1
|
Han J, Zheng Q, Ding X, Wen Y, Chen N, Lin W, Chen FJ. Rapid and Additive-Free Synthesis of β-Sulfido Sulfonyl Fluorides through N-Methyl-2-pyrrolidinone (NMP)-Promoted Thia-Michael Addition. J Org Chem 2025. [PMID: 40249245 DOI: 10.1021/acs.joc.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
β-Sulfido sulfonyl fluorides, incorporating a clickable sulfonyl fluoride and a thioether motif, are valuable intermediates in chemical biology, materials science, and drug discovery. Herein, we developed a rapid and additive-free synthesis of these compounds via N-methyl-2-pyrrolidinone (NMP)-promoted thia-Michael addition of thiols to ethene sulfonyl fluoride (ESF). The reaction proceeds smoothly under neutral conditions without the need for a base or catalyst, achieving high efficiency within 20 min. This method demonstrates a broad substrate scope, tolerating thiophenols, alkylthiols, thioglycosides, and cysteine-containing peptides. The resulting β-sulfido sulfonyl fluorides enable diverse transformations, such as sulfur(VI) fluoride exchange (SuFEx) reaction and thioether oxidation, facilitating applications in drug conjugates and materials, such as additives for lithium-ion battery electrolyte components.
Collapse
Affiliation(s)
- Junwei Han
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Qiushuo Zheng
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Ding
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuqin Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Nengrong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P. R. China
| | - Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
2
|
Guo Q, Yang C, Liu X, Liu J, Zhang W, Lu X, Ding N. Construction of PROTAC molecules by the SuFEx reaction for inducing p300/CBP protein degradation. Bioorg Med Chem 2025; 125:118201. [PMID: 40267748 DOI: 10.1016/j.bmc.2025.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
While there have been advancements in the development of innovative PROTACs with sophisticated linkers designed to meet specific requirements, studies on the structure-activity relationships (SAR) of linker length remain a fundamental priority. Although several reliable chemistries for connecting the two ligands-one targeting the protein and the other for E3 ubiquitin ligase-have been established, the potential for utilizing various other methods still needs exploration. In this work, we introduced a concept that employs the SuFEx reaction, a novel family of click chemistry, to quickly construct a small PROTAC library for protein degradation. This was achieved by amidating a sulfonyl fluoride or fluorosulfate precursor (modified with the p300/CBP ligand CPI644) with CRBN ligands that possess amino-carbon chains of varying lengths. The protein degradation effects of the PROTACs created through this strategy were further validated using the p300/CBP overexpressed MDA-MB-468 cell line.
Collapse
Affiliation(s)
- Qiuyu Guo
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chunxia Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuyuan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Ning Ding
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Glocker UM, Braun F, Eberl HC, Bantscheff M. A probe-based target engagement assay for kinases in live cells. Mol Cell Proteomics 2025:100963. [PMID: 40187494 DOI: 10.1016/j.mcpro.2025.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
The efficacy and safety of kinase inhibitor drugs are largely influenced by their selectivity. Available profiling technologies are primarily based on over-expressed or endogenously expressed kinases in cell extracts. We compared kinase capture with the cell penetrant covalent probe XO44 to three derivatives and found that replacing the alkyne handle with a trans-cyclooctene group allowed the development of a more robust kinase capture and enrichment protocol. An intracellular chemoproteomics target profiling and engagement assay was devised by optimizing probe concentration and incubation time and using an isobaric mass tag-based strategy for relative quantification. Comparing intracellular kinase profiles of the marketed drug Dasatinib and the tool compound Dinaciclib with the lysate-based kinobeads assay revealed excellent agreement in rank-order of binding. Dinaciclib showed a systematic shift to higher IC50s suggesting that intracellular co-substrate concentrations, cell penetration of the compound as well as kinase localization and complexes in live cells influence target profiles. Further, we show that sepiapterin reductase SPR and Multidrug Resistance Protein 1 ABCC1 are off-targets of kinase inhibitor scaffolds with potential implications on efficacy and safety.
Collapse
Affiliation(s)
| | - Florian Braun
- Chemical Synthesis Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Pei G, Wang P, Lin L, Zhang H, Wei R, Liao S. Photocatalytic Radical Azido/Fluorosulfonylation of Unactivated Alkenes: Accessing Hubs Bridging CuAAC and SuFEx Click Chemistry. Org Lett 2025; 27:2467-2474. [PMID: 40017314 DOI: 10.1021/acs.orglett.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Herein, we describe the successful development of an azido-fluorosulfonylation reaction of alkenes under photoredox catalysis, which could allow the installation of the two "clickable" groups, -N3 and -SO2F, on a C-C double bond, with TMSN3 as the azide source. The utilization of the difunctionalization products is also demonstrated in the construction of a library of 1,2,3-triazolesulfonyl fluoride compounds as well as drug molecule ligation by merging copper-catalyzed azide-alkyne cycloaddition (CuAAC) and sulfur(VI) fluoride exchange (SuFEx), the two generations of click reactions. Mechanistic studies suggest a radical fluorosulfonylation/azidation mechanism and unveil FSO2N3 as a new and potential fluorosulfonyl radical precursor.
Collapse
Affiliation(s)
- Guanhua Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei, Normal University, Huaibei, Anhui 235000, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Honghai Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rongbiao Wei
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2025; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
6
|
Yan ZM, Zhang CF, Li H, Yang JH, Qi L, Ma YX, Dong YC, Li W, Wang LJ. Photoredox-Catalyzed Allylic C-H Fluorosulfonylation of Alkenes: Accessing Allyl Sulfonyl Fluorides. Org Lett 2025; 27:1656-1661. [PMID: 39913310 DOI: 10.1021/acs.orglett.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
This study reported a novel and unprecedented photoredox-catalyzed protocol for direct allylic C-H fluorosulfonylation of alkenes with FABI. This mild protocol exhibited excellent compatibility with various functional groups, broad substrate scope, and promising scalability, enabling convenient access to a wide range of allyl sulfonyl fluorides with exceptional regioselectivity. The synthetic robustness of this strategy was further demonstrated by the late-stage functionalization of natural products and their ligation with other drugs via SuFEx chemistry.
Collapse
Affiliation(s)
- Zhi-Min Yan
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Chun-Fang Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Hua Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Jia-Hua Yang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Lin Qi
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yu-Xue Ma
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yi-Chen Dong
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, P. R. China
| | - Li-Jing Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
7
|
Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta 2025; 1338:343551. [PMID: 39832869 DOI: 10.1016/j.aca.2024.343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Chemical proteomics has advanced small molecule ligand discovery by providing insights into protein-ligand binding mechanism and enabling medicinal chemistry optimization of protein selectivity on a global scale. Mass spectrometry is the predominant analytical method for chemoproteomics, and various approaches have been deployed to investigate and target a rapidly growing number of protein classes and biological systems. Two methods, intact mass analysis (IMA) and top-down proteomics (TDMS), have gained interest in recent years due to advancements in high resolution mass spectrometry instrumentation. Both methods apply mass spectrometry analysis at the proteoform level, as opposed to the peptide level of bottom-up proteomics (BUMS), thus addressing some of the challenges of protein inference and incomplete information on modification stoichiometry. This Review covers recent research progress utilizing MS-based proteomics methods, discussing in detail the capabilities and opportunities for improvement of each method. Further, heightened attention is given to IMA and TDMS, highlighting these methods' strengths and considerations when utilized in chemoproteomic studies. Finally, we discuss the capabilities of native mass spectrometry (nMS) and ion mobility mass spectrometry (IM-MS) and how these methods can be used in chemoproteomics research to complement existing approaches to further advance the field of functional proteomics.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
8
|
Su M, Peng T, Zhu Y, Li J. Nucleic Acid Covalent Tags. Chembiochem 2025; 26:e202400805. [PMID: 39572501 DOI: 10.1002/cbic.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Indexed: 03/05/2025]
Abstract
The selective and site-specific chemical labeling of proteins has emerged as a pivotal research area in chemical biology and cell biology. An effective protein labeling typically meets several criteria, including high specificity, rapid and robust conjugation under physiological conditions, operation at low concentrations with biocompatibility, and minimal perturbation of the protein function and activity. The conjugation of nucleic acids with proteins has garnered significant attention recently due to the rapid advancements in nucleic acid probe technologies, leveraging the programmable nature of nucleic acids alongside the multifaceted functionalities of proteins. It helps to convert protein-specific information into nucleic acid signals, facilitating upstream versatile recognition and downstream signal amplification for the target protein. This review critically evaluates the recent progress in nucleic acid-based protein labeling methodologies, with a specific focus on covalent labeling using aptamer tags, protein fusion tags or the technique of metabolic oligosaccharide engineering. The tags establish covalent linkages with target proteins through various modalities such as small molecules or metabolic glycan engineering. The insights presented in the review highlight promising avenues for the development of highly specific and versatile protein labeling techniques, which is essential for the improvement of protein-targeted detection and imaging across diverse biological contexts.
Collapse
Affiliation(s)
- Min Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tao Peng
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
9
|
Lapray A, Hiebel MA, Oudeyer S, Lohier JF, Suzenet F, Brière JF. 3-Alkyl-1,2,4-triazines as Heterocyclic Platforms for Organocatalytic Enantioselective Benzylic C-H Functionalization. Org Lett 2025. [PMID: 39889202 DOI: 10.1021/acs.orglett.5c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
The α-3-(1,2,4-triazine)-α-cyanoacetate derivatives exhibit a unique and well-defined dearomatized structure undergoing efficient organocatalytic aromatization-alkylation sequences with Michael acceptors in order to construct an all-carbon tetrasubstituted stereocenter with high ee values. These new players in the field of enantioselective catalytic benzylic C-H functionalization afford versatile molecular platforms toward the construction of valuable 3D-heterocycles.
Collapse
Affiliation(s)
- Anthony Lapray
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| | | | - Sylvain Oudeyer
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| | | | - Franck Suzenet
- Université d'Orléans, CNRS, ICOA, UMR 7311, 45067 Orléans, France
| | - Jean-François Brière
- CNRS, INSA Rouen Normandie, Univ Rouen Normandie, Normandie Univ, CARMeN UMR 6064, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
10
|
Huang HS, Yuan Y, Wang W, Zhang SQ, Nie XK, Yang WT, Cui X, Tang Z, Li GX. Enantioselective Synthesis of Chiral Sulfonimidoyl Fluorides Facilitates Stereospecific SuFEx Click Chemistry. Angew Chem Int Ed Engl 2025; 64:e202415873. [PMID: 39496565 DOI: 10.1002/anie.202415873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Sulfur-centered electrophilic 'warheads' have emerged as key components for chemical proteomic probes through sulfur-exchange chemistry (SuFEx) with protein nucleophiles. Among these functional groups, sulfonimidoyl fluorides (SIFs) stand out for their modifiable sites, tunable electrophilicities, and chiral sulfur-center, presenting exciting possibilities for new covalent chemical probes. However, the synthetic access to chiral SIFs has been a challenge, limiting their exploration and applications. In this study, we describe a convenient route to obtain chiral SIFs from readily available sulfenamides via a series of one-pot tandem reactions with high enantiomeric excess (ees). The resulting chiral SIFs were further converted into a diverse array of chiral S(VI) derivatives under mild conditions or in buffer solutions. Most significantly, the specificity of the chiral SIFs in protein ligation experiments underscored the critical role of sulfur-center chirality in the design and screening of more-selective covalent probes and therapeutics.
Collapse
Affiliation(s)
- He-Sen Huang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Yi Yuan
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xiao-Kang Nie
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wan-Ting Yang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Symes OL, Ishikura H, Begg CS, Rojas JJ, Speller HA, Cherk AM, Fang M, Leung D, Croft RA, Higham JI, Huang K, Barnard A, Haycock P, White AJP, Choi C, Bull JA. Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery. J Am Chem Soc 2024; 146:35377-35389. [PMID: 39666854 DOI: 10.1021/jacs.4c14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Four-membered heterocycles such as oxetanes and azetidines represent attractive and emergent design options in medicinal chemistry due to their small and polar nature and potential to significantly impact the physiochemical properties of drug molecules. The challenging preparation of these derivatives, especially in a divergent manner, has severely limited their combination with other medicinally and biologically important groups. Consequently, there is a substantial demand for mild and effective synthetic strategies to access new oxetane and azetidine derivatives and molecular scaffolds. Here, we report the development and use of oxetane sulfonyl fluorides (OSFs) and azetidine sulfonyl fluorides (ASFs), which behave as precursors to carbocations in an unusual defluorosulfonylation reaction pathway (deFS). The small-ring sulfonyl fluorides are activated under mild thermal conditions (60 °C), and the generated reactive intermediates couple with a broad range of nucleophiles. Oxetane and azetidine heterocyclic, -sulfoximine, and -phosphonate derivatives are prepared, several of which do not have comparable carbonyl analogs, providing new chemical motifs and design elements for drug discovery. Alternatively, a SuFEx pathway under anionic conditions accesses oxetane-sulfur(VI) derivatives. We demonstrate the synthetic utility of novel OSF and ASF reagents through the synthesis of 11 drug analogs, showcasing their potential for subsequent diversification and facile inclusion into medicinal chemistry programs. Moreover, we propose the application of the OSF and ASF reagents as linker motifs and demonstrate the incorporation of pendant groups suitable for common conjugation reactions. Productive deFS reactions with E3 ligase recruiters such as pomalidomide and related derivatives provide new degrader motifs and potential PROTAC linkers.
Collapse
Affiliation(s)
- Oliver L Symes
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Hikaru Ishikura
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Callum S Begg
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Harry A Speller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Anson M Cherk
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Marco Fang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Domingo Leung
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Rosemary A Croft
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Joe I Higham
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Kaiyun Huang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Peter Haycock
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Medicine Design, Pfizer Research and Development, Groton, Connecticut 06340, United States
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
12
|
Yang WP, Miao HJ, Wang G, Yang X, Wang X, Liu L, Duan XH, Guo LN. Photoinduced Aromatization-Driven Deconstructive Fluorosulfonylation of Spiro Dihydroquinazolinones. J Org Chem 2024; 89:18713-18722. [PMID: 39614825 DOI: 10.1021/acs.joc.4c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A catalyst-free photoinduced deconstructive fluorosulfonylation cascade of spiro dihydroquinazolinones with DABSO and NFSI is reported. This protocol features mild reaction conditions, good yields and excellent functional group tolerance, providing a practical approach to the quinazolin-4(1H)-one-functionalized aliphatic sulfonyl fluorides. In addition, the ease of gram-scale synthesis and the versatility of the SuFEx exchange highlight the application potential of this protocol.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xiaoyu Yang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Xianjun Wang
- Keshun Waterproof Technology Co., Ltd, Foshan 528303, China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Zhang Z, Ma Q, Yang X, Zhang S, Guo K, Zhao L. A computational mechanistic study on the formation of aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis and further rational design. J Comput Chem 2024; 45:2979-2990. [PMID: 39240057 DOI: 10.1002/jcc.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Sulfonyl fluorides hold significant importance as highly valued intermediates in chemical biology due to their optimal balance of biocompatibility with both aqueous stability and protein reactivity. The Cornella group introduced a one-pot strategy for synthesizing aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis, which facilitates the transmetallation and direct insertion of SO2 into the BiC(sp2) bond giving the aryl sulfonyl fluorides. We report herein a comprehensive computational investigation of the redox-neutral Bi(III) catalytic mechanism, disclose the critical role of the Bi(III) catalyst and base (i.e., K3PO4), and uncover the origin of SO2 insertion into the Bi(III)C(sp2) bond. The entire catalysis can be characterized via three stages: (i) transmetallation generating the Bi(III)-phenyl intermediate IM3 facilitated by K3PO4. (ii) SO2 insertion into IM3 leading to the formation of Bi(III)-OSOAr intermediate IM5. (iii) IM5 undergoes S(IV)-oxidation yielding the aryl sulfonyl fluoride product 4 and liberating the Bi(III) catalyst for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. Moreover, we explored other some small molecules (NO2, CO2, H2O, N2O, etc.) insertion reactions mediated by the Bi(III)-complex, and found that NO2 insertions could be easily achieved due to the low insertion barriers (i.e., 17.5 kcal/mol). Based on the detailed mechanistic study, we further rationally designed additional Bi(III) and Sb(III) catalysts, and found that some of which exhibit promising potential for experimental realization due to their low barriers (<16.4 kcal/mol). In this regard, our study contributes significantly to enhancing current Bi(III)-catalytic systems and paving the way for novel Bi(III)-catalyzed aryl sulfonyl fluoride formation reactions.
Collapse
Affiliation(s)
- Zhaoyin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Qin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Shuqi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
14
|
Bogyo M, Upadhyay T, Woods E, Ahator S, Julin K, Faucher F, Hollander M, Pedowitz N, Abegg D, Hammond I, Eke I, Wang S, Chen S, Bennett J, Jo J, Lentz C, Adibekian A, Fellner M. Covalent-fragment screening identifies selective inhibitors of multiple Staphylococcus aureus serine hydrolases important for growth and biofilm formation. RESEARCH SQUARE 2024:rs.3.rs-5494070. [PMID: 39711551 PMCID: PMC11661381 DOI: 10.21203/rs.3.rs-5494070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Staphylococcus aureus is a leading cause of bacteria-associated mortality worldwide. This is largely because infection sites are often difficult to localize and the bacteria forms biofilms which are not effectively cleared using classical antibiotics. Therefore, there is a need for new tools to both image and treat S. aureus infections. We previously identified a group of S. aureus serine hydrolases known as fluorophosphonate-binding hydrolases (Fphs), which regulate aspects of virulence and lipid metabolism. However, because their structures are similar and their functions overlap, it remains challenging to distinguish the specific roles of individual members of this family. In this study, we applied a high-throughput screening approach using a library of covalent electrophiles to identify inhibitors for FphB, FphE, and FphH. We identified inhibitors that irreversibly bind to the active-site serine residue of each enzyme with high potency and selectivity without requiring extensive medicinal chemistry optimization. Structural and biochemical analysis identified novel binding modes for several of the inhibitors. Selective inhibitors of FphH impaired both bacterial growth and biofilm formation while Inhibitors of FphB and FphE had no impact on cell growth and only limited impact on biofilm formation. These results suggest that all three hydrolases likely play functional, but non-equivalent roles in biofilm formation and FphH is a potential target for development of therapeutics that have both antibiotic and anti-biofilm activity. Overall, we demonstrate that focused covalent fragment screening can be used to rapidly identify highly potent and selective electrophiles targeting bacterial serine hydrolases. This approach could be applied to other classes of lipid hydrolases in diverse pathogens or higher eukaryotes.
Collapse
|
15
|
Gai C, Zhang Y, Zhang S, Hu X, Song YQ, Zhuang X, Chai X, Zou Y, Ge GB, Zhao Q. The study of halogen effect on the reactivity of the serine-targeting covalent warheads. Front Chem 2024; 12:1504453. [PMID: 39691824 PMCID: PMC11649397 DOI: 10.3389/fchem.2024.1504453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Halogens favorably contributes to the drug potency and metabolic stability via electrostatic interactions. Herein, the halogen effects on the reactivity of the halogenated 2,2,2-trifluoroacetophenones as serine-targeting covalent warheads were investigated. Our results showed that introducing halogen atoms, especially Cl or Br, into the phenyl scaffold would influence the electron density around the ring, which led to different time-dependent inhibition response to the target serine hydrolase (hCES1A). Co-crystallography analysis not only verified that halogenated molecules preferred to form covalent adducts, but also provided the conformational information for the design of covalent inhibitors targeting to hCES1A protein for the treatment of drug-induced acute enteritis.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Ya Zhang
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Xueyan Hu
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Qing Song
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Zhuang
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Chai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Yan Zou
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Ghorbani F, You S, Grabovyi GA, Hong M, Lindsey G, Chatterjee AK, Bollong MJ. Scalable Thiol Reactivity Profiling Identifies Azetidinyl Oxadiazoles as Cysteine-Targeting Electrophiles. J Am Chem Soc 2024; 146:32333-32342. [PMID: 39541547 PMCID: PMC11995717 DOI: 10.1021/jacs.4c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cysteine reactive groups are a mainstay in the design of covalent drugs and probe molecules, yet only a handful of electrophiles are routinely used to target this amino acid. Here, we report the development of scalable thiol reactivity (STRP), a method which enables the facile interrogation of large chemical libraries for intrinsic reactivity with cysteine. High throughput screening using STRP identified the azetidinyl oxadiazole as a moiety that selectively reacts with cysteine through a ring opening-based mechanism, capable of covalently engaging cysteine residues broadly across the human proteome. We show the utility of this reactive group with the discovery of an azetidinyl oxadiazole containing a small molecule that augments the catalytic activity of the deubiquitinase UCHL1 in vitro and in cells by covalently modifying a cysteine distal to its enzymatic active site. This study adds a novel cysteine targeting group to the electrophilic lexicon and provides robust methodology to rapidly surveil libraries for reactivity with cysteine.
Collapse
Affiliation(s)
| | - Shaochen You
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Gennadii A. Grabovyi
- Calibr-Skaggs Institute for Innovative Medicines, Scripps Research, San Diego, CA, USA 92037
| | - Mannkyu Hong
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Garrett Lindsey
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Arnab K. Chatterjee
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
- Calibr-Skaggs Institute for Innovative Medicines, Scripps Research, San Diego, CA, USA 92037
| | | |
Collapse
|
17
|
Sun H, Meng W, Ma X, Cheng Z, Chen C, Ni Y, Yan F, Zhu Q, Zhang P, Sui X. Photoredox-Catalyzed Three-Component Construction of Aryl Sulfonyl Fluoride Using KHF 2: Late-Stage Drug Fluorosulfonylation. J Org Chem 2024; 89:16594-16599. [PMID: 39482942 DOI: 10.1021/acs.joc.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aryl sulfonyl fluorides are prominently featured in organic synthesis and medicinal chemistry. Herein, a metal-free photoredox-catalyzed three-component assembly of aryl sulfonyl fluoride via aryl sulfonyl ammonium salt intermediate has been reported. A variety of structurally diverse aryl sulfonyl fluorides were synthesized rapidly from dibenzothiophenium (DBT) salts under mild conditions by using KHF2 as the fluorine source. Notably, this methodology can be employed as an efficient and sustainable approach for late-stage drug fluorosulfonylation. Good yields and broad functionality tolerance were the features of this methodology. Moreover, the derivatization of aryl sulfonyl fluoride molecules was also demonstrated to showcase its synthetic utility.
Collapse
Affiliation(s)
- Hanhan Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wanqing Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhiling Cheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Cheng Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yan Ni
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fengying Yan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiaomei Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ping Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xianwei Sui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
18
|
V R PP, Mercy A AH, K N, S S, Nandi GC. A Rapid, Mild and Direct Route to Sulfonimidoyl Fluoride from Sulfenamide. J Org Chem 2024; 89:16426-16432. [PMID: 39478286 DOI: 10.1021/acs.joc.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We develop a rapid and mild protocol to access sulfonimidoyl fluoride-[S(VI)] from sulfenamide-[S(II)] directly. The transformation occurs via the reaction of sulfenamide with NCS (N-chlorosuccinimide), water, and TBAF in acetonitrile. Water and TBAF act as the source for S═O bond formation and fluoride, respectively. The reaction takes a very short time (within 5 min). The drug molecules, such as Carbamazepine and Levetiracetam attached sulfonimidoyl fluorides are also achieved following this protocol. Furthermore, sulfonimidoyl fluoride is transformed into sulfonimidamide in the presence of AlCl3. To the best of our knowledge, it is the first report detailing the synthesis of sulfonimidoyl fluoride-[S(VI)] directly from S(II)-sulfenamide.
Collapse
Affiliation(s)
- Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Sugapriya S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| |
Collapse
|
19
|
P. K, Bhattacharya A, Du L, Silswal A, Li M, Cao J, Zhou Q, Zheng W, Liu TM, Koner AL. Activity-Based Dicyanoisophorone Derivatives: Fluorogenic Toolbox Enables Direct Visualization and Monitoring of Esterase Activity in Tumor Models. Anal Chem 2024; 96:18278-18286. [PMID: 39483052 PMCID: PMC11561878 DOI: 10.1021/acs.analchem.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The visualization and spatiotemporal monitoring of endogenous esterase activity are crucial for clinical diagnostics and treatment of liver diseases. Our research adopts a novel substrate hydrolysis-enzymatic activity (SHEA) approach using dicyanoisophorone-based fluorogenic ester substrates DCIP-R (R = R1-R6) to evaluate esterase preferences on diverse substrate libraries. Esterase-mediated hydrolysis yielded fluorescent DCIP-OH with a nanomolar detection limit in vitro. These probes effectively monitor ester hydrolysis kinetics with a turnover number of 4.73 s-1 and catalytic efficiency (kcat/Km) of 106 M-1 s-1 (DCIP-R1). Comparative studies utilizing two-photon imaging have indicated that substrates containing alkyl groups (DCIP-R1) as recognition elements exhibit enhanced enzymatic cleavage compared to those containing phenyl substitution on alkyl chains (DCIP-R4). Time-dependent variations in endogenous esterase levels were tracked in healthy and liver tumor models, especially in diethylnitrosamine (DEN)-induced tumors and HepG2-transplanted liver tumors. Overall, fluorescence signal quantifications demonstrated the excellent proficiency of DCIP-R1 in detecting esterase activity both in vitro and in vivo, showing promising potential for biomedical applications.
Collapse
Affiliation(s)
- Kavyashree P.
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Atri Bhattacharya
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States of
America
| | - Lidong Du
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Akshay Silswal
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Moxin Li
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Jiayue Cao
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Qingqing Zhou
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Weiming Zheng
- Translational
Medicine R&D Center, Zhuhai UM Science
and Technology Research Institute, Zhuhai 519000, China
| | - Tzu-Ming Liu
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Apurba Lal Koner
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| |
Collapse
|
20
|
Wei R, Huang Y, Afanasyev OI, Li Y, Chusov D, Liao S. Cyano-Fluorosulfonylation of Unactivated Alkenes by Photoredox and Copper Dual Catalysis. Org Lett 2024; 26:9132-9137. [PMID: 39413408 DOI: 10.1021/acs.orglett.4c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Both fluorosulfonyl and cyano groups are important structural motifs in bioactive molecules. Herein, we report a new difunctionalization reaction of alkenes based on fluorosulfonyl radicals, which allows for the introduction of the fluorosulfonyl and cyano groups into unactivated alkenes in one step. This transformation is enabled by merging photoredox and copper catalysis, featuring visible light catalysis, mild conditions, and good functional group tolerance. Further transformation of products via SuFEx reactions is also demonstrated.
Collapse
Affiliation(s)
- Rongbiao Wei
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Mantilla BS, White JS, Mosedale WRT, Gomm A, Nelson A, Smith TK, Wright MH. Discovery of Trypanosoma brucei inhibitors enabled by a unified synthesis of diverse sulfonyl fluorides. Commun Chem 2024; 7:237. [PMID: 39427042 PMCID: PMC11490619 DOI: 10.1038/s42004-024-01327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Sets of electrophilic probes are generally prepared using a narrow toolkit of robust reactions, which tends to limit both their structural and functional diversity. A unified synthesis of skeletally-diverse sulfonyl fluorides was developed that relied upon photoredox-catalysed dehydrogenative couplings between hetaryl sulfonyl fluorides and hydrogen donor building blocks. A set of 32 diverse probes was prepared, and then screened against Trypanosoma brucei. Four of the probes were found to have sub-micromolar anti-trypanosomal activity. A chemical proteomic approach, harnessing an alkynylated analogue and broad-spectrum fluorophosphonate tools, provided insights into the observed anti-trypanosomal activity, which likely stems from covalent modification of multiple protein targets. It is envisaged that the unified diversity-oriented approach may enable the discovery of electrophilic probes that have value in the elucidation of biological and biomedical mechanisms.
Collapse
Affiliation(s)
- Brian S Mantilla
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jack S White
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - William R T Mosedale
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Andrew Gomm
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Terry K Smith
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Megan H Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Wang K, Wang R, Yan Z, Li Y, Shi Y, Ge JY, Bai Y, Chen Z, Zhang L. Rational Design of a Highly Sensitive Carboxylesterase Probe and Its Application in High-Throughput Screening for Uncovering Carboxylesterase Inhibitors. J Org Chem 2024; 89:14650-14657. [PMID: 38720168 DOI: 10.1021/acs.joc.4c00699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Tracking carboxylesterases (CESs) through noninvasive and dynamic imaging is of great significance for diagnosing and treating CES-related metabolic diseases. Herein, three BODIPY-based fluorescent probes with a pyridine unit quaternarized via an acetoxybenzyl group were designed and synthesized to detect CESs based on the photoinduced electron transfer process. Notably, among these probes, BDPN2-CES exhibited a remarkable 182-fold fluorescence enhancement for CESs within 10 min. Moreover, BDPN2-CES successfully enabled real-time imaging of endogenous CES variations in living cells. Using BDPN2-CES, a visual high-throughput screening method for CES inhibitors was established, culminating in the discovery of an efficient inhibitor, WZU-13, sourced from a chemical library. These findings suggest that BDPN2-CES could provide a new avenue for diagnosing CES-related diseases, and WZU-13 emerges as a promising therapeutic candidate for CES-overexpression pathological processes.
Collapse
Affiliation(s)
- Kexin Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ruoxi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zihui Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yi Li
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Yangchen Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P. R. China
| |
Collapse
|
23
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
24
|
Tsuruno A, Kamoshita S, Hosoya S, Sakurai K. Dichlorotriazine-based multivalent probe for selective affinity labeling of carbohydrate-binding proteins. Org Biomol Chem 2024; 22:7659-7663. [PMID: 39193651 DOI: 10.1039/d4ob01285b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A new series of multivalent gold nanoparticle probes bearing different electrophilic groups were synthesized and their affinity labeling reactivities were evaluated. The dichlorotriazine group was identified as a useful protein-reactive label, allowing selective capture of a target protein at nanomolar probe concentrations.
Collapse
Affiliation(s)
- Ayaka Tsuruno
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - Shione Kamoshita
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
25
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
26
|
Liu MJ, Fayad E, Abu Ali OA, Tao XF, Qin HL. Synthesis of α-Bromo Arylethyl Sulfonyl Fluorides and β-Arylethenesulfonyl Fluorides via Copper-Catalyzed Meerwein Arylation. J Org Chem 2024; 89:13709-13718. [PMID: 39151070 DOI: 10.1021/acs.joc.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A practical copper-catalyzed process for the synthesis of the β-arylethenesulfonyl fluorides is described. A series of α-bromo arylethyl sulfonyl fluorides was prepared via Meerwein reaction from arenediazonium tetrafluoroborates and ethenesulfonyl fluoride (ESF) under mild conditions. The following β-arylethenesulfonyl fluorides were further obtained through a β-elimination reaction. This protocol features excellent regio- and stereoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ming-Jian Liu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Xiang-Feng Tao
- School of Chemistry, Chemical Engineering and Life Sciences,Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
27
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Thathy V, Hackett F, Yeo T, Li VL, Muir R, Faucher F, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets. Cell Chem Biol 2024; 31:1714-1728.e10. [PMID: 39137783 PMCID: PMC11457795 DOI: 10.1016/j.chembiol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA; Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Ding M, Bell C, Willis MC. The Modular Synthesis of Sulfondiimidoyl Fluorides and their Application to Sulfondiimidamide and Sulfondiimine Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409240. [PMID: 38923337 DOI: 10.1002/anie.202409240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
A modular synthesis of sulfondiimidoyl fluorides-the double aza-analogues of sulfonyl fluorides-allowing variation of the carbon and both nitrogen-substituents is reported. The chemistry uses readily available organometallic reagents, commercial sulfinylamines, simple electrophiles, and N-fluorobenzenesulfonimide (NFSI), as the starting materials. The reactions are broad in scope, efficient, and scalable. We show that the sulfondiimidoyl fluoride products can be combined with amines to provide sulfondiimidamides, and with organolithium reagents to provide sulfondiimines, and that reactivity in these transformations can be modulated by variation of the N-substituents.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles Bell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
29
|
Shioi R, Kool ET. Chemical diversity of reagents that modify RNA 2'-OH in water: a review. Chem Sci 2024:d4sc05317f. [PMID: 39309104 PMCID: PMC11412305 DOI: 10.1039/d4sc05317f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Electrophilic water-soluble compounds have proven versatile in reacting selectively with 2'-OH groups in RNA, enabling structure mapping, probing, caging, labeling, crosslinking, and conjugation of RNAs in vitro and in living cells. While early work focused on one or two types of reagents with limited properties, recent studies have greatly diversified the structure, properties, and applications of these reagents. Here we review the scope of documented RNA hydroxyl-reactive species reported to date, with an eye to the effects of chemical structure on reactivity with RNA and other useful properties. Multiple forms of carbonyl electrophiles are now known to react at the 2'-OH, and recently, sulfonyl and aryl electrophiles have also been documented to form bonds there in high yields as well. In addition to electrophilicity, data also point to significant effects of reagent stability, steric bulk, and chirality on reaction yields and selectivity. Finally, we outline reagent properties and principles that define utility in applications with RNA, with an eye to the design of future reagents.
Collapse
Affiliation(s)
- Ryuta Shioi
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Eric T Kool
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
30
|
Schnaider L, Tan S, Singh PR, Capuano F, Scott AJ, Hambley R, Lu L, Yang H, Wallace EJ, Jo H, DeGrado WF. SuFEx Chemistry Enables Covalent Assembly of a 280-kDa 18-Subunit Pore-Forming Complex. J Am Chem Soc 2024; 146:25047-25057. [PMID: 39190920 DOI: 10.1021/jacs.4c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Proximity-enhanced chemical cross-linking is an invaluable tool for probing protein-protein interactions and enhancing the potency of potential peptide and protein drugs. Here, we extend this approach to covalently stabilize large macromolecular assemblies. We used SuFEx chemistry to covalently stabilize an 18-subunit pore-forming complex, CsgG:CsgF, consisting of nine CsgG membrane protein subunits that noncovalently associate with nine CsgF peptides. Derivatives of the CsgG:CsgF pore have been used for DNA sequencing, which places high demands on the structural stability and homogeneity of the complex. To increase the robustness of the pore, we designed and synthesized derivatives of CsgF-bearing sulfonyl fluorides, which react with CsgG in very high yield to form a covalently stabilized CsgG:CsgF complex. The resulting pores formed highly homogeneous channels when added to artificial membranes. The high yield and rapid reaction rate of the SuFEx reaction prompted molecular dynamics simulations, which revealed that the SO2F groups in the initially formed complex are poised for nucleophilic reaction with a targeted Tyr. These results demonstrate the utility of SuFEx chemistry to structurally stabilize very large (here, 280 kDa) assemblies.
Collapse
Affiliation(s)
- Lee Schnaider
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Sophia Tan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | | | | | | | - Lei Lu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
31
|
Wang P, Lin L, Huang Y, Zhang H, Liao S. Radical Fluorosulfonamidation: A Facile Access to Sulfamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202405944. [PMID: 38837324 DOI: 10.1002/anie.202405944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Application, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yao Huang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Zhang YJ, Li ML, Hu HX, Teng F. Recent advances in palladium-catalyzed sulfonylation via SO 2 insertion. Org Biomol Chem 2024; 22:5868-5885. [PMID: 38980115 DOI: 10.1039/d4ob00667d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The importance of sulfonyl-group-containing compounds, such as sulfonamides, sulfones, sulfinate esters, and sulfonyl fluorides, in pharmaceuticals, bioactive molecules, and natural products cannot be overstated. The new development of palladium-catalyzed sulfonylation via SO2 insertion represents a crucial advancement in organic synthesis, enabling the direct α,α-difunctionalization of SO2 and providing efficient access to an array of structure-diverse sulfonyl-containing compounds. Although there have been numerous reviews about SO2 insertion, many of them only cover specific aspects of palladium-catalyzed reactions, leading to an oversight of some important works. Besides, these reviews often lack detailed discussions and systematic conclusion on reaction mechanisms, and fail to comprehensively summarize the significant research achievements in palladium-catalyzed reactions over the past few years. Herein, we aim to systematically consolidate the recent advances in palladium-catalyzed sulfonylation via SO2 insertion, elucidate the underlying reaction mechanism, and highlight some unsolved challenges in this segment. This review seeks to serve as a valuable resource for researchers, assisting in the continued development of palladium-catalyzed sulfonylation methodologies.
Collapse
Affiliation(s)
- Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng-Ling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hai-Xia Hu
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
33
|
Wei MK, Moseley DF, Bär RM, Sempere Y, Willis MC. Palladium-Catalyzed Addition of Aryl Halides to N-Sulfinylamines for the Synthesis of Sulfinamides. J Am Chem Soc 2024; 146:19690-19695. [PMID: 38994915 PMCID: PMC11273345 DOI: 10.1021/jacs.4c06726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Sulfinamides are versatile, synthetically useful intermediates, and final motifs. Traditional methods to synthesize sulfinamides generally require substrates with preinstalled sulfur centers. However, these precursors have limited commercial availability, and the associated synthetic routes often require harsh reaction conditions and highly reactive reagents, thus severely limiting their application. Herein, we report the synthesis of sulfinamides from aryl and alkenyl (pseudo)halides and N-sulfinylamines, enabled by palladium catalysis. The reactions use mild conditions and are achieved without the use of highly reactive preformed organometallic reagents, resulting in transformations of broad generality and high functional group tolerance. In particular, substrates featuring protic and electrophilic functional groups can be used successfully. The modification of complex aryl cores and natural product derivatives demonstrates the utility of this method.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Daniel F. Moseley
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robin M. Bär
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Yeshua Sempere
- Research
& Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, Monheim am Rhein 40789, Germany
| | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
34
|
Pang J, Lai T, Zhao J. Selective Ring-Opening Polymerization of Silyl Glycidyl Ether through Organocatalysis. ACS Macro Lett 2024; 13:859-865. [PMID: 38934638 DOI: 10.1021/acsmacrolett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silyl ether constitutes a multipurpose (macro)molecular functionality for being, e.g., SuFEx-clickable and easily cleavable as a hydroxyl precursor. Its direct incorporation by anionic polymerization is challenged by its base susceptibility. In this study, a two-component organocatalyst shows strict epoxy-selectivity in the anionic ring-opening polymerization (ROP) of commercially available tert-butyldimethylsilyl (R)-(-)-glycidyl ether (TBSGE). The silyl ether pendant groups are fully preserved in the resultant polyether and readily undergo acidic hydrolysis to yield well-defined linear polyglycerol (PGC). Combination of the ROP with mechanistically distinct polymerization chemistries delivers PGC-based polyurethane and a hybrid amphiphilic block copolymer. The SuFEx reaction with sulfonyl fluoride shows effective tuning of polyTBSGE into a sulfonate-functionalized polyether. We have thus exploited the chemoselectivity of organocatalysis to facilitate access to polymers carrying reactive pendant functionalities.
Collapse
Affiliation(s)
- Jie Pang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Lai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
35
|
Andersen HM, Tai HC, Rubakhin SS, Yau PM, Sweedler JV. A novel series of metazoan L/D peptide isomerases. J Biol Chem 2024; 300:107458. [PMID: 38857862 PMCID: PMC11277431 DOI: 10.1016/j.jbc.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A. californica, and B. taurus tissues. These enzymes are both tissue and substrate-specific across all three organisms. Notably, the lungs of the mammalian species, and the central nervous system of the mollusk displayed the highest isomerase activity among the examined tissues. In vitro enzymatic conversion was observed for several endogenous peptides, such as the tetrapeptide GFFD in A. californica, and mammalian neuropeptide FF in R. norvegicus and B. taurus. To understand their mode of action, we explored the effects of several inhibitors on these enzymes, which suggest common active site residues. While further characterization of these enzymes is required, the investigations emphasize a widespread and overlooked enzyme activity related to the creation of bioactive peptides.
Collapse
Affiliation(s)
- Harvey M Andersen
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Hua-Chia Tai
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Peter M Yau
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
36
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Kang JH, Kim DP. Ultrafast Flow Synthesis of o-Functionalized Benzenesulfonyl Fluorides and Subsequent SuFEx Connections via Lithiated Chemistry. Org Lett 2024. [PMID: 38780078 DOI: 10.1021/acs.orglett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein we present a flow-based, rapid, and straightforward approach to synthesize diverse functionalized sulfonyl fluorides by harnessing an aryllithium intermediate. The aryllithium intermediate was fully utilized under optimized conditions (0.016 s, -18 °C) to afford various functionalized sulfonyl fluorides and also intramolecular SuFEx cyclization products in high yields (27-94%). Furthermore, the integrated synthesis incorporating subsequent SuFEx connections with even unstable organolithium nucleophiles facilitated one-flow molecular assembly in high yields (42-72%).
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
38
|
Ye H, Zhu Y, Kong Y, Wen H, Lu W, Wang D, Tang S, Zhan M, Lu G, Shao C, Wang N, Hao H. Carbene Footprinting Directs Design of Genetically Encoded Proximity-Reactive Protein Binders. Anal Chem 2024; 96:7566-7576. [PMID: 38684118 DOI: 10.1021/acs.analchem.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.
Collapse
Affiliation(s)
- Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Yinxue Zhu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ying Kong
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hongtao Wen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Dexiang Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Mengru Zhan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
39
|
Gutiérrez-González A, Karlsson S, Leonori D, Plesniak MP. Mild Strategy for the Preparation of Alkyl Sulfonyl Fluorides from Alkyl Bromides and Alcohols Using Photoredox Catalysis and Flow Chemistry. Org Lett 2024; 26:3972-3976. [PMID: 38663015 DOI: 10.1021/acs.orglett.4c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Facile access to sp3-rich scaffolds containing a sulfonyl fluoride group is still limited. Herein, we describe a mild and scalable strategy for the preparation of alkyl sulfonyl fluorides from readily available alkyl bromides and alcohols using photoredox catalysis. This approach is based on halogen atom transfer (XAT), followed by SO2 capture and fluorination. The method features mild conditions enabling fast access to high-value derivatives and has been scaled up to 5 g using a continuous stirred tank reactor cascade.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-González
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Mateusz P Plesniak
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
40
|
Neeliveettil A, Dey S, Nomula V, Thakur S, Giri D, Santra A, Sau A. Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride. Chem Commun (Camb) 2024; 60:4789-4792. [PMID: 38602165 DOI: 10.1039/d4cc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Amide bond synthesis is one of the most used reactions in medicinal chemistry. We report an amide bond formation reaction through deoxyfluorinated carboxylic acids under mild conditions using 2-pyridinesulfonyl fluoride. The reaction procedure has been used in a one-pot synthesis of amides and esters via in situ generation of acyl fluoride. This one-pot synthetic method provides easy access to amides and esters. Using this method, we have sequentially synthesized a tetrapeptide and calceolarioside-B glycoside derivative with good yields.
Collapse
Affiliation(s)
- Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyadip Dey
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Vishnu Nomula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Thakur
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Debabrata Giri
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Abhishek Santra
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Academic of scientific Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Sau
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
41
|
Monteith JJ, Pearson JW, Rousseaux SAL. Photocatalytic O- to S-Rearrangement of Tertiary Cyclopropanols. Angew Chem Int Ed Engl 2024; 63:e202402912. [PMID: 38418404 DOI: 10.1002/anie.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Despite the importance of heteroatom-substituted cyclopropane derivatives in drug design and organic synthesis, cyclopropanethiols remain critically underexplored. Inspired by the wide use of the Newman-Kwart rearrangement to access valuable thiophenols from phenol feedstocks, we report the development of a photocatalytic approach for efficient ambient temperature aliphatic O- to S-rearrangement on tertiary cyclopropanol derivatives. After demonstrating that a range of cyclopropanethiols-that are difficult to access by other methods-can be obtained with this strategy, we show that these rearranged products can be easily hydrolyzed and further derivatized. We conclude this study with mechanistic findings that enabled an initial extension of this approach toward other classes of aliphatic alcohols.
Collapse
Affiliation(s)
- John J Monteith
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - James W Pearson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
42
|
Sharma K, McCorry A, Boobier S, Mottram J, Napier R, Ashworth IW, Blacker AJ, Kapur N, Warriner SL, Wright MH, Nguyen BN. Activation of fluoride anion as nucleophile in water with data-guided surfactant selection. Chem Sci 2024; 15:5764-5774. [PMID: 38638222 PMCID: PMC11023051 DOI: 10.1039/d3sc06311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
A principal component surfactant_map was developed for 91 commonly accessible surfactants for use in surfactant-enabled organic reactions in water, an important approach for sustainable chemical processes. This map was built using 22 experimental and theoretical descriptors relevant to the physicochemical nature of these surfactant-enabled reactions, and advanced principal component analysis algorithms. It is comprised of all classes of surfactants, i.e. cationic, anionic, zwitterionic and neutral surfactants, including designer surfactants. The value of this surfactant_map was demonstrated in activating simple inorganic fluoride salts as effective nucleophiles in water, with the right surfactant. This led to the rapid development (screening 13-15 surfactants) of two fluorination reactions for β-bromosulfides and sulfonyl chlorides in water. The latter was demonstrated in generating a sulfonyl fluoride with sufficient purity for direct use in labelling of chymotrypsin, under physiological conditions.
Collapse
Affiliation(s)
- Krishna Sharma
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Alison McCorry
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Samuel Boobier
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - James Mottram
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Rachel Napier
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Ian W Ashworth
- Chemical Development, Pharmaceutical, Technology and Development Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - A John Blacker
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds Woodhouse Lane LS2 9JT UK
| | | | - Megan H Wright
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Bao N Nguyen
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
| |
Collapse
|
43
|
Lucas SCC, Blackwell JH, Hewitt SH, Semple H, Whitehurst BC, Xu H. Covalent hits and where to find them. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100142. [PMID: 38278484 DOI: 10.1016/j.slasd.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Covalent hits for drug discovery campaigns are neither fantastic beasts nor mythical creatures, they can be routinely identified through electrophile-first screening campaigns using a suite of different techniques. These include biophysical and biochemical methods, cellular approaches, and DNA-encoded libraries. Employing best practice, however, is critical to success. The purpose of this review is to look at state of the art covalent hit identification, how to identify hits from a covalent library and how to select compounds for medicinal chemistry programmes.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, AstraZeneca R&D, Cambridge, UK.
| | | | - Sarah H Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Hannah Semple
- Hit Discovery, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | | | - Hua Xu
- Mechanistic and structural Biology, Discovery Sciences, AstraZeneca R&D, Waltham, USA
| |
Collapse
|
44
|
Shah RR, De Vita E, Sathyamurthi PS, Conole D, Zhang X, Fellows E, Dickinson ER, Fleites CM, Queisser MA, Harling JD, Tate EW. Structure-Guided Design and Optimization of Covalent VHL-Targeted Sulfonyl Fluoride PROTACs. J Med Chem 2024; 67:4641-4654. [PMID: 38478885 PMCID: PMC10982999 DOI: 10.1021/acs.jmedchem.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have emerged as a therapeutic modality to induce targeted protein degradation (TPD) by harnessing cellular proteolytic degradation machinery. PROTACs which ligand the E3 ligase in a covalent manner have attracted intense interest; however, covalent PROTACs with a broad protein of interest (POI) scope have proven challenging to discover by design. Here, we report the structure-guided design and optimization of Von Hippel-Lindau (VHL) protein-targeted sulfonyl fluorides which covalently bind Ser110 in the HIF1α binding site. We demonstrate that their incorporation in bifunctional degraders induces targeted protein degradation of BRD4 or the androgen receptor without further linker optimization. Our study discloses the first covalent VHL ligands which can be implemented directly in bifunctional degrader design, expanding the substrate scope of covalent E3 ligase PROTACs.
Collapse
Affiliation(s)
- Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Elena De Vita
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, U.K.
| | | | - Daniel Conole
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Xinyue Zhang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Elliot Fellows
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - Carlos M. Fleites
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - John D. Harling
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Edward W. Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| |
Collapse
|
45
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
46
|
Naumchyk V, Andriashvili VA, Radchenko DS, Dudenko D, Moroz YS, Tolmachev AA, Zhersh S, Grygorenko OO. S NAr or Sulfonylation? Chemoselective Amination of Halo(het)arene Sulfonyl Halides for Synthetic Applications and Ultralarge Compound Library Design. J Org Chem 2024; 89:3161-3183. [PMID: 38383160 DOI: 10.1021/acs.joc.3c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The chemoselectivity of halo(het)arene sulfonyl halide aminations is studied thoroughly under parallel synthesis conditions, and the scope and limitations of the method are established. It is shown that SNAr-reactive sulfonyl halides typically undergo sulfonamide synthesis during the first step; the second amination is also possible provided that the SNAr-active center is sufficiently reactive. On the contrary, sulfonyl fluorides bearing an arylating moiety undergo selective transformation at the latter reactive center under proper control. Further sulfur-fluoride exchange (SuFEx) is also possible, which can be especially valuable for some sulfonyl halide classes. The developed two-step parallel double amination protocol provides access to a 6.67-billion compound synthetically tractable REAL-type chemical space (76% expected synthesis success rate).
Collapse
Affiliation(s)
- Vasyl Naumchyk
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | | | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
- Chemspace, Winston Churchill Street 85, Kyïv 02094, Ukraine
| | - Andrey A Tolmachev
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Serhii Zhersh
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
47
|
Yin CL, Qin RZ, Qin HL. One-Pot Three-Component Synthesis of Indolyl-4 H-chromene-3-sulfonyl Fluoride: A Class of Important Pharmacophore. J Org Chem 2024; 89:3618-3628. [PMID: 38358945 DOI: 10.1021/acs.joc.3c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A one-pot, sequential three-component reaction between salicylaldehyde, indole, and 2-bromoprop-2-ene-1-sulfonyl fluoride (BPESF) has been demonstrated for the synthesis of sulfonyl fluoride substituted 4H-chromene derivatives in moderate to excellent yields (45%-94%). This one-pot sequential method features easily available starting materials, wide substrate scope, mild conditions, and great efficiency.
Collapse
Affiliation(s)
- Cheng-Lin Yin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Richard Zijian Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
48
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
49
|
Liu Y, Nowak RP, Che J, Donovan KA, Huerta F, Liu H, Metivier RJ, Fischer ES, Jones LH. Development of sulfonyl fluoride chemical probes to advance the discovery of cereblon modulators. RSC Med Chem 2024; 15:607-611. [PMID: 38389883 PMCID: PMC10880902 DOI: 10.1039/d3md00652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024] Open
Abstract
Sulfonyl fluoride EM12-SF was developed previously to covalently engage a histidine residue in the sensor loop of cereblon (CRBN) in the E3 ubiquitin ligase complex CRL4CRBN. Here, we further develop the structure-activity relationships of additional sulfonyl fluoride containing ligands that possess a range of cereblon binding potencies in cells. Isoindoline EM364-SF, which lacks a key hydrogen bond acceptor present in CRBN molecular glues, was identified as a potent binder of CRBN. This led to the development of the reversible molecular glue CPD-2743, that retained cell-based binding affinity for CRBN and degraded the neosubstrate IKZF1 to the same extent as EM12, but unlike isoindolinones, lacked SALL4 degradation activity (a target linked to teratogenicity). CPD-2743 had high permeability and lacked efflux in Caco-2 cells, in contrast to the isoindolinone iberdomide. Our methodology expands the repertoire of sulfonyl exchange chemical biology via the advancement of medicinal chemistry design strategies.
Collapse
Affiliation(s)
- Yingpeng Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
50
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|