1
|
Liu Y, Han J, Chen G, Huang S, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Mesoporous carbon hollow spheres based sensitive SPME probes for in vivo sampling analysis of selected plant hormones in Chinese aloes. Anal Chim Acta 2024; 1329:343191. [PMID: 39396281 DOI: 10.1016/j.aca.2024.343191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
Phytohormones are a class of endogenous substances that separately or synergistically regulate the growth, development, and differentiation of plants. Accurately and efficiently detecting and monitoring the concentration of plant hormones in living plants is of significant importance. Herein, a novel mesoporous carbon hollow spheres (MCHS)-based in vivo solid phase microextraction (SPME) probe was designed for in vivo sampling of plant hormones. The designed MCHS features the advantages of high surface area, porous shells, and large hollow spaces, facilitating the dynamic adsorption and enrichment of target phytohormone. In addition, a cationic polyelectrolyte, (poly (diallyl dimethyl ammonium chloride) (PDDA), was further modified onto the MCHS to expedite the extraction process by electrostatic interaction. Utilizing the MCHS@PDDA probe in combination with HPLC-MS/MS facilitated the continuous monitoring of three plant hormones (abscisic acid (ABA), indole-3-acetic acid (IAA), and gibberellin (GA3)) in Chinese aloe. The detection limit of this method was 0.016-0.090 μg/L, the linear range was 10-1000 μg/L, and both the RSD of the single probe (n = 6) and probe-to-probe test (n = 6) were less than 7.2 %. This method had excellent accuracy and good reproducibility comparable to the traditional sample pretreatment method. Ultimately, this established in-vivo SPME method was successfully adopted to quantify three selected plant hormones in living Chinese Aloes, providing a new method for the long-term monitoring of endogenous active substances in living system.
Collapse
Affiliation(s)
- Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiajia Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Siming Huang
- Guangzhou Med Univ, Affiliated Hosp 5, Sch Pharmaceut Sci, NMPA, Guangzhou Municipal & Guangdong Prov Key Lab, Guangzhou, 511436, China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
2
|
Liu Y, Yuan Z, Liu S, Zhong X, Wang Y, Xie R, Song W, Ren L. Bioactive Phenylboronic Acid-Functionalized Hyaluronic Acid Hydrogels Induce Chondro-Aggregates and Promote Chondrocyte Phenotype. Macromol Biosci 2023; 23:e2300153. [PMID: 37400079 DOI: 10.1002/mabi.202300153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels are extensively investigated as biomimetic extracellular matrix (ECM) scaffolds in tissue engineering. The physiological properties of ECM affect cellular behaviors, which is an inspiration for cell-based therapies. Photocurable hyaluronic acid (HA) hydrogel (AHAMA-PBA) modified with 3-aminophenylboronic acid, sodium periodate, and methacrylic anhydride simultaneously is constructed in this study. Chondrocytes are then cultured on the surface of the hydrogels to evaluate the effect of the physicochemical properties of the hydrogels on modulating cellular behaviors. Cell viability assays demonstrate that the hydrogel is non-toxic to chondrocytes. The existence of phenylboronic acid (PBA) moieties enhances the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia. RT-PCR indicates that the gene expression levels of type II collagen, Aggrecan, and Sox9 are significantly up-regulated in chondrocytes cultured on hydrogels. Moreover, the mechanical properties of the hydrogels have a significant effect on the cell phenotype, with soft gels (≈2 kPa) promoting chondrocytes to exhibit a hyaline phenotype. Overall, PBA-functionalized HA hydrogel with low stiffness exhibits the best effect on promoting the chondrocyte phenotype, which is a promising biomaterial for cartilage regeneration.
Collapse
Affiliation(s)
- Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
4
|
Kausar A. Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
5
|
Hao QL, Yu LQ, Yang XQ, Xu RT, Lv YK. Two-Dimensional Nitrogen-Doped Carbon Nanosheets Derived from g-C 3N 4 /ZIF-8 for Solid-Phase Microextraction in Exhalation of Esophageal Cancer Patients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5990-5997. [PMID: 36689469 DOI: 10.1021/acsami.2c21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, two-dimensional (2D) nitrogen-doped carbon nanosheets (CNSs) were prepared through carbonizing MOFs (ZIF-8) in-situ grown using graphitic carbon nitride (g-C3N4) as a template. The developed ZIF-8 CNS was then used as solid-phase microextraction (SPME) fiber coating for beneficiation of five biomarkers in exhalation of patients with esophageal cancer and in gas chromatography-mass spectrometry (GC-MS) for determination. The ZIF-8 CNS fiber exhibits satisfactory enrichment factors (3490-5631), wide linearity (5-1000 μg L-1), and low detection limits (0.26-0.96 μg L-1). The relative standard deviations (RSDs) for six replicate extractions of the same ZIF-8 CNS fiber were between 2.0-3.9% (intra-day) and 2.8-5.2% (inter-day). The reproducibility of three fibers prepared by the same approach was in the range 6.8-12.3% (RSD). The developed ZIF-8 CNS fiber can persist in 120 SPME cycles with no prominent loss of extraction efficiency and precision. The high enrichment factors of the 2D ZIF-8 CNS coatings are attributed to the high specific surface area, ultrathin thickness, and nano-pore or interlayer channels; moreover, nitrogen doping also endows the π system with a strong electron absorption ability, which will enhance the π-π interaction between the ZIF-8 CNS and the aromatic ring. Ultimately, the self-made ZIF-8 CNS-coated SPME fiber was applied to the analysis of exhaled breath samples. The recoveries of spiked analytes are between 84 and 105%.
Collapse
Affiliation(s)
- Qi-Long Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Li-Qing Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiao-Qin Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Rui-Ting Xu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
6
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
A molecularly imprinted electrochemical biosensor based on hierarchical Ti 2Nb 10O 29 (TNO) for glucose detection. Mikrochim Acta 2021; 189:24. [PMID: 34894290 DOI: 10.1007/s00604-021-05128-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
A novel molecularly imprinted electrochemical biosensor for glucose detection is reported based on a hierarchical N-rich carbon conductive-coated TNO structure (TNO@NC). Firstly, TNO@NC was fabricated by a novel polypyrrole-chemical vapor deposition (PPy-CVD) method with minimal waste generation. Afterward, the electrode modification with TNO@NC was performed by dropping TNO@NC particles on glassy carbon electrode surfaces by infrared heat lamp. Finally, the glucose-imprinted electrochemical biosensor was developed in presence of 75.0 mM pyrrole and 25.0 mM glucose in a potential range from + 0.20 to + 1.20 V versus Ag/AgCl via cyclic voltammetry (CV). The physicochemical and electrochemical characterizations of the fabricated molecularly imprinted biosensor was conducted by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and CV techniques. The findings demonstrated that selective, sensitive, and stable electrochemical signals were proportional to different glucose concentrations, and the sensitivity of molecularly imprinted electrochemical biosensor for glucose detection was estimated to be 18.93 μA μM-1 cm-2 (R2 = 0.99) at + 0.30 V with the limit of detection (LOD) of 1.0 × 10-6 M. Hence, it can be speculated that the fabricated glucose-imprinted biosensor may be used in a multitude of areas, including public health and food quality.
Collapse
|
8
|
A boric acid-functionalized lanthanide metal-organic gel: A ratiometric fluorescence probe with rapid and sensitive detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Liu S, Huang Y, Liu J, Chen C, Ouyang G. In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12449-12458. [PMID: 34494434 DOI: 10.1021/acs.est.1c04368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a biocompatible solid-phase microextraction (SPME) fiber with high-coverage capture capacity based on a nitrogen-rich porous polyaminal was developed. The fiber was used to track the bioaccumulation and elimination of carbamates (isoprocarb, carbofuran, and carbaryl) and their metabolites (o-cumenol, carbofuran phenol, and 1-naphthalenol) in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A case-and-control model was applied in the hydroponically cultured plants, with the exposed plant groups contaminated under three carbamates at 5 μg mL-1. Both bio-enrichment and elimination of carbamates and their metabolites in living plants appeared to be very fast with half-lives at ∼0.39-0.79 and ∼0.56-0.69 days, respectively. Statistical differences in the endogenous plant metabolome occurred on day 3 of carbamate exposure. In the exposed group, the plant metabolic alterations were not reversed after 5 days of contaminant-free growth, although most contaminates had been eliminated. Compared with prior nutriological and toxicological studies, >50 compounds were first identified as endogenous metabolites in cabbage plants. The contents of the glucosinolate-related metabolites demonstrated significant time-dependent dysregulations that the fold changes of these key metabolites decreased from 0.78-1.07 to 0.28-0.82 during carbamate exposure. To summarize, in vivo SPME provided new and important information regarding exogenous carbamate contamination and related metabolic dysregulation in plants.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Gangfeng Ouyang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021; 6:628-640. [PMID: 33475340 DOI: 10.1021/acssensors.0c02343] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Dongyu Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi province 710069, P. R. China
| | - Zesi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| |
Collapse
|
11
|
Fang X, Tong YJ, Li N, Yu LD, Ouyang G, Zhu F. In vivo tracing of endogenous salicylic acids as the biomarkers for evaluating the toxicity of nano-TiO 2 to plants. Anal Chim Acta 2021; 1145:79-86. [PMID: 33453883 DOI: 10.1016/j.aca.2020.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
Currently, nano-titanium dioxide (nTiO2) is considered an emerging environmental contaminant. Bottlenecked by the traditional destructive and lethal sampling methods, nTiO2's effect in living plants is poorly investigated. Here, in vivo tracing of endogenous salicylic acids at regular intervals was performed by using solid phase microextraction (SPME) technique for evaluating the effects of nTiO2 on plants. By planting aloe in soil containing varying amounts of nTiO2, the titanium (Ti) element accumulated in the leaves to concentrations and then reached the maximum of 1.1 ± 0.4 μg/g after nTiO2 exceeding 0.1 g/kg. The levels of salicylic acid (SA) and acetylsalicylic acid (ASA) were up-regulated upon the exposure to nTiO2, while were positively correlated to the contents of Ti. Moreover, the increased malondialdehyde, decreased total superoxide dismutase and fluctuated glutathione along with the addition of nTiO2 demonstrated the oxidative stress caused by nTiO2. Meanwhile, apparent growth indicators including leaf elongation, plant fresh weight and root development were influenced, which further confirmed the toxicity of nTiO2 imparted on aloe. This study presents the possibility of using salicylic acids as biomarkers for revealing the toxicity of nTiO2 on plants in addition to the other biomarkers and biomass data, and the in vivo SPME technique is powerful for their monitoring.
Collapse
Affiliation(s)
- Xu'an Fang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China; SGS-CSTC Standards Technical Services Co., Ltd Guangzhou Branch, Guangzhou Economic & Technology Development, No. 198 Kezhu Road, Scientech Park, Guangzhou, Guangdong Province, 510663, China
| | - Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
12
|
Hashimoto M, Hashinoki M, Kurokawa N, Murai Y, Puteri Tachrim Z, Sakihama Y, Suzuki T. Synthesis of (Trifluoromethyldiazirinyl)phenylboronic Acid Derivatives for Photoaffinity Labeling. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
In vivo solid-phase microextraction (SPME) has been recently proposed for the extraction, clean-up and preconcentration of analytes of biological and clinical concern. Bioanalysis can be performed by sampling exo- or endogenous compounds directly in living organisms with minimum invasiveness. In this context, innovative and miniaturized devices characterized by both commercial and lab-made coatings for in vivo SPME tissue sampling have been proposed, thus assessing the feasibility of this technique for biomarker discovery, metabolomics studies or for evaluating the environmental conditions to which organisms can be exposed. Finally, the possibility of directly interfacing SPME to mass spectrometers represents a valuable tool for the rapid quali- and quantitative analysis of complex matrices. This review article provides a survey of in vivo SPME applications focusing on the extraction of tissues, cells and simple organisms. This survey will attempt to cover the state-of- the-art from 2014 up to 2019.
Collapse
|
14
|
Zheng J, Chen L, Xie X, Tong Q, Ouyang G. Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Anal Chim Acta 2020; 1095:109-117. [DOI: 10.1016/j.aca.2019.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023]
|
15
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
16
|
Wang B, Chou K, Queenan BN, Pennathur S, Bazan GC. Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic SolidsDepartment of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106 USA
| | - Kuang‐Hua Chou
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
| | - Bridget N. Queenan
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
- Quantitative BiologyHarvard University Cambridge MA 02138 USA
| | - Sumita Pennathur
- Department of Mechanical EngineeringUniversity of California Santa Barbara CA 93106 USA
| | - Guillermo C. Bazan
- Center for Polymers and Organic SolidsDepartment of Chemistry and BiochemistryUniversity of California Santa Barbara CA 93106 USA
| |
Collapse
|
17
|
Wang B, Chou KH, Queenan BN, Pennathur S, Bazan GC. Molecular Design of a New Diboronic Acid for the Electrohydrodynamic Monitoring of Glucose. Angew Chem Int Ed Engl 2019; 58:10612-10615. [PMID: 31168957 DOI: 10.1002/anie.201904595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/19/2019] [Indexed: 02/01/2023]
Abstract
A new dicationic diboronic acid structure, DBA2+, was designed to exhibit good affinity (Kd ≈1 mm) and selectivity toward glucose. Binding of DBA2+ to glucose changes the pKa of DBA2+ from 9.4 to 6.3, enabling opportunities for detection of glucose at physiological pH. Proton release from DBA2+ is firmly related to glucose concentrations within the physiologically relevant range (0-30 mm), as verified by conductimetric monitoring. Negligible interference from other sugars (for example, maltose, fructose, sucrose, lactose, and galactose) was observed. These results demonstrate the potential of DBA2+ for selective, quantitative glucose sensing. The nonenzymatic strategy based on electrohydrodynamic effects may enable the development of stable, accurate, and continuous glucose monitoring platforms.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Kuang-Hua Chou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Quantitative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sumita Pennathur
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
18
|
Mondal S, Jiang J, Li Y, Ouyang G. Carbon and Tin-Based Polyacrylonitrile Hybrid Architecture Solid Phase Microextraction Fiber for the Detection and Quantification of Antibiotic Compounds in Aqueous Environmental Systems. Molecules 2019; 24:E1670. [PMID: 31035407 PMCID: PMC6539674 DOI: 10.3390/molecules24091670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, the detection and quantification of multiple classes of antibiotics in water matrices are proposed using a lab-made solid phase microextraction (SPME) fiber coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The lab-made fiber was prepared using a graphene oxide (G), carbon nanotubes (C), and titanium dioxide (T) composite, namely GCT, with polyacrylonitrile (PAN) as supporting material. The detected antibiotics were enrofloxacin, sulfathiazole, erythromycin, and trimethoprim. The custom-made fiber was found to be superior compared with a commercial C18 fiber. The excellent reproducibility and lower intra-fiber relative standard deviations (RSDs 1.8% to 6.8%) and inter-fiber RSDs (4.5% to 8.8%) made it an ideal candidate for the detection of traces of antibiotics in real environmental samples. The proposed validated method provides a satisfactory limit of detection and good linear ranges with higher (>0.99) coefficient of determination in the aqueous system. Application of the method was made in different real water systems such as river, pond and tap water using the standard spiking method. Excellent sensitivity, reproducibility, lower amount of sample detection and higher recovery was found in a real water sample. Therefore, the extraction method was successfully applied to the detection and quantification of multiple classes of antibiotics in different aqueous systems with satisfactory results.
Collapse
Affiliation(s)
- Sandip Mondal
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jialing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yin Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Liu S, Pan G, Yang H, Cai Z, Zhu F, Ouyang G. Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite. Anal Chim Acta 2019; 1054:17-25. [DOI: 10.1016/j.aca.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 01/21/2023]
|
20
|
Reyes-Garcés N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
In vivo analysis of two new fungicides in mung bean sprouts by solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 2019; 275:688-695. [DOI: 10.1016/j.foodchem.2018.09.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
|
22
|
Kou X, Chen G, Huang S, Ye Y, Ouyang G, Gan J, Zhu F. In Vivo Sampling: A Promising Technique for Detecting and Profiling Endogenous Substances in Living Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2120-2126. [PMID: 30724065 DOI: 10.1021/acs.jafc.8b06981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Endogenous substances, naturally occurring in living organisms, are critical components with physiological and biological functions. Discovery and quantitative measurement of endogenous substances in living biotas are important for food analysis, crop cultivation, and quality assessment. Low or non-invasive in vivo sampling techniques offer the advantages of minimal perturbation to the investigated system and potentially obtain more accurate feedback compared to in vitro sampling. In this perspective, we summarize the up-to-date progress in the development of microdialysis and solid-phase microextraction as valuable tools for in vivo sampling of endogenous substances in food and agriculture chemistry. We discuss their feasibility for on-site and real-time in vivo monitoring and highlight the prospects in searching for highly specific coatings, miniaturized sampling devices, and instruments that well meet the trend for high-efficient and high-throughput analyses.
Collapse
Affiliation(s)
- Xiaoxue Kou
- School of Chemistry , Sun Yat-sen University , Guangzhou , Guangdong 510275 , People's Republic of China
| | - Guosheng Chen
- School of Chemistry , Sun Yat-sen University , Guangzhou , Guangdong 510275 , People's Republic of China
| | - Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital , Sun Yat-sen University , Guangzhou , Guangdong 510120 , People's Republic of China
| | - Yuxin Ye
- School of Chemistry , Sun Yat-sen University , Guangzhou , Guangdong 510275 , People's Republic of China
| | - Gangfeng Ouyang
- School of Chemistry , Sun Yat-sen University , Guangzhou , Guangdong 510275 , People's Republic of China
| | - Jay Gan
- Department of Environmental Sciences , University of California, Riverside , Riverside , California 92521 , United States
| | - Fang Zhu
- School of Chemistry , Sun Yat-sen University , Guangzhou , Guangdong 510275 , People's Republic of China
| |
Collapse
|
23
|
Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019; 1047:62-70. [DOI: 10.1016/j.aca.2018.09.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
|
24
|
Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy. Anal Chim Acta 2019; 1047:1-8. [DOI: 10.1016/j.aca.2018.10.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
|
25
|
Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Roszkowska A, Miękus N, Bączek T. Application of solid-phase microextraction in current biomedical research. J Sep Sci 2018; 42:285-302. [DOI: 10.1002/jssc.201800785] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Roszkowska
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Medical University of Gdańsk; Gdańsk Poland
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Medical University of Gdańsk; Gdańsk Poland
- Department of Animal and Human Physiology; Faculty of Biology; University of Gdańsk; Gdańsk Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Medical University of Gdańsk; Gdańsk Poland
- Department of Nursing; Faculty of Health Sciences; Pomeranian University of Słupsk; Słupsk Poland
| |
Collapse
|
27
|
Chen G, Kou X, Huang S, Huang S, Zhang R, Liu C, Shen J, Zhu F, Ouyang G. Allochroic‐Graphene Oxide Linked 3D Oriented Surface Imprinting Strategy for Glycoproteins Assays. ADVANCED FUNCTIONAL MATERIALS 2018; 28. [DOI: 10.1002/adfm.201804129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 01/22/2025]
Abstract
AbstractAffordable methodologies for screening of disease‐related biomarkers are vital for early clinical diagnosis, and can potentially improve the survival rate. Herein, a cost‐efficient and easy‐to‐use approach, called allochroic‐graphene oxide linked oriented surface imprinting strategy (AGO‐OSI), is imparted for rapid glycoproteins screening with naked eyes. The novel detection principle herein relies on the boronate‐affinity sandwich‐like assembly, in which the target glycoproteins are specifically captured by the engineered 3D oriented surface imprinting magnetic microprobe, and followed by labeling with the pH‐triggered allochroic‐graphene oxide. Compared with the enzyme‐linked immunosorbent assay, no antibody‐assisted recognition or complicated enzymatic labeling is required, endowing the AGO‐OSI with the merits of low‐cost, labor‐saving, and user‐friendly. In addition, the pH‐triggered allochroic‐graphene oxide provides a simple, real‐time, and economical signal readout, without the sophisticated instruments requirement. Finally, it is successfully applied to rapid diagnosis of α‐fetoprotein (AFP) in liver cancer event with naked eyes, further manifesting the superiority of AGO‐OSI. It is believed that the cost‐efficient and easy‐to‐use strategy proposed herein can potentially be a versatile tool for point‐of‐care diagnosis, especially applicable in resource‐constrained regions.
Collapse
Affiliation(s)
- Guosheng Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 China
| | - Siming Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics Sun Yat‐Sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 China
| | - Chao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics Sun Yat‐Sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 China
| | - Jun Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics Sun Yat‐Sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 China
| | - Gangfeng Ouyang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
28
|
Ji D, Xu N, Liu Z, Shi Z, Low SS, Liu J, Cheng C, Zhu J, Zhang T, Xu H, Yu X, Liu Q. Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 2018; 129:216-223. [PMID: 30297172 DOI: 10.1016/j.bios.2018.09.082] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
Abstract
Parkinson's disease caused by lack of dopamine in brain is a common neurodegenerative disorder. The traditional treatment is to replenish levodopa since it could pass through blood brain barrier and form dopamine. However, its accumulation can cause patients' movement disorders and uncontrollable emotion. Therefore, it is critical to control the levodopa dosage accuracy to improve the curative effect in clinical. In this study, a smartphone-based electrochemical detection system was developed for rapid monitoring of levodopa. The system involved a disposable sensor, a hand-held electrochemical detector, and a smartphone with designed application. Single-wall carbon nanotubes and gold nanoparticles modified screen-printed electrodes were used to convert and amplify the electrochemical current signals upon presence of levodopa molecules. The electrochemical detectors were used to generate electrochemical excitation signals and detect the resultant currents. Smartphone was connected to the detector, which was used to control the detector, calculate data, and plot graph in real-time. The smartphone-based differential pulse amperometry system was demonstrated to monitor levodopa at concentrations as low as 0.5 µM in human serum. Furthermore, it has also been verified to be able to distinguish levodopa from other representative substances in the body. Therefore, its performance was more sensitive and rapid than electrochemical workstation. With these advantages, the system can be used in the field of point-of-care testing (POCT) to detect levodopa and provide the possibility to solve clinical demand for levodopa detection.
Collapse
Affiliation(s)
- Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Ning Xu
- Institute of Automation Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Zixiang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhouyuanjing Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jingjing Liu
- Institute of Automation Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Chen Cheng
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Jingwen Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Tingkai Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haoxuan Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiongjie Yu
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China.
| |
Collapse
|
29
|
Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z. Recent development of boronic acid-based fluorescent sensors. RSC Adv 2018; 8:29400-29427. [PMID: 35548017 PMCID: PMC9084483 DOI: 10.1039/c8ra04503h] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 11/21/2022] Open
Abstract
As Lewis acids, boronic acids can bind with 1,2- or 1,3-diols in aqueous solution reversibly and covalently to form five or six cyclic esters, thus resulting in significant fluorescence changes. Based on this phenomenon, boronic acid compounds have been well developed as sensors to recognize carbohydrates or other substances. Several reviews in this area have been reported before, however, novel boronic acid-based fluorescent sensors have emerged in large numbers in recent years. This paper reviews new boron-based sensors from the last five years that can detect carbohydrates such as glucose, ribose and sialyl Lewis A/X, and other substances including catecholamines, reactive oxygen species, and ionic compounds. And emerging electrochemically related fluorescent sensors and functionalized boronic acid as new materials including nanoparticles, smart polymer gels, and quantum dots were also involved. By summarizing and discussing these newly developed sensors, we expect new inspiration in the design of boronic acid-based fluorescent sensors.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Aiqin Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan Shandong 250012 China
| | - Bo Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
30
|
Zheng W, Wu H, Jiang Y, Xu J, Li X, Zhang W, Qiu F. A molecularly-imprinted-electrochemical-sensor modified with nano-carbon-dots with high sensitivity and selectivity for rapid determination of glucose. Anal Biochem 2018; 555:42-49. [DOI: 10.1016/j.ab.2018.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/26/2022]
|
31
|
Xu J, Liu X, Wang Q, Wang F, Huang Z, Zhang DY, Mao ZW, Zhu F, Ouyang G. Efficient and Versatile Pipet Microextraction Device Based on a Light-Heatable Sorbent. Anal Chem 2018; 90:8304-8308. [DOI: 10.1021/acs.analchem.8b02345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianqiao Xu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiwen Liu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fuxin Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhoubing Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Dong-Yang Zhang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zong-Wan Mao
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
32
|
Liu Y, Huang Y, Chen G, Huang J, Zheng J, Xu J, Liu S, Qiu J, Yin L, Ruan W, Zhu F, Ouyang G. A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Cardoso de Sá A, Cipri A, González-Calabuig A, Stradiotto NR, del Valle M. Multivariate Determination of Total Sugar Content and Ethanol in Bioethanol Production Using Carbon Electrodes Modified with MWCNT/MeOOH and Chemometric Data Treatment. ELECTROANAL 2018. [DOI: 10.1002/elan.201700725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Acelino Cardoso de Sá
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andrea Cipri
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Andreu González-Calabuig
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| | - Nelson Ramos Stradiotto
- Department of Analytical Chemistry, Institute of Chemistry; Universidade Estadual Paulista (UNESP); 55 Rua Francisco Degni Araraquara 14800-060, SP Brazil
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry; Universitat Autònoma de Barcelona, Edifici Cn; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
34
|
Fang X, Chen G, Qiu J, Xu J, Wang J, Zhu F, Ouyang G. Determination of four salicylic acids in aloe by in vivo solid phase microextraction coupling with liquid chromatography-photodiode array detection. Talanta 2018; 184:520-526. [PMID: 29674078 DOI: 10.1016/j.talanta.2018.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
Abstract
In recent years, great concerns have been raised about salicylic acid (SA) and its derivatives as plant regulators. Therefore, precise determination of the distribution of SAs in the living plants is necessary for not only fundamental researches but also the regulating mechanisms. In this study, a custom-made solid phase microextraction (SPME) fiber based on diallyl dimethyl ammonium chloride-assembled graphene oxide-coated C18 composite (C18@GO@PDDA) was proposed for in vivo detection of salicylic acid, acetylsalicylic acid (ASA), 4-methyl salicylic acid(4-SA)and 3-methyl salicylic acid (3-SA) in aloe plants. Under the optimized conditions, the analytical performance evaluated in homogenized aloe plant tissues exhibited low detection limits (1.8-2.8 μg g-1), wide linear ranges (10-5000 μg g-1), and satisfactory reproducibility (relative standard deviations less than 8.4% and 9.3% for inter-fiber and intra-fiber assays, respectively). Under cadmium stress, the developed method was applied for the in vivo tracing of four salicylic acids in aloe plants. A 48-h in vivo tracing revealed that salicylic acids were involved in the pathway of cadmium stress tolerance. To our best knowledge, it is the first effort to realize the in vivo analysis of SA and its derivatives in plants, and it has a made a great step forward in the area of plant hormone analysis.
Collapse
Affiliation(s)
- Xu'an Fang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Junhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, No.135, Xingang Xi Road, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
35
|
Chen G, Huang S, Kou X, Zhang J, Wang F, Zhu F, Ouyang G. Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency cis-Diol Biomolecule Detection. Anal Chem 2018; 90:3387-3394. [DOI: 10.1021/acs.analchem.7b05033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Siming Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin’ge Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Qiu J, Wang F, Zhang T, Chen L, Liu Y, Zhu F, Ouyang G. Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:145-151. [PMID: 29199421 DOI: 10.1021/acs.est.7b04883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Decreasing the tedious sample preparation duration is one of the most important concerns for the environmental analytical chemistry especially for in vivo experiments. However, due to the slow mass diffusion paths for most of the conventional methods, ultrafast in vivo sampling remains challenging. Herein, for the first time, we report an ultrafast in vivo solid-phase microextraction (SPME) device based on electrosorption enhancement and a novel custom-made CNT@PPY@pNE fiber for in vivo sampling of ionized acidic pharmaceuticals in fish. This sampling device exhibited an excellent robustness, reproducibility, matrix effect-resistant capacity, and quantitative ability. Importantly, the extraction kinetics of the targeted ionized pharmaceuticals were significantly accelerated using the device, which significantly improved the sensitivity of the SPME in vivo sampling method (limits of detection ranged from 0.12 ng·g-1 to 0.25 ng·g-1) and shorten the sampling time (only 1 min). The proposed approach was successfully applied to monitor the concentrations of ionized pharmaceuticals in living fish, which demonstrated that the device and fiber were suitable for ultrafast in vivo sampling and continuous monitoring. In addition, the bioconcentration factor (BCF) values of the pharmaceuticals were derived in tilapia (Oreochromis mossambicus) for the first time, based on the data of ultrafast in vivo sampling. Therefore, we developed and validated an effective and ultrafast SPME sampling device for in vivo sampling of ionized analytes in living organisms and this state-of-the-art method provides an alternative technique for future in vivo studies.
Collapse
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Tianlang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Le Chen
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yuan Liu
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| |
Collapse
|
37
|
Ghaemmaghami M, Yamini Y, Amanzadeh H, Hosseini Monjezi B. Electrophoretic deposition of ordered mesoporous carbon nitride on a stainless steel wire as a high-performance solid phase microextraction coating. Chem Commun (Camb) 2018; 54:507-510. [DOI: 10.1039/c7cc08273h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrophoretic deposition approach was developed to fabricate a robust ordered mesoporous carbon nitride (MCN) coating for solid-phase microextraction.
Collapse
Affiliation(s)
| | - Y. Yamini
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - H. Amanzadeh
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - B. Hosseini Monjezi
- Industrial Protection Division
- Research Institute of Petroleum Industry
- Tehran
- Iran
| |
Collapse
|
38
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
39
|
Boronic acid-based chemical sensors for saccharides. Carbohydr Res 2017; 452:129-148. [DOI: 10.1016/j.carres.2017.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
|
40
|
Muhammad P, Liu J, Xing R, Wen Y, Wang Y, Liu Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Anal Chim Acta 2017; 995:34-42. [PMID: 29126479 DOI: 10.1016/j.aca.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL-1), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach.
Collapse
Affiliation(s)
- Pir Muhammad
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
41
|
Tian R, Zhong J, Lu C, Duan X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem Sci 2017; 9:218-222. [PMID: 29629090 PMCID: PMC5869289 DOI: 10.1039/c7sc03897f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
We present a locating technique for inorganic materials in polymer-matrix composites through a post-labeling approach based on specific covalent binding.
There is a long-standing challenge to realize in situ visualization of incorporated inorganic materials in organic–inorganic composites in a post-labeling manner, owing to the lack of specific fluorescent organic dye molecules for targeting inorganic materials. Herein, we observe that the specific covalent B–O binding between the hydroxyl groups of inorganic materials and commercially available aggregation-induced emission (AIE)-active boronic acid could lead to the formation of highly emissive solid-state fluorescent composite materials. The hydroxyl-triggered luminescent probe may serve as a practical method for in situ location of incorporated inorganic materials in polymer-matrix composites by simply dipping the composite film in boronic acid-modified AIE solution. This present work offers a non-invasive avenue to locate inorganic materials which possess hydroxyl-groups in polymer-matrix composites, thereby developing a convenient screening strategy for assessing the advanced properties of composites. This strategy can also be extended to the targeted tracing of other inorganic materials with inherent and functionalized carboxyl, amino, sulfhydryl and other groups via tuning the binding affinity between the inorganic materials and luminescent molecules.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; Tel: +86 10 64411957
| | - Jinpan Zhong
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; Tel: +86 10 64411957
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; Tel: +86 10 64411957
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; Tel: +86 10 64411957
| |
Collapse
|
42
|
Liu S, Xie L, Hu Q, Yang H, Pan G, Zhu F, Yang S, Ouyang G. A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency. Anal Chim Acta 2017; 987:38-46. [DOI: 10.1016/j.aca.2017.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
|
43
|
Zheng J, Huang J, Xu F, Zhu F, Wu D, Ouyang G. Powdery polymer and carbon aerogels with high surface areas for high-performance solid phase microextraction coatings. NANOSCALE 2017; 9:5545-5550. [PMID: 28405669 DOI: 10.1039/c7nr00850c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel powdery polymer aerogel (PPA) with a hierarchical pore structure was prepared via hypercrosslinking of monodisperse poly(styrene-co-divinylbenzene) nanoparticles. Subsequently, the PPA was carbonized to obtain a powdery carbon aerogel (PCA) with a well-inherited pore structure and a much higher surface area (2354 m2 g-1). The PPA-coated and PCA-coated fibers were easily fabricated benefiting from the powdery morphologies of PPA and PCA, and demonstrated high extraction efficiencies towards hydrophobic analytes owing to their functional groups, unique three-dimensional (3D) porous nanonetworks and high surface areas.
Collapse
Affiliation(s)
- Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
44
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
45
|
Liu M, Feng JS, Bao SS, Zheng LM. Formation Mechanism and Reversible Expansion and Shrinkage of Magnesium-Based Homochiral Metal-Organic Nanotubes. Chemistry 2016; 23:1086-1092. [DOI: 10.1002/chem.201603776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Min Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Jian-Shen Feng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 P. R. China
| |
Collapse
|
46
|
Chen G, Qiu J, Fang X, Xu J, Cai S, Chen Q, Liu Y, Zhu F, Ouyang G. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring. Chem Asian J 2016; 11:2240-5. [PMID: 27411946 DOI: 10.1002/asia.201600797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Xu'an Fang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Siying Cai
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Qing Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-sen University; 135 West Xingang Road Guangzhou 510275 China
| |
Collapse
|
47
|
Xu CH, Chen GS, Xiong ZH, Fan YX, Wang XC, Liu Y. Applications of solid-phase microextraction in food analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish. Anal Chem 2016; 88:5841-8. [DOI: 10.1021/acs.analchem.6b00417] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianlang Zhang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiayi Wu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|