1
|
Li X, Li J, Tian Y, Yang Y, Chen W, Wang R, Zhang Y, Song K, Wei Y, Wang G, Shi G. Furan-based fluorescent probe free radical capture membrane: Analysis of RO 2 radical composition and transformation mechanism in urban atmosphere. CHEMOSPHERE 2024; 349:140916. [PMID: 38081522 DOI: 10.1016/j.chemosphere.2023.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Peroxyl radicals (RO2) are important components of atmospheric radical cycling and generation, but their formation, distribution and evolution mechanisms in the atmospheric environment have not been investigated. In this paper, we propose a novel atmospheric RO2 radical trapping membrane that can trap low carbon number (Rc ≤ 5) RO2 radicals and identify their R-group structures by fluorescence spectroscopy and chromatography. We also analyzed the composition and evolution mechanism of RO2 species under different meteorological conditions in the atmospheric environment of Lanzhou, China, to provide scientific support for the treatment and research of atmospheric chemical pollution.
Collapse
Affiliation(s)
- Xin Li
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Jiaxian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Yuan Tian
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Yang Yang
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Wanping Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Runquan Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Yuerong Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Kai Song
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Yuan Wei
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| | - Guoying Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China.
| | - Gaofeng Shi
- School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou, 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Langongping Road 287, Lanzhou, 730050, PR China
| |
Collapse
|
2
|
Zhou J, Zhao W, Zhang Y, Fang B, Cheng F, Xu X, Ni S, Zhang W, Ye C, Chen W, Venables DS. Amplitude-Modulated Cavity-Enhanced Absorption Spectroscopy with Phase-Sensitive Detection: A New Approach Applied to the Fast and Sensitive Detection of NO 2. Anal Chem 2022; 94:3368-3375. [PMID: 35143171 DOI: 10.1021/acs.analchem.1c05484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate and sensitive measurements of NO2 play an extremely important role in atmospheric studies. Increasingly, studies require NO2 measurements with parts per trillion by volume (pptv-level) detection limits. Other desirable instrument attributes include ease of use, long-term stability, and low maintenance. In this work, we report the development of an amplitude-modulated multimode-diode-laser-based cavity-enhanced absorption spectroscopy (AM-CEAS) system operating at 406 nm that uses phase-sensitive detection for extremely sensitive NO2 detection. The laser was TTL-modulated at 35 kHz. The mirror reflectivity was determined to be 99.985% based on the ring-down time measurement. The cavity base length was 47.5 cm, giving an effective absorption pathlength of ∼3.26 km. AM-CEAS achieved a 1σ detection precision of 35 pptv in a 1 s data acquisition time (4.98 × 10-10 cm-1), over 4 times lower than that attained using a ring-down approach and the same optical system. The AM-CEAS precision improved to 8 pptv over a data acquisition time of 30 s (1.14 × 10-10 cm-1). The AM-CEAS method with the multimode diode laser integrates the advantages of high light injection efficiency like on-axis alignment cavity ring-down spectroscopy, low cavity-mode noise like off-axis alignment CEAS, and narrow-bandwidth high-sensitivity weak signal detection of modulation spectroscopy, providing a powerful, straightforward, and general method for ultrasensitive absorption and extinction measurements.
Collapse
Affiliation(s)
- Jiacheng Zhou
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.,University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Yang Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Bo Fang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Feihu Cheng
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China
| | - Shichuan Ni
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.,University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.,University of Science and Technology of China, Hefei, 230026 Anhui, China
| | - Chunxiang Ye
- College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China
| | - Weidong Chen
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Dean S Venables
- School of Chemistry and Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| |
Collapse
|
3
|
Lu K, Guo S, Tan Z, Wang H, Shang D, Liu Y, Li X, Wu Z, Hu M, Zhang Y. Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. Natl Sci Rev 2019; 6:579-594. [PMID: 34691906 PMCID: PMC8291643 DOI: 10.1093/nsr/nwy073] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
Since 1971, it has been known that the atmospheric free radicals play a pivotal role in maintaining the oxidizing power of the troposphere. The existence of the oxidizing power is an important feature of the troposphere to remove primary air pollutants emitted from human beings as well as those from the biosphere. Nevertheless, serious secondary air-pollution incidents can take place due to fast oxidation of the primary pollutants. Elucidating the atmospheric free-radical chemistry is a demanding task in the field of atmospheric chemistry worldwide, which includes two kinds of work: first, the setup of reliable radical detection systems; second, integrated field studies that enable closure studies on the sources and sinks of targeted radicals such as OH and NO3. In this review, we try to review the Chinese efforts to explore the atmospheric free-radical chemistry in such chemical complex environments and the possible link of this fast gas-phase oxidation with the fast formation of secondary air pollution in the city-cluster areas in China.
Collapse
Affiliation(s)
- Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Yang C, Zhao W, Fang B, Yu H, Xu X, Zhang Y, Gai Y, Zhang W, Chen W, Fittschen C. Improved Chemical Amplification Instrument by Using a Nafion Dryer as an Amplification Reactor for Quantifying Atmospheric Peroxy Radicals under Ambient Conditions. Anal Chem 2018; 91:776-779. [DOI: 10.1021/acs.analchem.8b04907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chengqiang Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bo Fang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hui Yu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yang Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yanbo Gai
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weijun Zhang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weidong Chen
- Laboratoire de Physicochimie de l’Atmosphère, Université du Littoral Côte d’Opale, 59140 Dunkerque, France
| | - Christa Fittschen
- Université Lille,
CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de
l’Atmosphère, F-59000 Lille, France
| |
Collapse
|
5
|
Yang C, Zhao W, Fang B, Xu X, Zhang Y, Gai Y, Zhang W, Venables DS, Chen W. Removing Water Vapor Interference in Peroxy Radical Chemical Amplification with a Large Diameter Nafion Dryer. Anal Chem 2018; 90:3307-3312. [DOI: 10.1021/acs.analchem.7b04830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengqiang Yang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Bo Fang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yang Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yanbo Gai
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dean S. Venables
- School of Chemistry and Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Weidong Chen
- Laboratoire de Physicochimie de l’Atmosphère, Université du Littoral Côte d’Opale, 59140 Dunkerque, France
| |
Collapse
|
6
|
Fang B, Zhao W, Xu X, Zhou J, Ma X, Wang S, Zhang W, Venables DS, Chen W. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide. OPTICS EXPRESS 2017; 25:26910-26922. [PMID: 29092174 DOI: 10.1364/oe.25.026910] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO2). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm3 and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO2 and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO2 were improved to 8 pptv and 40 pptv in 21 s.
Collapse
|
7
|
Zhao W, Xu X, Fang B, Zhang Q, Qian X, Wang S, Liu P, Zhang W, Wang Z, Liu D, Huang Y, Venables DS, Chen W. Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity. APPLIED OPTICS 2017; 56:E16-E22. [PMID: 28414337 DOI: 10.1364/ao.56.000e16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the development of a blue light-emitting-diode-based incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS) instrument for the measurement of the aerosol extinction coefficient at λ=461 nm. With an effective absorption path length of 2.8 km, an optimum detection limit of 0.05 Mm-1 (5×10-10 cm-1) was achieved with an averaging time of 84 s. The baseline drift of the developed spectrometer was about ±0.3 Mm-1 over 2.5 h (1σ standard deviation). The performance of the system was evaluated with laboratory-generated monodispersed polystyrene latex (PSL) spheres. The retrieved complex refractive index of PSL agreed well with previously reported values. The relative humidity (RH) dependence of the aerosol extinction coefficient was measured using IBBCEAS. The measured extinction enhancement factor values for 200 nm dry ammonium sulphate particles at different RH were in good agreement with the modeled values. Field performance of the aerosol extinction spectrometer was demonstrated at the Hefei Radiation Observatory site.
Collapse
|