-coupling of quinoxalinones with indole derivatives via B(C6F5)3·H2O induced acidochromism of quinoxalinone derivatives was developed under mild and external photocatalyst-free conditions. The reaction shows excellent substrate scope, accommodating a wide range of functional groups. The usefulness of this strategy was demonstrated by the synthesis of the natural products Azacephalandole A and Cephalandole A in high yields. Moreover, the products are fluorophores showing prevalent fluorescence properties with a wide emission range and good relative quantum yields.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| |
Collapse
|
10
|
Kumar S, Prince P, Monika M, Kumar P, Len C, Singh BK. A Unified, Microwave‐Assisted, Palladium‐Catalyzed Regioselective Ortho‐monohalogenation of 1‐Alkyl/benzyl‐3‐Phenylquinoxalin‐2(1
H
)‐ones. ChemistrySelect 2023. [DOI: 10.1002/slct.202204821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sandeep Kumar
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
| | - Prince Prince
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
| | - Monika Monika
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
| | - Prashant Kumar
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
- Department of Chemistry SRM University Delhi-NCR Sonepat Haryana 131029 India
| | - Christophe Len
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
- Chimie ParisTech PSL Research University CNRS Institute of Chemistry for Life and Health Sciences 11 rue Pierre et Marie Curie F-75005 Paris France
| | - Brajendra K. Singh
- Bio-Organic Research Laboratory Department of Chemistry University of Delhi Delhi 110 007 India
| |
Collapse
|
11
|
Sharma S, Bhuyan M, Baishya G. K
2
S
2
O
8
Mediated Three‐component Radical Cascade C3 Alkylation of Quinoxalin‐2(1
H
)‐ones with Vinylarenes and 4‐Hydroxycoumarins/4‐Hydroxy‐6‐methyl‐2‐pyrone. ChemistrySelect 2022. [DOI: 10.1002/slct.202201541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suraj Sharma
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Mayurakhi Bhuyan
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
12
|
Liu H, Xie G. Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons. Beilstein J Org Chem 2022; 18:825-836. [PMID: 35923156 PMCID: PMC9296988 DOI: 10.3762/bjoc.18.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
The changes in absorption and emission of fluorescent materials with the introduction of Lewis acids have been frequently observed due to either physical or chemical interactions. In this mini-review, we elaborate how Lewis acids adjust the optical properties and the bandgap of luminescent materials by simple coordination reactions. It is common that fluorescent materials containing Lewis basic nitrogen heterocycles are more likely to provide the feasible band gap modulation. The essence of such phenomenon originates from Lewis acid–base coordination and adducts, which highly depends on the electron-accepting property of the Lewis acids. This intermolecular mechanism, considered as post-synthesis of new luminescent compounds offers promising applications in sensing and electroluminescence by manipulating the frontier molecular orbital energy levels of organic conjugated materials, simply based on Lewis acid–base chemistry.
Collapse
Affiliation(s)
- Hengjia Liu
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
- Key Laboratory for preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 518060, People’s Republic of China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
13
|
Xie S, Wang H, Wang Y, Yang Q, Zhu H. Visible‐light‐induced Catalyzed Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles Using Carbon Nitride. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shihua Xie
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Hui Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Yong Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Qifan Yang
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University 211816 Nanjing P. R. China
| |
Collapse
|
14
|
A HCl-Mediated, Metal- and Oxidant-Free Photocatalytic Strategy for C3 Arylation of Quinoxalin(on)es with Arylhydrazine. Catalysts 2022. [DOI: 10.3390/catal12060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel and simple HCl-mediated, photocatalytic method for quinoxaline(on)es C3-H arylation with arylhydrazine under transition metal catalyst- and oxidant-free conditions is presented. Various quinoxaline(on)es underwent this transformation smoothly, demonstrating a broad substrate tolerance and providing the corresponding aryl products in moderate to excellent yields. Mechanistic studies indicated that a radical pathway may be involved in this transformation.
Collapse
|
15
|
Song S, Shi X, Zhu Y, Ren Q, Zhou P, Zhou J, Li J. Electrochemical Oxidative C-H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. J Org Chem 2022; 87:4764-4776. [PMID: 35319891 DOI: 10.1021/acs.joc.2c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangjun Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunsheng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Quanlei Ren
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Peng Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
16
|
Liu HF, He MX, Tang HT. Electrochemical C–H functionalization to synthesize 3-hydroxyalkylquinoxalin-2(1 H)-ones via quinoxalin-2(1 H)-ones and aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01281b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported an electrocatalytic direct C3-hydroxyalkylation of quinoxalin-2(1H)-ones to construct 3-hydroxyalkylquinoxalin-2(1H)-one derivatives, which uses unprotected quinoxalin-2(1H)-ones and aliphatic aldehydes as substrates.
Collapse
Affiliation(s)
- Han-Fu Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, Guilin 541199, People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
17
|
Prince, Kumar S, Lalji RSK, Gupta M, Kumar P, Kumar R, Singh BK. Sustainable C–H activation approach for palladium-catalyzed, regioselective functionalization of 1-methyl-3-phenyl quinoxaline-2(1 H)-ones in water. Org Biomol Chem 2022; 20:8944-8951. [DOI: 10.1039/d2ob01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An environment-friendly approach for regioselective acylation of 1-methyl-3-phenyl quinoxaline-2(1H)-ones was developed using water as a solvent. The protocol exhibits a wide substrate scope and employs commercially available, non-toxic acyl surrogates.
Collapse
Affiliation(s)
- Prince
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Nanak Chand Anglo Sanskrit College, Meerut, Uttar Pradesh-250001, India
| | - Sandeep Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ram Sunil Kumar Lalji
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Kirori-Mal College, Delhi University, Delhi-110007, India
| | - Mohit Gupta
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-854340, India
| | - Prashant Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, SRM University, Delhi-NCR Sonepat, Haryana-131029, India
| | - Ravindra Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh-226031, India
| | - Brajendra K. Singh
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
18
|
Dutta HS, Ahmad A, Khan AA, Kumar M, Raziullah, Vaishnav J, Gangwar M, Ampapathi RS, Koley D. Diastereoselective [3 + 2] Cycloaddition of Quinoxalin-2(1 H)-ones with Donor-Acceptor Cyclopropanes: Efficient Synthesis of Tetrahydro pyrrolo[1,2- a]quinoxalin-4(5 H)-ones. J Org Chem 2021; 86:16558-16572. [PMID: 34780178 DOI: 10.1021/acs.joc.1c01872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ytterbium triflate-catalyzed diastereoselective [3 + 2] cycloaddition of quinoxalinones with donor-acceptor cyclopropanes and cyclobutanes is described. A series of tetrahydropyrrolo-quinoxalinone derivatives were obtained in high yields (up to 96%) with excellent diastereoselectivities (up to 46:1). Other medicinally important heterocycles like benzoxazinone, isoquinoxalinone, and dibenzoxazepine derivatives were also suitable for the desired annulation reaction. The current method is applicable for the scale-up reaction. Further, the utility of this annulation reaction is demonstrated by the synthesis of densely functionalized proline derivatives.
Collapse
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jayanti Vaishnav
- SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom Of Saudi Arabia
| | | | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Bao H, Lin Z, Jin M, Zhang H, Xu J, Chen B, Li W. Visible-light-induced C H arylation of quinoxalin-2(1H)-ones in H2O. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Experimental and theoretical investigations of acid sensing properties of pyrazino[2,3-g]quinoxaline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Wen J, Yang X, Yan K, Qin H, Ma J, Sun X, Yang J, Wang H. Electroreductive C3 Pyridylation of Quinoxalin-2(1 H)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Org Lett 2021; 23:1081-1085. [PMID: 33439657 DOI: 10.1021/acs.orglett.0c04296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The construction of functional N-containing active biomolecules and bidentate nitrogen ligands by electroreductive pyridylation of N-heteroaromatics is an eye-catching task and challenge. A simple and practical electroreductive-induced C3 pyridylation of quinoxalin-2(1H)-ones with readily available cyanopyridines is reported. More than 36 examples are supplied, and the reaction performed in >95% yield. The present protocol provides a convenient, efficient, and gram-scale synthesis strategy for a series of new types of potential bidentate nitrogen ligands.
Collapse
Affiliation(s)
- Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xiaoting Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xuejun Sun
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
22
|
Li D, Wang X, Li S, Fu C, Li Q, Xu D, Ma Y. Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Direct C-H arylation of quinoxalinones with aryl acylperoxides under catalyst-free condition. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Ni H, Li Y, Deng J, Shi X, Pan Q. Visible-light-promoted/PIFA-mediated direct C–H acylation of quinoxalin-2(1 H)-ones with aldehydes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04805h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With aldehydes as the radical precursors under visible-light irradiation, a simple and mild PIFA-mediated C–H acylation reaction of quinoxalin-2(1H)-ones has been achieved.
Collapse
Affiliation(s)
- Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, 321007, People's Republic of China
| | - Yu Li
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Jieyi Deng
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Xingzi Shi
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, Chengdu University, Jinhua, 321007, People's Republic of China
| | - Qinhai Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
25
|
Xu J, Yang H, He L, Huang L, Shen J, Li W, Zhang P. Synthesis of ( E)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Org Lett 2020; 23:195-201. [PMID: 33354970 DOI: 10.1021/acs.orglett.0c03918] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a novel method for the gram-scale synthesis of (E)-quinoxalinone oximes through a multicomponent reaction under mild conditions is described. Such a transformation was performed under transition-metal-free conditions, affording (E)-oximes in a moderate-to-good yield through recrystallization. Our methodology demonstrates a successful combination of a Mannich-type reaction and radical coupling, providing a green and practical approach for the synthesis of potentially bioactive quinoxalinone-containing molecules.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
26
|
Liu X, Liu Z, Xue Y, Li J, Zou D, Wu Y, Wu Y. Palladium-catalyzed direct Hiyama arylation of quinoxalin-2(1H)-ones with aryl siloxanes in water. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Recent Advances in Photocatalytic Functionalization of Quinoxalin‐2‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000746] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
28
|
Bridges CR, Baumgartner T. Lewis acids and bases as molecular dopants for organic semiconductors. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Dutta NB, Bhuyan M, Baishya G. K 2S 2O 8 mediated C-3 arylation of quinoxalin-2(1 H)-ones under metal-, photocatalyst- and light-free conditions. RSC Adv 2020; 10:3615-3624. [PMID: 35497762 PMCID: PMC9048439 DOI: 10.1039/d0ra00013b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Two facile and effective C-3 arylation protocols of quinoxalin-2(1H)-ones with arylhydrazines and aryl boronic acids respectively via free radical cross-coupling reactions under metal-, photocatalyst- and light-free conditions have been unveiled. K2S2O8 has been used as an efficient oxidant to generate aryl radicals from arylhydrazines and aryl boronic acids under two different reaction conditions. The generated aryl radicals undergo a free radical coupling reaction at the C-3 position of quinoxalin-2(1H)-ones producing 3-arylquinoxalin-2(1H)-ones in good to excellent yields. The involvement of radicals in the course of the reaction has been demonstrated by radical trapping experiments with 2,2,6,6-tetramethylpiperidine-1-oxyl.
Collapse
Affiliation(s)
- Nibedita Baruah Dutta
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology Jorhat-785006 India +91 3762370011 +91 3762372948
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh-201002 India
- Rain Forest Research Institute Jorhat-785001 India
| | - Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology Jorhat-785006 India +91 3762370011 +91 3762372948
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh-201002 India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology Jorhat-785006 India +91 3762370011 +91 3762372948
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh-201002 India
| |
Collapse
|
30
|
Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Transition-metal-free direct C-3 cyanation of quinoxalin-2(1H)-ones with ammonium thiocyanate as the “CN” source. Org Chem Front 2020. [DOI: 10.1039/c9qo01055f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical protocol for TBHP-mediated oxidative C–H cyanation of quinoxalin-2(1H)-ones utilizing ammonium thiocyanate as the cyanide source has been developed under metal free conditions.
Collapse
Affiliation(s)
- Jiayang Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Zhang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tengwei Xu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
31
|
Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Visible‐Light‐Induced Trifluoromethylation of Quinoxalin‐2(1
H
)‐Ones under Photocatalyst‐Free Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900414] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiayang Wang
- Collaborative Innovation Centre of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Bin Sun
- Collaborative Innovation Centre of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Zhang
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Tengwei Xu
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Can Jin
- College of Pharmaceutical SciencesZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
32
|
Xu J, Yang H, Cai H, Bao H, Li W, Zhang P. Transition-Metal and Solvent-Free Oxidative C–H Fluoroalkoxylation of Quinoxalinones with Fluoroalkyl Alcohols. Org Lett 2019; 21:4698-4702. [DOI: 10.1021/acs.orglett.9b01578] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Huiyong Yang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Heng Cai
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Hanyang Bao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Wanmei Li
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
33
|
Ramesh B, Reddy CR, Kumar GR, Reddy BS. Mn(OAc) 3 *2H 2 O promoted addition of arylboronic acids to quinoxalin-2-ones. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.085] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Toonchue S, Sumunnee L, Phomphrai K, Yotphan S. Metal-free direct oxidative C–C bond coupling of pyrazolones and quinoxalinones. Org Chem Front 2018. [DOI: 10.1039/c8qo00328a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An efficient oxidative dehydrogenative coupling of quinoxalinones and pyrazolones has been successfully developed using a readily available persulfate oxidant. This protocol provides facile access to a wide array of hydroxy-pyrazolyl quinoxalinones in good to excellent yields.
Collapse
Affiliation(s)
- Saowanee Toonchue
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| | - Ladawan Sumunnee
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Wangchan
- Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok
| |
Collapse
|
35
|
Sumunnee L, Pimpasri C, Noikham M, Yotphan S. Persulfate-promoted oxidative C–N bond coupling of quinoxalinones andNH-sulfoximines. Org Biomol Chem 2018; 16:2697-2704. [DOI: 10.1039/c8ob00375k] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple approach for a direct sulfoximination of quinoxalinonesviaK2S2O8-mediated oxidative coupling is reported.
Collapse
Affiliation(s)
- Ladawan Sumunnee
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Chaleena Pimpasri
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Medena Noikham
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
| |
Collapse
|
36
|
Yuan J, Liu S, Qu L. Transition Metal-Free Direct C-3 Arylation of Quinoxalin-2(1H
)-ones with Arylamines under Mild Conditions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701058] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinwei Yuan
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| | - Shuainan Liu
- School of Biological Engineering; Henan University of Technology; Zhengzhou People's Republic of China
| | - Lingbo Qu
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| |
Collapse
|
37
|
Yin K, Zhang R. Transition-Metal-Free Direct C-H Arylation of Quinoxalin-2(1H)-ones with Diaryliodonium Salts at Room Temperature. Org Lett 2017; 19:1530-1533. [PMID: 28300414 DOI: 10.1021/acs.orglett.7b00310] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A method of synthesizing 3-arylquinoxalin-2(1H)-ones using diaryliodonium tetrafluoroborates under mild conditions is described. This protocol has a wide substrate scope and enables direct C-H functionalization. The synthetic potential of this coupling was explored using a range of readily accessible diaryliodonium salts and quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kun Yin
- School of Chemical Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Ronghua Zhang
- School of Chemical Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China.,Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University , 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
38
|
KIMOTO A. Development of π-Conjugated Polymer Complexes and Their Application to Organic Electronics. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2017-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|