1
|
Han W, Tian H, Qiang T, Wang H, Wang P. Fluorescence color change of supramolecular polymer networks controlled by crown ether-cation recognition. Chemistry 2024; 30:e202303569. [PMID: 38066712 DOI: 10.1002/chem.202303569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 01/12/2024]
Abstract
We report a fluorescent supramolecular polymer networks (SPNs) system based on crown ether-cation recognition. The polymer side chains bear ammonium cations, which can be recognized by host molecules with a B15C5 unit and a quinoline group at each end. The quinoline group makes the host molecule exhibit blue fluorescence. After the formation of SPNs, the recognition of the crown ether-cation transforms the blue fluorescence into yellow fluorescence. The accompanying fluorescence color change during the formation of SPNs makes it with potential applications in the fields of display, printing, information storage, and bioimaging.
Collapse
Affiliation(s)
- Weiwei Han
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Hailan Tian
- College of Chemistry and Chemical Engineering, Shaanxi Engineering Research Center of Green Low-carbon Energy Materials and Processes, Xi'an Shiyou University, No.18, East Dianzi 2nd Road, Xi'an, Shaanxi, 710065, China
| | - Taotao Qiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hu Wang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas, 78712, United States
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| |
Collapse
|
2
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
3
|
Tarannum N, Kumar D, Kumar N. β‐Cyclodextrin‐Based Nanocomposite Derivatives: State of the Art in Synthesis, Characterization and Application in Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Deepak Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Nitin Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
4
|
Bai Y, Liu C, Yang J, Liu C, Shang Q, Tian W. Supramolecular self-assemblies based on water-soluble pillar[6]arene and drug-drug conjugates for the combination of chemotherapy. Colloids Surf B Biointerfaces 2022; 217:112606. [PMID: 35660745 DOI: 10.1016/j.colsurfb.2022.112606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Although some co-drug delivery systems have been reported to treat cancer, how to optimal design these nano-systems with enhanced therapeutic efficacy is still a major challenge. As for the nitrogen mustard drugs chlorambucil (Cb), the overexpressed glutathione (GSH) in cancer tissue is responsible for their detoxification and reduced bioavailability. In this paper, chlorambucil-oxoplatin (Cb-Pt) was prepared to fabricate water-soluble pillar[6]arene (WP[6]) based supramolecular drug-drug self-assemblies (SDSAs). Remarkably, after the transcytosis by cancer cells, SDSAs was reduced by GSH to re lease Cb and higher toxic cisplatin, accompanying with the declining GSH level and ascending ROS level. Moreover, in vitro and in vivo experiments demonstrated that SDSAs with oxidative stress amplification strategy exhibited excellent therapeutic effect. This strategy might be useful for the synergistic co-drug based chemotherapy field.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengfei Liu
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qingqing Shang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei Tian
- Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
5
|
|
6
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
9
|
Yao X, Huang P, Nie Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Bai Y, Liu CP, Xie FY, Ma R, Zhuo LH, Li N, Tian W. Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB 2-type macromonomer and their application in the drug delivery field. Carbohydr Polym 2019; 213:411-418. [PMID: 30879686 DOI: 10.1016/j.carbpol.2019.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 01/28/2023]
Abstract
Despite some efforts have been made in the research of supramolecular hyperbranched polymers (SHPs) self-assemblies, the study which has not been consideration to date is the influence of incoming stimuli-responsive polymer chain on their self-assembly property undergo outer stimuli. The introduction of stimuli-responsive segments which could maintain their hydrophilic property are expected to affect the self-assembly behaviour of SHPs and expand their further biomedical application. In this paper, AB2-type macromolecular monomer, LA-(CD-PDMA)2, which consisted one lithocholic acid (LA) and two β-cyclodextrin terminated poly(2-(dimethylamino)ethyl methacrylate) segments (CD-PDMA) was synthesized. LA-(CD-PDMA)2 based SHP were obtained based on the host-guest inclusion interactions of CD/LA moietes and with PDMA as pH-responsive hydrophilic chains. As a control to study the influence of incoming PDMA chains, both LA-(CD-PDMA)2 based SHPs-1 and LA-CD2 based SHPs-2 self-assemblies were comparatively investiged through 2D 1H NMR ROESY, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results suggested that except for the higher drug loading efficiency LA-(CD-PDMA)2 based SHPs-1 pocessing, the release rates of SHPs-1 increased notably at pH 5.0 than that of pH 7.4 due to the repulsion and stretch of protonated PDMA chains while the release rates of SHPs-2 showed no obvious difference. Finally, basic cell experiments demonstrated that the SHPs based self-assemblies can be internalized into cancer cells, indicating their potential application in the drug delivery field.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Cai-Ping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fang-Yuan Xie
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, 200438, China
| | - Ran Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Long-Hai Zhuo
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Na Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
11
|
Noy JM, Lu H, Hogg PJ, Yang JL, Stenzel M. Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjug Chem 2018; 29:546-558. [DOI: 10.1021/acs.bioconjchem.8b00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Philip J. Hogg
- The
Centenary Institute and National Health and Medical Research Council
Clinical Trials Centre, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
12
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
13
|
Callari M, Wong S, Lu H, Aldrich-Wright J, de Souza P, Stenzel MH. Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel. Polym Chem 2017. [DOI: 10.1039/c7py01162h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Co-delivery of two drugs in one nanoparticle is increasingly used to overcome, for example, multi-drug resistance in cancer therapy and therefore suitable drug carriers need to be developed.
Collapse
Affiliation(s)
- Manuela Callari
- Centre for Advanced Macromolecular Design. School of Chemistry
- University of New South Wales
- Sydney
- Australia
- School of Medicine
| | - Sandy Wong
- Centre for Advanced Macromolecular Design. School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design. School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Janice Aldrich-Wright
- School of Medicine
- Western Sydney University
- Penrith 2579
- Australia
- Nanoscale Organisation and Dynamics Group
| | - Paul de Souza
- School of Medicine
- Western Sydney University
- Penrith 2579
- Australia
- Ingham Institute
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design. School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
14
|
Liu X, Yang G, Zhang L, Liu Z, Cheng Z, Zhu X. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. NANOSCALE 2016; 8:15323-39. [PMID: 27503666 DOI: 10.1039/c6nr04835h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The multifunctional nano-micelle platform holds great promise to enhance the accuracy and efficiency of cancer diagnosis and therapy. In this work, an amphiphilic poly[(poly(ethylene glycol) methyl ether methacrylate)-co-(3-aminopropyl methacrylate)]-block-poly(methyl methacrylate) (P(PEGMA-co-APMA)-b-PMMA) block copolymer was synthesized by successive RAFT polymerizations and subsequent chemical modification. Then the multifunctional micelles with high solubility in physiological environments were developed by a self-assembly and crosslinking processes. The photosensitizer segment, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP), serves as a tetra-functional cross-linker, photodynamic agent, fluorescence indicator, as well as magnetic resonance (MR) contrast agent after labelling with manganese ions (Mn(2+)), while IR825 simultaneously locating in the interior of the fabricated micelles contributed to the photoacoustic (PA) imaging ability and the photothermal effect. The prepared nanoparticles show great stability in a physiological environment with uniform morphology and diameters of around 80 nm as disclosed by stability investigation, TEM and DLS analysis. IR825@P(PEGMA-co-APMA)-b-PMMA@TCPP/Mn nanoparticles displayed high in vivo tumor uptake with a long blood circulation half-life (∼3.64 h) by the EPR effect after intravenous (i.v.) injection, as revealed by fluorescence, MR and PA imaging models. In vivo anti-tumor effects were achieved via a combined photothermal and photodynamic therapy without noticeable dark toxicity, and this strategy was able to induce a remarkably improved synergistic therapeutic effect to both superficial and deep regions of tumors under mild conditions compared with either single photothermal or photodynamic mechanisms.
Collapse
Affiliation(s)
- Xiaodong Liu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Guangbao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Zhang JL, Gong JH, Xing L, Cui PF, Qiao JB, He YJ, Lyu JY, Che S, jin T, Jiang HL. Poly[platinum(iv)-alt-PEI]/Akt1 shRNA complexes for enhanced anticancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra16435h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co-delivery of Akt1 shRNA and platinum(iv) prodrug using DP/Akt1 shRNA complexes for synergetic cancer inhibition.
Collapse
|