1
|
Varner S, Balzer C, Wang ZG. A Jacobian-free pseudo-arclength continuation method for phase transitions in inhomogeneous thermodynamic systems. J Chem Phys 2024; 161:064107. [PMID: 39132789 DOI: 10.1063/5.0220849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Developing phase diagrams for inhomogeneous systems in thermodynamics is difficult, in part, due to the large phase space and the possibility of unstable and metastable solutions arising from first-order phase transitions. Pseudo-arclength continuation (PAC) is a method that allows one to trace out stable and unstable solutions of nonlinear systems. Typically, PAC utilizes the Jacobian in order to implement Newton (or quasi-Newton) steps. In this work, we present a Jacobian-free PAC method that is amenable to the usual workflows in inhomogeneous thermodynamics. We demonstrate our method in systems that have first-order phase transitions, including a novel example of polyelectrolyte complex coacervation in confinement, where multiple surface phase transitions occur and can overlap with one another.
Collapse
Affiliation(s)
- Samuel Varner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher Balzer
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
2
|
Liu J, Song J, Zeng L, Hu B. An Overview on the Adhesion Mechanisms of Typical Aquatic Organisms and the Applications of Biomimetic Adhesives in Aquatic Environments. Int J Mol Sci 2024; 25:7994. [PMID: 39063236 PMCID: PMC11277488 DOI: 10.3390/ijms25147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.
Collapse
Affiliation(s)
| | - Junyi Song
- College of Science, National University of Defense Technology, Changsha 410073, China
| | | | - Biru Hu
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
3
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
4
|
Feng Z, Wang S, Huang W, Bai W. A potential bilayer skin substitute based on electrospun silk-elastin-like protein nanofiber membrane covered with bacterial cellulose. Colloids Surf B Biointerfaces 2024; 234:113677. [PMID: 38043505 DOI: 10.1016/j.colsurfb.2023.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Skin substitutes are designed to promote wound healing by replacing extracellular matrix. Silk-elastin-like protein is a renewable extracellular matrix-like material that integrated the advantages of silk and elastin-like protein. In this study, electrospun silk-elastin-like protein (SELP) nanofiber membrane covered with bacterial cellulose (BC) was created as a potential skin substitute to mimic gradient structure of epidermis and dermis of skin. The two layers were glued together using adhesive SELP containing 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine by tyrosinase. Skin topical drugs commonly used in clinical practice can penetrate through the SELP/BC barrier, and the rate of penetration is proportional to drug concentration. BC with dense fibrous structure can act as a barrier to preserve the inner SELP layer and prevent bacterial invasion, with a blocking permeation efficiency over 99% against four species of bacteria. Cell experiments demonstrated that the reticular fibers of SELP could provide an appropriate growth environment for skin cells proliferation and adhesion, which is considered to promote tissue repair and regeneration. The promising results support this strategy to fabricate a silk-elastin-like protein-based biomaterial for skin substitutes in the clinical treatment of full skin injuries and ulcers.
Collapse
Affiliation(s)
- Zhaoxuan Feng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqin Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
5
|
Petrovskii VS, Zholudev SI, Potemkin II. Linear and ring polypeptides complexed with oppositely charged surfactants: the cohesion of the complexes as revealed in atomistic simulations. SOFT MATTER 2024; 20:388-396. [PMID: 38100081 DOI: 10.1039/d3sm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The use of linear supercharged unfolded polypeptides (SUPs) and oppositely charged surfactants in aqueous solution has demonstrated impressive adhesive properties. These substances possess biocompatibility, biodegradability and other necessary properties for practical application as a biomedical glue in wound repair. The success of these substances, coupled with limited knowledge about such systems, provides hope for enhancing the performance of the final product. One potential approach involves altering the topology of the polypeptide chain. In this article, we conduct a comparative analysis to examine the behavior of the ring and linear chains of a polypeptide in aqueous solution. This analysis utilizes full-atomic computer modeling to monitor the properties of the chains. We investigate the temperature dependence of the shape and size of individual polypeptides in the solution, as well as the formation of complexes via mixing the polypeptide chains with oppositely charged sodium dodecylbenzene sulfonate (SDBS) surfactant molecules in a stoichiometric ratio. Additionally, we explore the cohesive properties of the resulting complex through power experiments involving the extraction of single polypeptide chains out of the SUP-SDBS complexes.
Collapse
Affiliation(s)
- Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Stepan I Zholudev
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
6
|
Li S, Ma C, Hou B, Liu H. Rational design of adhesives for effective underwater bonding. Front Chem 2022; 10:1007212. [DOI: 10.3389/fchem.2022.1007212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Collapse
|
7
|
Balzer C, Zhang P, Wang ZG. Wetting behavior of polyelectrolyte complex coacervates on solid surfaces. SOFT MATTER 2022; 18:6326-6339. [PMID: 35976083 DOI: 10.1039/d2sm00859a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wetting behavior of complex coacervates underpins their use in many emerging applications of surface science, particularly wet adhesives and coatings. Many factors dictate if a coacervate phase will condense on a solid surface, including solution conditions, the nature of the polymer-substrate interaction, and the underlying supernatant-coacervate bulk phase behavior. In this work, we use a simple inhomogeneous mean-field theory to study the wetting behavior of complex coacervates on solid surfaces both off-coexistence (wetting transitions) and on-coexistence (contact angles). We focus on the effects of salt concentration, the polycation/polyanion surface affinity, and the applied electrostatic potential on the wettability. We find that the coacervate generally wets the surface via a first order wetting transition with second order transitions possible above a surface critical point. Applying an electrostatic potential to a solid surface always improves the surface wettability when the polycation/polyanion-substrate interaction is symmetric. For asymmetric surface affinity, the wettability has a nonmonotonic dependence with the applied potential. We use simple scaling and thermodynamic arguments to explain our results.
Collapse
Affiliation(s)
- Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
8
|
Shokri M, Dalili F, Kharaziha M, Baghaban Eslaminejad M, Ahmadi Tafti H. Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Adv Colloid Interface Sci 2022; 305:102706. [PMID: 35623113 DOI: 10.1016/j.cis.2022.102706] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022]
Abstract
The bone adhesive is a clinical requirement for complicated bone fractures always articulated by surgeons. Applying glue is a quick and easy way to fix broken bones. Adhesives, unlike conventional fixation methods such as wires and sutures, improve healing conditions and reduce postoperative pain by creating a complete connection at the fractured joint. Despite many efforts in the field of bone adhesives, the creation of a successful adhesive with robust adhesion and appropriate bioactivity for the treatment of bone fractures is still in its infancy. Because of the resemblance of the body's humid environment to the underwater environment, in the latest decades, researchers have pursued inspiration from nature to develop strong bioactive adhesives for bone tissue. The aim of this review article is to discuss the recent state of the art in bone adhesives with a specific focus on biomimetic adhesives, their action mechanisms, and upcoming perspective. Firstly, the adhesive biomaterials with specific affinity to bone tissue are introduced and their rational design is studied. Consequently, various types of synthetic and natural bioadhesives for bone tissue are comprehensively overviewed. Then, bioinspired-adhesives are described, highlighting relevant structures and examples of biomimetic adhesives mainly made of DOPA and the complex coacervates inspired by proteins secreted in mussel and sandcastle worms, respectively. Finally, this article overviews the challenges of the current bioadhesives and the future research for the improvement of the properties of biomimetic adhesives for use as bone adhesives.
Collapse
Affiliation(s)
- Mahshid Shokri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Faezeh Dalili
- School of Metallurgy & Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Ahmadi Tafti
- Tehran Heart Hospital Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Long S, Xie C, Lu X. Natural polymer‐based adhesive hydrogel for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Siyu Long
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
- Yibin Research Institute Southwest Jiaotong University Yibin China
| |
Collapse
|
10
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
11
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
12
|
Filippov AD, Sprakel J, Kamperman M. Complex coacervation and metal-ligand bonding as synergistic design elements for aqueous viscoelastic materials. SOFT MATTER 2021; 17:3294-3305. [PMID: 33655283 DOI: 10.1039/d0sm02236e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of complex coacervates in promising areas such as coatings and surgical glues requires a tight control of their viscous and elastic behaviour, and a keen understanding of the corresponding microscopic mechanisms. While the viscous, or dissipative, aspect is crucial at pre-setting times and in preventing detachment, elasticity at long waiting times and low strain rates is crucial to sustain a load-bearing joints. The independent tailoring of dissipative and elastic properties proves to be a major challenge that can not be addressed adequately by the complex coacervate motif by itself. We propose a versatile model of complex coacervates with customizable rheological fates by functionalization of polyelectrolytes with terpyridines, which provide transient crosslinks through complexation with metals. We show that the rheology of the hybrid complexes shows distinct footprints of both metal-ligand and coacervate dynamics, the former as a contribution very close to pure Maxwell viscoelasticity, the latter approaching a sticky Rouse fluid. Strikingly, when the contribution of metal-ligand bonds is dominant at long times, the relaxation of the overall complex is much slower than either the "native" coacervate relaxation time or the dissociation time of a comparable non-coacervate polyelectrolyte-metal-ligand complex. We recognize this slowing-down of transient bonds as a synergistic effect that has important implications for the use of complementary transient bonding in coacervate complexes.
Collapse
Affiliation(s)
- Alexei D Filippov
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | | | | |
Collapse
|
13
|
Tiwari P, Bharti I, Bohidar HB, Quadir S, Joshi MC, Arfin N. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution. ACS OMEGA 2020; 5:33064-33074. [PMID: 33403268 PMCID: PMC7774070 DOI: 10.1021/acsomega.0c04647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this paper, for the first time, we have reported the formation of complex coacervate during interaction between hydrophobic protein, zein, and hydrophilic nanoclay, Laponite, in a 60% v/v ethanol solution at pH 4. Dynamic light scattering and viscosity measurements revealed the formation of zein-Laponite complexes during the interaction between zein at fixed concentration, C Z = 1 mg/mL, and varying concentrations of Laponite, C L (7.8 × 10-4 - 0.25% w/v). Further investigation of the zein-Laponite complexes using turbidity and zeta potential data showed that these complexes could be demarcated in three different regions: Region I, below the charge neutralization region (C Z = 1 mg/mL, C L ≤ 0.00625% w/v) where soluble complexes was formed during interaction between oppositely charged zein and Laponite; Region II, the charge neutralization region (C Z = 1 mg/mL, 0.00625 < C L ≤ 0.05% w/v) where zein-Laponite complexes form neutral coacervates; and Region III, the interesting overcharged coacervates region (C Z = 1 mg/mL, C L > 0.05% w/v). Investigation of coacervates using a fluorescence imaging technique showed that the size of neutral coacervates in region II was large (mean size = 1223.7 nm) owing to aggregation as compared to the small size of coacervates (mean size = 464.7 nm) in region III owing to repulsion between overcharged coacervates. Differential scanning calorimeter, DSC, revealed the presence of an ample amount of bound water in region III. The presence of bound water was evident from the presence of an additional peak at 107 °C in region III apart from normal enthalpy of evaporation of water from coacervates.
Collapse
Affiliation(s)
- Preeti Tiwari
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Indu Bharti
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Himadri B Bohidar
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shabina Quadir
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohan C Joshi
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Najmul Arfin
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
14
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
15
|
Liu Y, Santa Chalarca CF, Carmean RN, Olson RA, Madinya J, Sumerlin BS, Sing CE, Emrick T, Perry SL. Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00758] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yalin Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Cristiam F. Santa Chalarca
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - R. Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca A. Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jason Madinya
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Narayanan A, Menefee JR, Liu Q, Dhinojwala A, Joy A. Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives. ACS NANO 2020; 14:8359-8367. [PMID: 32538616 DOI: 10.1021/acsnano.0c02396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enable attachment to underwater surfaces, aquatic fauna such as mussels and sandcastle worms utilize the advantages of coacervation to deliver concentrated protein-rich adhesive cocktails in an aqueous environment onto underwater surfaces. Recently, a mussel adhesive protein Mfp-3s, was shown to exhibit a coacervation-based adhesion mechanism. Current synthetic strategies to mimic Mfp-3s often involve complexation of oppositely charged polymers. Such complex coacervates are more sensitive to changes in pH and salt, thereby limiting their utility to narrow ranges of pH and ionic strength. In this study, by taking advantage of the lower critical solution temperature-driven coacervation, we have created mussel foot protein-inspired, tropoelastin-like, bioabsorbable, nonionic, self-coacervating polyesters for the delivery of photo-cross-linkable adhesives underwater and to overcome the challenges of adhesion in wet or underwater environments. We describe the rationale for their design and the underwater adhesive properties of these nonionic adhesives. Compared to previously reported coacervate adhesives, these "charge-free" polyesters coacervate in wide ranges of pH (3-12) and ionic strength (0-1 M NaCl) and rapidly (<300 s) adhere to substrates submerged underwater. The study introduces smart materials that mimic the self-coacervation and environmental stability of Mfp-3s and demonstrate the potential for biological adhesive applications where high water content, salts, and pH changes can be expected.
Collapse
Affiliation(s)
- Amal Narayanan
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua R Menefee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Qianhui Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Lim ZW, Varma VB, Ramanujan RV, Miserez A. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomater 2020; 110:221-230. [PMID: 32422317 DOI: 10.1016/j.actbio.2020.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Liver cancer is an aggressive malignancy associated with high levels of mortality and morbidity. Doxorubicin (Dox) is often used to slow down liver cancer progression; however its efficacy is limited, and its severe side effects prevent its routine use at therapeutic concentrations. We present a biomimetic peptide that coacervates into micro-droplets, within which both Dox and magnetic nanoparticles (MNPs) can be sequestered. These Dox-loaded Magnetic Coacervates (DMCs) can be used for thermo-chemotherapy, with the controlled release of Dox triggered by an external Alternating Magnetic Field (AMF). The DMCs are internalized by the cells via an energy-independent mechanism which is not based on endocytosis. Application of AMF generates a temperature of 45 °C within the DMCs, triggering their disassembly and the simultaneous release of Dox, thereby resulting in dual hyperthermia and chemotherapy for more efficient cancer therapy. In vitro studies conducted under AMF reveal that DMCs are cytocompatible and effective in inducing HepG2 liver cancer cell death. Thermo-chemotherapy treatment against HepG2 cells is also shown to be more effective compared to either hyperthermia or chemotherapy treatments alone. Thus, our novel peptide DMCs can open avenues in theranostic strategies against liver cancer through programmable, wireless, and remote control of Dox release. STATEMENT OF SIGNIFICANCE: Simultaneous administration of chemical and thermal therapy (thermo-chemotherapy) is more effective in inducing liver cancer cell death and improving survival rate. Thus, there is a keen interest in developing suitable carriers for thermo-chemotherapy. Coacervate micro-droplets display significant advantages, including high loading capacity, fast self-assembly in aqueous environments, and liquid-like behavior. However, they have not yet been explored as carriers for thermo-chemotherapy. Here, we demonstrate that peptide coacervate micro-droplets can co-encapsulate Dox and magnetic nanoparticles and cross the cell membrane. Applying an alternating magnetic field to cells containing drug-loaded coacervates triggers the release of Dox as well as the localized heating by magnetic hyperthermia, resulting in efficient liver cancer cell death by dual thermo-chemotherapy.
Collapse
Affiliation(s)
- Zhi Wei Lim
- Biological and Biomimetic Materials Laboratory, Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553
| | - Vijaykumar B Varma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Raju V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Ali Miserez
- Biological and Biomimetic Materials Laboratory, Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| |
Collapse
|
18
|
Anas M, Jana S, Mandal TK. Vesicular assemblies of thermoresponsive amphiphilic polypeptide copolymers for guest encapsulation and release. Polym Chem 2020. [DOI: 10.1039/d0py00135j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermoresponsive amphiphilic polypeptide copolymers are synthesized via different polymerization techniques for their self-assembly into vesicular aggregates for guest encapsulation and release.
Collapse
Affiliation(s)
- Mahammad Anas
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Somdeb Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tarun K. Mandal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
19
|
Liu X, Xie X, Du Z, Li B, Wu L, Li W. Aqueous self-assembly of arginine and K 8SiW 11O 39: fine-tuning the formation of a coacervate intended for sprayable anticorrosive coatings. SOFT MATTER 2019; 15:9178-9186. [PMID: 31584062 DOI: 10.1039/c9sm01511f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coacervates are commonly thought to be formed from the liquid-liquid phase separation of macromolecules, such as oppositely charged polyelectrolytes, proteins or peptides. Unlike conventional systems, we here show an entirely novel coacervate obtained from the self-assembly of arginine (Arg) and K8[α-SiW11O39] (SiW11) in water. The formation of the coacervate Arg/SiW11 is confirmed by combined techniques, including turbidity, rheology, optical microscopy, and scanning and transmission electron microscopy. Assessment of the rheological response reveals that the complex coacervate exhibits shear thinning behaviour. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, elemental analysis and thermogravimetric analysis are used to characterize the coacervate. The thermodynamic parameters of the coacervation are monitored by isothermal titration calorimetry (ITC), which identifies that the formation of the coacervate by mixing of Arg and SiW11 is driven by a combination of entropic and enthalpic effects. The resultant coacervate shows a typical upper critical solution temperature (UCST) phenomenon, which is strongly dependent on the concentration of the species. Furthermore, we demonstrate that the coacervation could be tuned by stoichiometry and pH. A phase diagram for the complexation of Arg and SiW11 thus has been constructed using turbidity measurements. Such a phase diagram is a very useful tool for the preparation of coacervates from a specific combination of Arg and SiW11. Finally, the acid induced gelation of the coacervate has been explored to fabricate an anticorrosive coating to protect a copper plate from exposure to acid vapour.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Zhanglei Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
20
|
Bilotto P, Labate C, De Santo MP, Deepankumar K, Miserez A, Zappone B. Adhesive Properties of Adsorbed Layers of Two Recombinant Mussel Foot Proteins with Different Levels of DOPA and Tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15481-15490. [PMID: 31465231 DOI: 10.1021/acs.langmuir.9b01730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using a surface forces apparatus and an atomic force microscope, we characterized the adhesive properties of adsorbed layers of two recombinant variants of Perna viridis foot protein 5 (PVFP-5), the main surface-binding protein in the adhesive plaque of the Asian green mussel. In one variant, all tyrosine residues were modified into 3,4-dihydroxy-l-phenylalanine (DOPA) during expression using a residue-specific incorporation strategy. DOPA is a key molecular moiety underlying underwater mussel adhesion. In the other variant, all tyrosine residues were preserved. The layer was adsorbed on a mica substrate and pressed against an uncoated surface. While DOPA produced a stronger adhesion than tyrosine in contact with the nanoscopic Si3N4 probe of the atomic force microscope, the two variants produced comparable adhesion on the curved macroscopic mica surfaces of the surface forces apparatus. These findings show that the presence of DOPA is not a sufficient condition to generate strong underwater adhesion. Surface chemistry and contact geometry affect the strength and abundance of protein-surface bonds created during adsorption and surface contact. Importantly, the adsorbed protein layer has a random and dynamic polymer-network structure that should be optimized to transmit the tensile stress generated during surface separation to DOPA surface bonds rather than other weaker bonds.
Collapse
Affiliation(s)
- Pierluigi Bilotto
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
- Institute of Applied Physics , Vienna University of Technology , Vienna , Austria
| | - Cristina Labate
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
| | - Maria P De Santo
- Dipartimento di Fisica , Università della Calabria , Rende , Italy
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR - Nanotec) , c/o Università della Calabria , Ponte P. Bucci, 33/B , 87036 Rende ( CS ), Italy
| | - Kanagavel Deepankumar
- Biological and Biomimetic Material Laboratory and Center for Biomimetic Sensor Science, School of Materials Science and Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 637553
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory and Center for Biomimetic Sensor Science, School of Materials Science and Engineering , Nanyang Technological University (NTU) , 50 Nanyang Avenue , Singapore 637553
- School of Biological Sciences , Nanyang Technological University (NTU) , 60 Nanyang Drive , Singapore 637551
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR - Nanotec) , c/o Università della Calabria , Ponte P. Bucci, 33/B , 87036 Rende ( CS ), Italy
| |
Collapse
|
21
|
Shah A, Kuddushi M, Ray D, Aswal VK, Malek NI. Sodium Salicylate Mediated Ionic Liquid Based Catanionic Coacervates as Membrane‐Free Microreactors for the Selective Sequestration of Dyes and Curcumin. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ankit Shah
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| | - Muzammil Kuddushi
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| | - Debes Ray
- Solid State Physics DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Vinod K Aswal
- Solid State Physics DivisionBhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Naved I. Malek
- Applied Chemistry DepartmentS.V. National Institute of Technology Surat 395007, Gujarat India
| |
Collapse
|
22
|
Li X, Zheng T, Liu X, Du Z, Xie X, Li B, Wu L, Li W. Coassembly of Short Peptide and Polyoxometalate into Complex Coacervate Adapted for pH and Metal Ion-Triggered Underwater Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4995-5003. [PMID: 30892902 DOI: 10.1021/acs.langmuir.9b00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fabrication of peptide assemblies to mimic the functions of natural proteins represents an intriguing aim in the fields of soft materials. Herein, we present a kind of novel peptide-based adhesive coacervate for the exploration of the environment-responsive underwater adhesion. Adhesive coacervates are designed and synthesized by self-assembled condensation of a tripeptide and polyoxometalates in aqueous solution. Rheological measurements demonstrate that the adhesive coacervates exhibit shear thinning behavior, which allows them to be conveniently delivered for interfacial spreading through a narrow gauge syringe without high pressure. The complex coacervates are susceptible to pH and metal ions, resulting in the occurrence of a phase transition from the fluid phase to the gel state. Scanning electron microscopy demonstrates that the microscale structures of the gel-like phases are composed of interconnected three-dimensional porous networks. The rheological study reveals that the gel-like assemblies exhibited mechanical stiffness and self-healing properties. Interestingly, the gel-like samples show the capacity to adhere to various wet solid substrates under the waterline. The adhesion strength of the peptide-based gel is quantified by lap shear mechanical analysis. The fluid coacervate is further exploited in the preparation of "on-site" injectable underwater adhesives triggered by environmental factors. This finding is exciting and serves to expand our capability for the fabrication of peptide-based underwater adhesives in a controllable way.
Collapse
Affiliation(s)
- Xiangyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Zhanglei Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Qianjin Avenue 2699 , Changchun 130012 , China
| |
Collapse
|
23
|
Prolonged cell persistence with enhanced multipotency and rapid angiogenesis of hypoxia pre-conditioned stem cells encapsulated in marine-inspired adhesive and immiscible liquid micro-droplets. Acta Biomater 2019; 86:257-268. [PMID: 30639576 DOI: 10.1016/j.actbio.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
Stem cell therapies are emerging regenerative treatments for ischemic and chronic diseases. Although high cell retention and prompt angiogenesis are prerequisites to improving efficacy, advancements have not yet been developed. Here, we proposed long-term surviving and angiogenesis-inducing stem cell with high cell retention thanks to fluid immiscible liquid micro-droplets bio-inspired by a glue modality 'complex coacervate' found in the sandcastle worm. Formed by the Coulombic force between polycationic MAP and polyanionic hyaluronic acid, the exploited coacervate micro-droplets enabled the encapsulation of stem cells. The underwater adhesiveness facilitated integrating the encapsulated stem cells onto various surfaces with impressive cell retention after facile injection. Stem cells encapsulated in the coacervate platform formed cell clusters capable of pre-adjusting to hypoxia by expressing hypoxia-inducible factor 1α (HIF-1α), increasing viability and reducing apoptosis under hypoxia and ischemia as well as normoxia. Interestingly, multipotent and angiogenic factors were significantly enhanced by HIF-1α expression. In the in vivo evaluation, the coacervate platform showed impressive angiogenesis with biocompatibility and long-term cell retention capacity with sustainable release as protein factories. Therefore, the proposed MAP-based water-immiscible, injectable, sticky, and bioactive 3D coacervate micro-droplets offers a promising tool for chronic diseases in body fluid-rich environments. STATEMENT OF SIGNIFICANCE: High cell retention, long-term survival, and rapid angiogenesis are prerequisites of successful stem cell therapy. However, no previous advancements have simultaneously satisfied all of these requirements. In this work, we clearly developed a novel, revolutionary stem cell carrier platform with underwater adhesiveness from a mussel-derived glue protein and water immiscibility from a sandcastle-worm-inspired glue modality via 'complex coacervation'. To the best of our knowledge, no report has emerged employing coacervate as a stem cell therapeutic platform. This fluid-immiscible, injectable, sticky, and bioactive 3-dimensional stem cell micro-droplets demonstrated the excellent stem cell retention and viability under hypoxia environments and enhanced multipotent and angiogenic effects with minimal immune response.
Collapse
|
24
|
Yavvari PS, Awasthi AK, Sharma A, Bajaj A, Srivastava A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. J Mater Chem B 2019; 7:2102-2122. [DOI: 10.1039/c8tb02962h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of positive biomedical attributes of biodegradable polyelectrolytes (PELs) prepared from aspartic acid is provided. The utility of these PELs in emerging applications such as biomineralization modulators, antimycobacterials, biocompatible cell encapsulants and tissue adhesives is highlighted.
Collapse
Affiliation(s)
- Prabhu Srinivas Yavvari
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Anand Kumar Awasthi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Aashish Sharma
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- NCR Biotech Science Cluster
- Faridabad-121001
- India
| | - Aasheesh Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhauri
- Bhopal-462066
- India
| |
Collapse
|
25
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| |
Collapse
|
26
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew Chem Int Ed Engl 2018; 58:1904-1927. [DOI: 10.1002/anie.201807804] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
27
|
Kirillova A, Kelly C, Windheim N, Gall K. Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2018; 7:e1800467. [PMID: 29938916 DOI: 10.1002/adhm.201800467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Bioresorbable bone adhesives have potential to revolutionize the clinical treatment of the human skeletal system, ranging from the fixation and osteointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Despite an unmet need, there are currently no bone adhesives in clinical use that provide a strong enough bond to wet bone while possessing good osteointegration and bioresorbability. Inspired by the sandcastle worm that creates a protective tubular shell around its body using a proteinaceous adhesive, a novel bone adhesive is introduced, based on tetracalcium phosphate and phosphoserine, that cures in minutes in an aqueous environment and provides high bone-to-bone adhesive strength. The new material is measured to be 10 times more adhesive than bioresorbable calcium phosphate cement and 7.5 times more adhesive than non-resorbable poly(methyl methacrylate) bone cement, both of which are standard of care in the clinic today. The bone adhesive also demonstrates chemical adhesion to titanium approximately twice that of its adhesion to bone, unlocking the potential for adherence to metallic implants during surrounding bony incorporation. Finally, the bone adhesive is shown to demonstrate osteointegration and bioresorbability over a 52-week period in a critically sized distal femur defect in rabbits.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Natalia Windheim
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Edmund T. Pratt Jr., School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
28
|
Yang J, Włodarczyk-Biegun MK, Filippov A, Akerboom S, Dompé M, van Hees IA, Mocan M, Kamperman M. Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Yang
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | | | - Alexei Filippov
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Sabine Akerboom
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Marco Dompé
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Ilse A. van Hees
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Merve Mocan
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
29
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
30
|
Hofman AH, van Hees IA, Yang J, Kamperman M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704640. [PMID: 29356146 DOI: 10.1002/adma.201704640] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Indexed: 05/25/2023]
Abstract
Nature has developed protein-based adhesives whose underwater performance has attracted much research attention over the last few decades. The adhesive proteins are rich in catechols combined with amphiphilic and ionic features. This combination of features constitutes a supramolecular toolbox, to provide stimuli-responsive processing of the adhesive, to secure strong adhesion to a variety of surfaces, and to control the cohesive properties of the material. Here, the versatile interactions used in adhesives secreted by sandcastle worms and mussels are explored. These biological principles are then put in a broader perspective, and synthetic adhesive systems that are based on different types of supramolecular interactions are summarized. The variety and combinations of interactions that can be used in the design of new adhesive systems are highlighted.
Collapse
Affiliation(s)
- Anton H Hofman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ilse A van Hees
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Juan Yang
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
31
|
Buffet JP, Corre E, Duvernois-Berthet E, Fournier J, Lopez PJ. Adhesive gland transcriptomics uncovers a diversity of genes involved in glue formation in marine tube-building polychaetes. Acta Biomater 2018; 72:316-328. [PMID: 29597026 DOI: 10.1016/j.actbio.2018.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Tube-building sabellariid polychaetes are hermatypic organisms capable of forming vast reefs in highly turbulent marine habitats. Sabellariid worms assemble their tube by gluing together siliceous and calcareous clastic particles using a polyelectrolytic biocement. Here, we performed transcriptomic analyses to investigate the genes that are differentially expressed in the parathorax region, which contains the adhesive gland and tissues, from the rest of the body. We found a large number of candidate genes to be involved in the composition and formation of biocement in two species: Sabellaria alveolata and Phragmatopoma caudata. Our results indicate that the glue is likely to be composed by a large diversity of cement-related proteins, including Poly(S), GY-rich, H-repeat and miscellaneous categories. However, sequences divergence and differences in expression profiles between S. alveolata and P. caudata of cement-related proteins may reflect adaptation to the type of substratum used to build their tube, and/or to their habitat (temperate vs tropical, amplitude of pH, salinity …). Related to the L-DOPA metabolic pathways and linked with the genes that were differentially expressed in the parathorax region, we found that tyrosinase and peroxidase gene families may have undergone independent expansion in the two Sabellariidae species investigated. Our data also reinforce the importance of protein modifications in cement formation. Altogether these new genomic resources help to identify novel transcripts encoding for cement-related proteins, but also important enzymes putatively involved in the chemistry of the adhesion process, such as kinases, and may correspond to new targets to develop biomimetic approaches. STATEMENTS OF SIGNIFICANCE The diversity of bioadhesives elaborated by marine invertebrates is a tremendous source of inspiration to develop biomimetic approaches for biomedical and technical applications. Recent studies on the adhesion system of mussel, barnacle and sea star had highlighted the usefulness of high-throughput RNA sequencing in accelerating the development of biomimetic adhesives. Adhesion in sandcastle worms, which involves catechol and phosphate chemistries, polyelectrolyte complexes, supramolecular architectures, and a coacervation process, is a useful model to develop multipurpose wet adhesives. Using transcriptomic tools, we have explored the diversity of genes encoding for structural and catalytic proteins involved in cement formation of two sandcastle worm species, Sabellaria alveolata and Phragmatopoma caudata. The important genomic resource generated should help to design novel "blue" adhesives.
Collapse
Affiliation(s)
- Jean-Philippe Buffet
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France
| | - Erwan Corre
- Station Biologique - FR 2424, CNRS/Sorbonne Université, ABiMS, Roscoff 29680, France
| | | | - Jérôme Fournier
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France
| | - Pascal Jean Lopez
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France.
| |
Collapse
|
32
|
Kim HJ, Yang B, Park TY, Lim S, Cha HJ. Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. SOFT MATTER 2017; 13:7704-7716. [PMID: 29034934 DOI: 10.1039/c7sm01735a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Complex coacervates are a dense liquid phase of oppositely charged polyions formed by the associative separation of a mixture of polyions. Coacervates have been widely employed in many fields including the pharmaceutical, cosmetic, and food industries due to their intriguing interfacial and bulk material properties. More recently, attempts to develop an effective underwater adhesive have been made using complex coacervates that are based on recombinant mussel adhesive proteins (MAPs) due to the water immiscibility of complex coacervates and the adhesiveness of MAPs. MAP-based complex coacervates contribute to our understanding of the physical nature of complex coacervates and they provide a promising alternative to conventional invasive surgical repairs. Here, this review provides an overview of recombinant MAP-based complex coacervations, with an emphasis on their characterization and the uses of such materials for applications in the fields of biomedicine and tissue engineering.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Korea.
| | | | | | | | | |
Collapse
|
33
|
Cai H, Gabryelczyk B, Manimekalai MSS, Grüber G, Salentinig S, Miserez A. Self-coacervation of modular squid beak proteins - a comparative study. SOFT MATTER 2017; 13:7740-7752. [PMID: 29043368 DOI: 10.1039/c7sm01352c] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The beak of the Humboldt squid is a biocomposite material made solely of organic components - chitin and proteins - which exhibits 200-fold stiffness and hardness gradients from the soft base to the exceptionally hard tip (rostrum). The outstanding mechanical properties of the squid beak are achieved via controlled hydration and impregnation of the chitin-based scaffold by protein coacervates. Molecular-based understanding of these proteins is essential to mimic the natural beak material. Here, we present detailed studies of two histidine-rich beak proteins (HBP-1 and -2) that play central roles during beak bio-fabrication. We show that both proteins have the ability to self-coacervate, which is governed intrinsically by the sequence modularity of their C-terminus and extrinsically by pH and ionic strength. We demonstrate that HBPs possess dynamic structures in solution and achieve maximum folding in the coacervate state, and propose that their self-coacervation is driven by hydrophobic interactions following charge neutralization through salt-screening. Finally, we show that subtle differences in the modular repeats of HBPs result in significant changes in the rheological response of the coacervates. This knowledge may be exploited to design self-coacervating polypeptides for a wide range of engineering and biomedical applications, for example bio-inspired composite materials, smart hydrogels and adhesives, and biomedical implants.
Collapse
Affiliation(s)
- Hao Cai
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553.
| | | | | | | | | | | |
Collapse
|
34
|
Xu J, Li X, Li X, Li B, Wu L, Li W, Xie X, Xue R. Supramolecular Copolymerization of Short Peptides and Polyoxometalates: toward the Fabrication of Underwater Adhesives. Biomacromolecules 2017; 18:3524-3530. [DOI: 10.1021/acs.biomac.7b00817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiangyi Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiaodong Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Bao Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Lixin Wu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Wen Li
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Xiaoming Xie
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Rong Xue
- National
Analytical Research Center of Electrochemistry and Spectroscopy, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
35
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
36
|
Bose A, Jana S, Saha A, Mandal TK. Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: Synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Liu Y, Winter HH, Perry SL. Linear viscoelasticity of complex coacervates. Adv Colloid Interface Sci 2017; 239:46-60. [PMID: 27633928 DOI: 10.1016/j.cis.2016.08.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/15/2023]
Abstract
Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics. We conclude by highlighting key areas of need in the field, and specifically call for the development of a mechanistic understanding of how molecular-level interactions in complex coacervate-based materials affect both self-assembly and material dynamics.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - H Henning Winter
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
38
|
Blocher WC, Perry SL. Complex coacervate-based materials for biomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1442] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Whitney C. Blocher
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA USA
| | - Sarah L. Perry
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA USA
| |
Collapse
|