1
|
Baumgarten N, Mumtaz M, Merino DH, Solano E, Halila S, Bernard J, Drockenmuller E, Fleury G, Borsali R. Interface Manipulations Using Cross-Linked Underlayers and Surface-Active Diblock Copolymers to Extend Morphological Diversity in High-χ Diblock Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23736-23748. [PMID: 37134266 DOI: 10.1021/acsami.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.
Collapse
Affiliation(s)
- Noémie Baumgarten
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | | | - Daniel Hermida Merino
- Dutch-Belgian Beamline, Netherlands Organization for Scientific Research, European Synchrotron Radiation Facility, F-38000 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain
| | - Sami Halila
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Julien Bernard
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003, Lyon, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
2
|
An S, Nam J, Kanimozhi C, Song Y, Kim S, Shin N, Gopalan P, Kim M. Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3274-3283. [PMID: 35045603 DOI: 10.1021/acsami.1c19559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the fabrication of photocross-linkable and surface-functionalizable polymeric thin films using reactive cyclic dithiocarbonate (DTC)-containing copolymers. The chemical functionalities of these material surfaces were precisely defined with light illumination. The DTC copolymers, namely, poly(dithiocarbonate methylene methacrylate-random-alkyl methacrylate)s, were synthesized via reversible addition-fragmentation chain transfer polymerization, and the reaction kinetics was thoroughly analyzed. The copolymers were cross-linked into a coating using a bifunctional urethane cross-linker that contains a photolabile o-nitrobenzyl group and releases aniline upon exposure to light. The nucleophilic attack of the aromatic amine opens the DTC group, forming a carbamothioate bond and generating a reactive thiol group in the process. The surface concentrations of the unreacted DTC and thiol were effectively controlled by varying the amounts of the copolymer and the cross-linker. The use of methacrylate comonomers led to additional reactive surface functionality such as carboxylic acid via acid hydrolysis. The successful transformations of the resulting DTC, thiol, and carboxylic acid groups to different functionalities via sequential nucleophilic ring opening, thiol-ene, and carbodiimide coupling reactions under ambient conditions were confirmed quantitatively using X-ray photoelectron spectroscopy. The presented chemistries were readily adapted to the immobilization of complex molecules such as a fluorophore and a protein in lithographically defined regions, highlighting their potential in creating organic coatings that can have multiple functional groups under ambient conditions.
Collapse
Affiliation(s)
- Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jieun Nam
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Catherine Kanimozhi
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Youngjoo Song
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seungjun Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Naechul Shin
- Department of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Chen YF, Hong JW, Chang JH, Junisu BA, Sun YS. Influence of Osmotic Pressure on Nanostructures in Thin Films of a Weakly-Segregated Block Copolymer and Its Blends with a Homopolymer. Polymers (Basel) 2021; 13:polym13152480. [PMID: 34372083 PMCID: PMC8348333 DOI: 10.3390/polym13152480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
We studied the influence of osmotic pressure on nanostructures in thin films of a symmetric weakly-segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its mixtures with a polystyrene (PS) homopolymer of various compositions. Thin films were deposited on substrates through surface neutralization. The surface neutralization results from the PS mats, which were oxidized and cross-linked by UV-light exposure. Thus, thermal annealing produced perpendicularly oriented lamellae and perforated layers, depending on the content of added PS chains. Nevertheless, a mixed orientation was obtained from cylinders in thin films, where a high content of PS was blended with the P(S-b-MMA). A combination of UV-light exposure and acetic acid rinsing was used to remove the PMMA block. Interestingly, the treatment of PMMA removal inevitably produced osmotic pressure and consequently resulted in surface wrinkling of perpendicular lamellae. As a result, a hierarchical structure with two periodicities was obtained for wrinkled films with perpendicular lamellae. The formation of surface wrinkling is due to the interplay between UV-light exposure and acetic acid rinsing. UV-light exposure resulted in different mechanical properties between the skin and the inner region of a film. Acetic acid rinsing produced osmotic pressure. It was found that surface wrinkling could be suppressed by reducing film thickness, increasing PS content and using high-molecular-weight P(S-b-MMA) BCPs.
Collapse
|
4
|
Zhao J, McCallum FJ, Yu Y, Fu C, Kaitz JA, Cameron JF, Trefonas P, Blakey I, Peng H, Whittaker AK. Photo-directing chemoepitaxy: the versatility of poly(aryl methacrylate) films in tuning block copolymer wetting. Polym Chem 2021. [DOI: 10.1039/d1py00501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV irradiated poly(aryl methacrylate) films can induce a change in the orientation of the domains of an overlayer of PS-b-PMMA from parallel to perpendicular lamellar structures.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Francis J. McCallum
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | | | | | | | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
5
|
Dispersity effects on phase behavior and structural evolution in ultrathin films of a deuterated polystyrene-block-poly(methyl methacrylate) diblock copolymer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
An S, Kim H, Kim M, Kim S. Photoinduced Modulation of Polymeric Interfacial Behavior Controlling Thin-Film Block Copolymer Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3046-3056. [PMID: 32151131 DOI: 10.1021/acs.langmuir.0c00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tunable surface-wetting properties of photosensitive random copolymer mats were used to spatially control the orientations of thin-film block copolymer (BCP) structures. A photosensitive mat was produced via thermal treatment on spin-coated random copolymers of poly(styrene-ran-2-nitrobenzyl methacrylate-ran-glycidyl methacrylate), synthesized via reversible-deactivation radical polymerization. The degree of UV-induced deprotection of the nitrobenzyl esters in the mat was precisely controlled through the amount of UV-irradiation energy imparted to the mat. The resulting polarity switching of the constituents collectively altered the interfacial wetting properties of the mat, and the tunability allowed lamellar or cylinder-forming poly(styrene-b-methyl methacrylate) BCP thin films, applied over the mat, to change the domain orientation from perpendicular to parallel at proper UV exposures. UV irradiation passing through a photomask was capable of generating defined regions of BCP domains with targeted orientations.
Collapse
Affiliation(s)
- Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Heein Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Sangwon Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
7
|
Cao W, Xia S, Appold M, Saxena N, Bießmann L, Grott S, Li N, Gallei M, Bernstorff S, Müller-Buschbaum P. Self-Assembly in ultrahigh molecular weight sphere-forming diblock copolymer thin films under strong confinement. Sci Rep 2019; 9:18269. [PMID: 31797983 PMCID: PMC6892843 DOI: 10.1038/s41598-019-54648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Ultrahigh molecular weight (UHMW) diblock copolymers (DBCs) have emerged as a promising template for fabricating large-sized nanostructures. Therefore, it is of high significance to systematically study the influence of film thickness and solvent vapor annealing (SVA) on the structure evolution of UHMW DBC thin films. In this work, spin coating of an asymmetric linear UHMW polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC is used to fabricate thin films, which are spherically structured with an inter-domain distance larger than 150 nm. To enhance the polymer chain mobility and facilitate approaching equilibrium nanostructures, SVA is utilized as a post-treatment of the spin coated films. With increasing film thickness, a local hexagonal packing of PMMA half-spheres on the surface can be obtained, and the order is improved at larger thickness, as determined by grazing incidence small angle X-ray scattering (GISAXS). Additionally, the films with locally hexagonal packed half-spherical morphology show a poor order-order-poor order transition upon SVA, indicating the realization of ordered structure using suitable SVA parameters.
Collapse
Affiliation(s)
- Wei Cao
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Senlin Xia
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Michael Appold
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Nitin Saxena
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Sebastian Grott
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Nian Li
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Markus Gallei
- Saarland University, Chair in Polymer Chemistry, Campus C4 2, 66123, Saarbrücken, Germany
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, in AREA Science Park, 34149, Trieste, Italy
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany.
- Technische Universität München, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany.
| |
Collapse
|
8
|
Yang WC, Wu SH, Chen YF, Nelson A, Wu CM, Sun YS. Effects of the Density of Chemical Cross-links and Physical Entanglements of Ultraviolet-Irradiated Polystyrene Chains on Domain Orientation and Spatial Order of Polystyrene- block-Poly(methyl methacrylate) Nano-Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14017-14030. [PMID: 31577149 DOI: 10.1021/acs.langmuir.9b02054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultraviolet irradiation (UVI) of varied duration caused cross-linking and neutralization of polystyrene (PS) homopolymers of molar mass (Mn) from 6 to 290 kg mol-1 on a silicon-oxide surface. An optimal neutral skin layer on the surface of the PS was obtained via brief UVI in air (UVIA), by which the PS had no preferential interaction with either block in the copolymer. UVI in an inert environment (gaseous dinitrogen) (UVIN) stabilized the PS layers via cross-linking and enabled the PS networks to have an effective adhesive contact with the underlying substrate. Thorough examination of domain orientations and spatial orders of a series of block copolymer, polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA), thin films deposited on these UVI-treated PS support layers yielded clear evidence that a dense layer of neutralized PS chains was required for the perpendicular orientation of PS-b-PMMA nanodomains. In particular, in addition to neutralization, two factors-the densities of physical entanglements and of chemical crosslinks-both in UVI-treated PS should be considered for the perpendicular orientation of nanolamellae and nanocylinders in symmetric and asymmetric PS-b-PMMA thin films. The density of physical entanglement in PS depends intrinsically on Mn of the PS, whereas the density of chemical cross-links was controlled with a varied duration of UVIN. Sufficiently large densities of physical entanglements and chemical cross-links can prevent PS-b-PMMA chains from penetrating through the neutral skin layer. The total density of physical entanglements and chemical cross-links required for the perpendicular orientation is correlated with the dimensions of the PS-b-PMMA chains.
Collapse
Affiliation(s)
- Wei-Chen Yang
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Song-Hao Wu
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Yi-Fang Chen
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation , Locked Bag 2001 , Kirrawee DC , New South Wales 2232 , Australia
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center , 101 Hsin-Ann Road, Hsinchu Science Park , Hsinchu 30076 , Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering , National Central University , No. 300, Zhongda Rd. , Zhongli District, Taoyuan City 32001 , Taiwan
| |
Collapse
|
9
|
Jiang Z, Alam MM, Cheng HH, Blakey I, Whittaker AK. Spatial arrangement of block copolymer nanopatterns using a photoactive homopolymer substrate. NANOSCALE ADVANCES 2019; 1:3078-3085. [PMID: 36133582 PMCID: PMC9418028 DOI: 10.1039/c9na00095j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Spatial control of the orientation of block copolymers (BCPs) in thin films offers enormous opportunities for practical nanolithography applications. In this study, we demonstrate the use of a substrate comprised of poly(4-acetoxystyrene) to spatially control interfacial interactions and block copolymer orientation over different length scales. Upon UV irradiation poly(4-acetoxystyrene) undergoes a photo-Fries rearrangement yielding phenolic groups available for further functionalization. The wetting behaviour of PS-b-PMMA deposited on the poly(4-acetoxystyrene) films could be precisely controlled through controlling the UV irradiation dose. After exposure, and a mild post-exposure treatment, the substrate switches from asymmetric, to neutral and then to symmetric wetting. Upon exposure through photomasks, a range of high fidelity micro-patterns consisting of perpendicularly oriented lamellar microdomains were generated. Furthermore, the resolution of chemically patterned poly(4-acetoxystyrene) substrate could be further narrowed to submicrometer scale using electron beam lithography. When the BCP was annealed on an e-beam modified poly(4-acetoxystyrene) surface, the interface between domains of parallel and perpendicular orientation of the BCPs was well defined, especially when compared with the substrates patterned using the photomask.
Collapse
Affiliation(s)
- Zhen Jiang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia 4072 Australia
| | - Md Mahbub Alam
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia 4072 Australia
| | - Han-Hao Cheng
- Australian National Fabrication Facility-QLD Node, The University of Queensland St Lucia 4072 Australia
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia 4072 Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia 4072 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
10
|
Song Q, Schönherr H. Control of Orientation, Formation of Ordered Structures, and Self-Sorting of Surface-Functionalized Microcubes at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6742-6751. [PMID: 31039608 DOI: 10.1021/acs.langmuir.9b00792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dependence of the orientation of microscale PS cubes, which are surface functionalized on only five faces, at the water/air interface and the ordered aggregates formed by capillary force assembly are reported. Depending on the wettability of the faces, the cubes were shown to adopt a preferred orientation that changes with decreasing wettability from face up to edge up and further to vertex up. Concomitantly, stable aggregates with different structures were formed by capillary force self-assembly. The unmodified bottom face of the cubes was localized by fluorescence labeling. Finally, self-sorting of differently surface functionalized microcubes was realized for the first time, due to the stronger capillary interactions of quadrupole-quadrupole and hexapole-hexapole interactions compared to quadrupole-hexapole interaction.
Collapse
Affiliation(s)
- Qimeng Song
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering ( Cμ), Department of Chemistry and Biology , University of Siegen , Adolf-Reichwein-Str. 2 , 57076 , Siegen , Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering ( Cμ), Department of Chemistry and Biology , University of Siegen , Adolf-Reichwein-Str. 2 , 57076 , Siegen , Germany
| |
Collapse
|
11
|
Gottlieb S, Kazazis D, Mochi I, Evangelio L, Fernández-Regúlez M, Ekinci Y, Perez-Murano F. Nano-confinement of block copolymers in high accuracy topographical guiding patterns: modelling the emergence of defectivity due to incommensurability. SOFT MATTER 2018; 14:6799-6808. [PMID: 29998277 DOI: 10.1039/c8sm01045e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extreme ultraviolet interference lithography (EUV-IL) is used to manufacture topographical guiding patterns to direct the self-assembly of block copolymers. High-accuracy silicon oxide-like patterns with trenches ranging from 68 nm to 117 nm width are fabricated by exposing a hydrogen silsesquioxane (HSQ) resist layer using EUV-IL. We investigate how the accuracy, the low line width roughness and the low line edge roughness of the resulting patterns allow achieving DSA line/space patterns of a PS-b-PMMA (polystyrene-block-poly methyl methacrylate) block copolymer of 11 nm half-pitch with low defectivity. We conduct an in-depth study of the dependence of the DSA pattern morphology on the trench width and on how the neutral brush covers the guiding pattern. We identify the relation between trench width and the emergence of defects with nanometer precision. Based on these studies, we develop a model that extends available free energy models, which allows us to predict the patterning process window.
Collapse
Affiliation(s)
- Steven Gottlieb
- Instituto de Microelectrónica de Barcelona IMB-CNM, CSIC, 08193 Bellaterra, Barcelona, Spain.
| | - Dimitrios Kazazis
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Iacopo Mochi
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Laura Evangelio
- Instituto de Microelectrónica de Barcelona IMB-CNM, CSIC, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Fernández-Regúlez
- Instituto de Microelectrónica de Barcelona IMB-CNM, CSIC, 08193 Bellaterra, Barcelona, Spain.
| | - Yasin Ekinci
- Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Francesc Perez-Murano
- Instituto de Microelectrónica de Barcelona IMB-CNM, CSIC, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|