1
|
Jin J, Li Q, Zhang Y, Ji P, Wang X, Zhang Y, Yuan Z, Jiang J, Tian G, Cai M, Feng P, Wu Y, Wang P, Liu W. METTL9 mediated N1-Histidine methylation of SLC39A7 confers ferroptosis resistance and inhibits adipogenic differentiation in mesenchymal stem cells. Mol Med 2025; 31:206. [PMID: 40414869 DOI: 10.1186/s10020-025-01271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Osteoporosis is a prevalent systemic metabolic disease, and an imbalance in the adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in its pathogenesis. Thus, elucidating the mechanisms that regulate MSC lineage allocation is urgently needed. METTL9 was recently characterized as a novel N1-histidine methyltransferase that performs a wide range of functions. however, the role of METTL9 in the imbalance of MSC differentiation in osteoporosis remains unclear. In this study, we found that METTL9 expression was downregulated in osteoporosis, and further adipogenic functional experiments revealed that METTL9 negatively regulated the adipogenic differentiation of MSCs both in vitro and in vivo. Mechanistically, METTL9 mediated methylation of SLC39A7 at the His45 and His49 residues suppressed ferroptosis through the endoplasmic reticulum (ER) stress regulatory protein kinase R-like endoplasmic reticulum kinase (PERK)/ATF4 signaling pathway and the downstream protein SLC7A11. Moreover, SLC7A11 transported cystine for intracellular glutathione synthesis, eliminating intracellular reactive oxygen species (ROS) and inhibiting MSC adipogenic differentiation. Additionally, METTL9 overexpression significantly alleviated bone loss in ovariectomy (OVX) model mice. In summary, our results suggest that the METTL9/SLC39A7 axis may be a promising diagnostic and therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Xinlang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Jianan Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Guangqi Tian
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Mingxi Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
| | - Pei Feng
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P.R. China.
| |
Collapse
|
2
|
Duan H, Wang S, Shu WJ, Tong Y, Long HZ, Li G, Du HN, Zhao MJ. SETD3-mediated histidine methylation of MCM7 regulates DNA replication by facilitating chromatin loading of MCM. SCIENCE CHINA. LIFE SCIENCES 2025; 68:793-808. [PMID: 39455502 DOI: 10.1007/s11427-023-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 10/28/2024]
Abstract
The minichromosome maintenance complex (MCM) DNA helicase is an important replicative factor during DNA replication. The proper chromatin loading of MCM is a key step to ensure replication initiation during S phase. Because replication initiation is regulated by multiple biological cues, additional changes to MCM may provide better understanding towards this event. Here, we report that histidine methyltransferase SETD3 promotes DNA replication in a manner dependent on enzymatic activity. Nascent-strand sequencing (NS-seq) shows that SETD3 regulates replication initiation, as depletion of SETD3 attenuates early replication origins firing. Biochemical studies reveal that SETD3 binds MCM mainly during S phase, which is required for the CDT1-mediated chromatin loading of MCM. This MCM loading relies on histidine-459 methylation (H459me) on MCM7 which is catalyzed by SETD3. Impairment of H459 methylation attenuates DNA synthesis and chromatin loading of MCM. Furthermore, we show that CDK2 phosphorylates SETD3 at Serine-21 during the G1/S phase, which is required for DNA replication and cell cycle progression. These findings demonstrate a novel mechanism by which SETD3 methylates MCM to regulate replication initiation.
Collapse
Affiliation(s)
- Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Shuang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Yongjia Tong
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | | | - Guohong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Cao D, Lv M, Hu C, Li S, Wang S, Xu C, Pan W. METTL9-catalyzed histidine methylation of S100A9 suppresses the anti-Staphylococcus aureus activity of neutrophils. Protein Cell 2024; 15:223-229. [PMID: 37522633 PMCID: PMC10903974 DOI: 10.1093/procel/pwad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Dan Cao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Mengyue Lv
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Chi Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Shukai Li
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Siwen Wang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Chao Xu
- Division of Life Sciences and Medicine, MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
4
|
Kasai F, Kako K, Maruhashi S, Uetake T, Yao Y, Daitoku H, Fukamizu A. γ-enolase (ENO2) is methylated at the Nτ position of His-190 among enolase isozymes. J Biochem 2023; 174:279-289. [PMID: 37279646 DOI: 10.1093/jb/mvad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
Protein methylation is mainly observed in lysine, arginine and histidine residues. Histidine methylation occurs at one of two different nitrogen atoms of the imidazole ring, producing Nτ-methylhistidine and Nπ-methylhistidine, and it has recently attracted attention with the identification of SETD3, METTL18 and METTL9 as catalytic enzymes in mammals. Although accumulating evidence had suggested the presence of more than 100 proteins containing methylated histidine residues in cells, much less information has been known regarding histidine-methylated proteins than lysine- and arginine-methylated ones, because no method has been developed to identify substrates for histidine methylation. Here, we established a method to screen novel target proteins for histidine methylation, using biochemical protein fractionation combined with the quantification of methylhistidine by LC-MS/MS. Interestingly, the differential distribution pattern of Nτ-methylated proteins was found between the brain and skeletal muscle, and identified γ-enolase where the His-190 at the Nτ position is methylated in mouse brain. Finally, in silico structural prediction and biochemical analysis showed that the His-190 in γ-enolase is involved in the intermolecular homodimeric formation and enzymatic activity. In the present study, we provide a new methodology to find histidine-methylated proteins in vivo and suggest an insight into the importance of histidine methylation.
Collapse
Key Words
-
Nτ-methylhistidine.Abbreviations: ADMA, asymmetric dimethylarginine; DML, dimethyllysine; HEK293T, human embryonic kidney 293T; HIC, hydrophobic interaction chromatography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; MALDI-TOF/MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MMA, monomethylarginine; MRM, multiple reaction monitoring; N-PLA, N-propyl-L-arginine; SAM, S-adenosylmethionine; SDMA, symmetric dimethylarginine; TML, trimethyllysine
- Mus musculus
- enolase
- histidine methylation
- γ-enolase
Collapse
Affiliation(s)
- Fumiya Kasai
- Doctoral Program in Life and Agricultural Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Syunsuke Maruhashi
- Degree Program in Agro-Bioresources Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Toru Uetake
- Doctoral Program in Life and Agricultural Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuan Yao
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Zhao W, Zhou Y, Li C, Bi Y, Wang K, Ye M, Li H. Molecular basis for protein histidine N1-specific methylation of the "His-x-His" motifs by METTL9. CELL INSIGHT 2023; 2:100090. [PMID: 37398635 PMCID: PMC10308197 DOI: 10.1016/j.cellin.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 07/04/2023]
Abstract
Histidine methylation serves as an intriguing strategy to introduce altered traits of target proteins, including metal ion chelation, histidine-based catalysis, molecular assembly, and translation regulation. As a newly identified histidine methyltransferase, METTL9 catalyzes N1-methylation of protein substrates containing the "His-x-His" motif (HxH, x denotes small side chain residue). Here our structural and biochemical studies revealed that METTL9 specifically methylates the second histidine of the "HxH" motif, while exploiting the first one as a recognition signature. We observed an intimate engagement between METTL9 and a pentapeptide motif, where the small "x" residue is embedded and confined within the substrate pocket. Upon complex formation, the N3 atom of histidine imidazole ring is stabilized by an aspartate residue such that the N1 atom is presented to S-adenosylmethionine for methylation. Moreover, METTL9 displayed a feature in preferred consecutive and "C-to-N" directional methylation of tandem "HxH" repeats that exist in many METTL9 substrates. Collectively, our work illustrates the molecular design of METTL9 in N1-specific methylation of the broadly existing "HxH" motifs, highlighting its importance in histidine methylation biology.
Collapse
Affiliation(s)
- Wentao Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yang Zhou
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Caiyi Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yucong Bi
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
6
|
Falnes PØ, Małecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-β-strand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem 2023; 299:104661. [PMID: 36997089 DOI: 10.1016/j.jbc.2023.104661] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
|
7
|
Matsuura-Suzuki E, Shimazu T, Takahashi M, Kotoshiba K, Suzuki T, Kashiwagi K, Sohtome Y, Akakabe M, Sodeoka M, Dohmae N, Ito T, Shinkai Y, Iwasaki S. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. eLife 2022; 11:e72780. [PMID: 35674491 PMCID: PMC9177149 DOI: 10.7554/elife.72780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification have been reported. Moreover, the biological role of histidine methylation has remained poorly understood to date. Here, we report that human METTL18 is a histidine methyltransferase for the ribosomal protein RPL3 and that the modification specifically slows ribosome traversal on Tyr codons, allowing the proper folding of synthesized proteins. By performing an in vitro methylation assay with a methyl donor analog and quantitative mass spectrometry, we found that His245 of RPL3 is methylated at the τ-N position by METTL18. Structural comparison of the modified and unmodified ribosomes showed stoichiometric modification and suggested a role in translation reactions. Indeed, genome-wide ribosome profiling and an in vitro translation assay revealed that translation elongation at Tyr codons was suppressed by RPL3 methylation. Because the slower elongation provides enough time for nascent protein folding, RPL3 methylation protects cells from the cellular aggregation of Tyr-rich proteins. Our results reveal histidine methylation as an example of a ribosome modification that ensures proteome integrity in cells.
Collapse
Affiliation(s)
- Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Kaoru Kotoshiba
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yoshihiro Sohtome
- RIKEN Center for Sustainable Resource ScienceSaitamaJapan
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mai Akakabe
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource ScienceSaitamaJapan
- Synthetic Organic Chemistry Lab, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource ScienceSaitamaJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| |
Collapse
|
8
|
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021; 17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
9
|
Hoekstra M, Biggar KK. Identification of in vitro JMJD lysine demethylase candidate substrates via systematic determination of substrate preference. Anal Biochem 2021; 633:114429. [PMID: 34678252 DOI: 10.1016/j.ab.2021.114429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/25/2023]
Abstract
A major regulatory influence over gene expression is the dynamic post translational methylation of histone proteins, with major implications from both lysine methylation and demethylation. The KDM5/JARID1 sub-family of Fe(II)/2-oxoglutarate dependent lysine-specific demethylases is, in part, responsible for the removal of tri/dimethyl modifications from lysine 4 of histone H3 (i.e., H3K4me3/2), a mark associated with active gene expression. Although the relevance of KDM5 activity to disease progression has been primarily established through its ability to regulate gene expression via histone methylation, there is evidence that these enzymes may also target non-histone proteins. To aid in the identification of new non-histone substrates, we examined KDM5A in vitro activity towards a library of 180 permutated peptide substrates derived from the H3K4me3 sequence. From this data, a recognition motif was identified and used to predict candidate KDM5A substrates from the methyllysine proteome. High-ranking candidate substrates were then validated for in vitro KDM5A activity using representative trimethylated peptides. Our approach correctly identified activity towards 90% of high-ranked substrates. Here, we have demonstrated the usefulness of our method in identifying candidate substrates that is applicable to any Fe(II)- and 2-oxoglutarate dependent demethylase.
Collapse
Affiliation(s)
- Matthew Hoekstra
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
10
|
Daitoku H, Someya M, Kako K, Hayashi T, Tajima T, Haruki H, Sekiguchi N, Uetake T, Akimoto Y, Fukamizu A. siRNA screening identifies METTL9 as a histidine Nπ-methyltransferase that targets the proinflammatory protein S100A9. J Biol Chem 2021; 297:101230. [PMID: 34562450 PMCID: PMC8571522 DOI: 10.1016/j.jbc.2021.101230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.
Collapse
Affiliation(s)
- Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Momoka Someya
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koichiro Kako
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Hayashi
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tatsuya Tajima
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hikari Haruki
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Sekiguchi
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toru Uetake
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuto Akimoto
- College of Agro-Biological Resource Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan; The World Premier International Research Center Initiative (WPI), International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
12
|
Gong PX, Xu F, Cheng L, Gong X, Zhang J, Gu WJ, Han W. Iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabled aldehyde C-H methylation. Chem Commun (Camb) 2021; 57:5905-5908. [PMID: 34008616 DOI: 10.1039/d1cc01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A practical and general iron-catalyzed domino decarboxylation-oxidation of α,β-unsaturated carboxylic acids enabling aldehyde C-H methylation for the synthesis of methyl ketones has been developed. This mild, operationally simple method uses ambient air as the sole oxidant and tolerates sensitive functional groups for the late-stage functionalization of complex natural-product-derived and polyfunctionalized molecules.
Collapse
Affiliation(s)
- Pei-Xue Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Fangning Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lu Cheng
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xu Gong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei-Jin Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wei Han
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. and Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing 210023, China
| |
Collapse
|
13
|
METTL9 mediated N1-histidine methylation of zinc transporters is required for tumor growth. Protein Cell 2021; 12:965-970. [PMID: 34218407 PMCID: PMC8674392 DOI: 10.1007/s13238-021-00857-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
|
14
|
Kapell S, Jakobsson ME. Large-scale identification of protein histidine methylation in human cells. NAR Genom Bioinform 2021; 3:lqab045. [PMID: 34046594 PMCID: PMC8140740 DOI: 10.1093/nargab/lqab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.
Collapse
Affiliation(s)
- Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|
15
|
Małecki JM, Odonohue MF, Kim Y, Jakobsson ME, Gessa L, Pinto R, Wu J, Davydova E, Moen A, Olsen JV, Thiede B, Gleizes PE, Leidel SA, Falnes PØ. Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. Nucleic Acids Res 2021; 49:3185-3203. [PMID: 33693809 PMCID: PMC8034639 DOI: 10.1093/nar/gkab088] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023] Open
Abstract
Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Marie-Francoise Odonohue
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Yeji Kim
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Magnus E Jakobsson
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation, Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Luca Gessa
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jie Wu
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation, Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Sebastian A Leidel
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
16
|
Davydova E, Shimazu T, Schuhmacher MK, Jakobsson ME, Willemen HLDM, Liu T, Moen A, Ho AYY, Małecki J, Schroer L, Pinto R, Suzuki T, Grønsberg IA, Sohtome Y, Akakabe M, Weirich S, Kikuchi M, Olsen JV, Dohmae N, Umehara T, Sodeoka M, Siino V, McDonough MA, Eijkelkamp N, Schofield CJ, Jeltsch A, Shinkai Y, Falnes PØ. The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes. Nat Commun 2021; 12:891. [PMID: 33563959 PMCID: PMC7873184 DOI: 10.1038/s41467-020-20670-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.
Collapse
Affiliation(s)
- Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Tadahiro Shimazu
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Magnus E Jakobsson
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Immunotechnology, Lund University, Medicon Village, 22100, Lund, Sweden
| | - Hanneke L D M Willemen
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, 3584, Utrecht, EA, The Netherlands
| | - Tongri Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Jędrzej Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Lisa Schroer
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Rita Pinto
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Ida A Grønsberg
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research (NNF-CPR), University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Medicon Village, 22100, Lund, Sweden
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Niels Eijkelkamp
- Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, 3584, Utrecht, EA, The Netherlands
| | | | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
17
|
Kwiatkowski S, Drozak J. Protein Histidine Methylation. Curr Protein Pept Sci 2021; 21:675-689. [PMID: 32188384 DOI: 10.2174/1389203721666200318161330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/14/2023]
Abstract
Protein histidine methylation is a rarely studied posttranslational modification in eukaryotes. Although the presence of N-methylhistidine was demonstrated in actin in the early 1960s, so far, only a limited number of proteins containing N-methylhistidine have been reported, including S100A9, myosin, skeletal muscle myosin light chain kinase (MLCK 2), and ribosomal protein Rpl3. Furthermore, the role of histidine methylation in the functioning of the protein and in cell physiology remains unclear due to a shortage of studies focusing on this topic. However, the molecular identification of the first two distinct histidine-specific protein methyltransferases has been established in yeast (Hpm1) and in metazoan species (actin-histidine N-methyltransferase), giving new insights into the phenomenon of protein methylation at histidine sites. As a result, we are now beginning to recognize protein histidine methylation as an important regulatory mechanism of protein functioning whose loss may have deleterious consequences in both cells and in organisms. In this review, we aim to summarize the recent advances in the understanding of the chemical, enzymological, and physiological aspects of protein histidine methylation.
Collapse
Affiliation(s)
- Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Shu WJ, Du HN. The methyltransferase SETD3-mediated histidine methylation: Biological functions and potential implications in cancers. Biochim Biophys Acta Rev Cancer 2020; 1875:188465. [PMID: 33157163 DOI: 10.1016/j.bbcan.2020.188465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
SETD3 belongs to a family of SET-domain containing proteins. Recently, SETD3 was found as the first and so-far the only known metazoan histidine methyltransferase that catalyzes actin histidine 73 (His73) methylation, a pervasive modification which was discovered more than 50 years ago. In this review, we summarize some recent advances in SETD3 research, focusing on structural properties, substrate-recognition features, and physiological functions. We particularly highlight potential pathological relevance of SETD3 in human cancers and raise some questions to promote discussion about this novel histidine methyltransferase.
Collapse
Affiliation(s)
- Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Selective enrichment of N-terminal proline peptides via hydrazide chemistry for proteomics analysis. Anal Chim Acta 2020; 1142:48-55. [PMID: 33280703 DOI: 10.1016/j.aca.2020.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
A challenge for shotgun proteomics is the identification of low abundance proteins, which is always hampered owing to the extreme complexity of protein digests and highly dynamic concentration range of proteins. To reduce the complexity of the peptide mixture, we developed a novel method to selectively enrich N-terminal proline peptides via hydrazide chemistry. This method consisted of ortho-phthalaldehyde (OPA) blocking of primary amines in peptides, reductive glutaraldehydation of N-terminal proline and solid phase hydrazide chemistry enrichment of aldehyde-modified N-terminal proline peptide. After enrichment, the number of detected peptides containing N-terminal proline increased from 1304 to 4039 and the ratio of N-terminal proline peptides jumped from 4.4% to 93.7%, showing good enrichment specificity towards N-terminal proline peptides. Besides, the ratio of identified peptides to proteins was decreased from 7.8 (29751/3811) to 1.5 (4347/2821), indicating that sample complexity was drastically reduced through this method. As a result, this novel approach for enriching N-terminal proline peptides is effective in identification of low abundance protein owing to the reduction of sample complexity.
Collapse
|
20
|
Cornett EM, Ferry L, Defossez PA, Rothbart SB. Lysine Methylation Regulators Moonlighting outside the Epigenome. Mol Cell 2020; 75:1092-1101. [PMID: 31539507 DOI: 10.1016/j.molcel.2019.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
Landmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases. Since then, the field of lysine methylation signaling has been dominated by studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-based processes. However, recent advances in mass-spectrometry-based proteomics have revealed that histones are just a subset of the thousands of eukaryotic proteins marked by lysine methylation. As the writers, erasers, and readers of histone lysine methylation are emerging as a promising therapeutic target class for cancer and other diseases, a key challenge for the field is to define the full spectrum of activities for these proteins. Here we summarize recent discoveries implicating non-histone lysine methylation as a major regulator of diverse cellular processes. We further discuss recent technological innovations that are enabling the expanded study of lysine methylation signaling. Collectively, these findings are shaping our understanding of the fundamental mechanisms of non-histone protein regulation through this dynamic and multi-functional posttranslational modification.
Collapse
Affiliation(s)
- Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Laure Ferry
- Université de Paris, Epigenetics and Cell Fate, CNRS, 75013 Paris, France
| | | | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
21
|
Lund PJ, Lehman SM, Garcia BA. Quantitative analysis of global protein lysine methylation by mass spectrometry. Methods Enzymol 2019; 626:475-498. [PMID: 31606088 PMCID: PMC8259617 DOI: 10.1016/bs.mie.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since protein activity is often regulated by posttranslational modifications, the qualitative and quantitative analysis of modification sites is critical for understanding the regulation of biological pathways that control cell function and phenotype. Methylation constitutes one of the many types of posttranslational modifications that target lysine residues. Although lysine methylation is perhaps most commonly associated with histone proteins and the epigenetic regulation of processes involving chromatin, methylation has also been observed as an important regulatory modification on other proteins, which has spurred the development of methods to profile lysine methylation sites more globally. As with many posttranslational modifications, tandem mass spectrometry represents an ideal platform for the high-throughput analysis of lysine methylation due to its high sensitivity and resolving power. The following protocol outlines a general method to assay lysine methylation across the proteome using SILAC and quantitative proteomics. First, cells are labeled by SILAC to allow for relative quantitation across different experimental conditions, such as cells with or without ectopic expression of a methyltransferase. Next, cells are lysed and proteins are digested into peptides. Methylated peptides are then enriched by immunoprecipitation with pan-specific antibodies against methylated lysine. Finally, the enriched peptides are analyzed by LC-MS/MS to identify methylated peptides and their modification sites and to compare the relative abundance of methylation events between different conditions. This approach should yield detection of a couple hundred lysine methylation sites, and those showing differential abundance may then be prioritized for further study.
Collapse
Affiliation(s)
- Peder J Lund
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephanie M Lehman
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Smilow Center for Translational Research, University of Pennsylvania School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Kwiatkowski S, Seliga AK, Vertommen D, Terreri M, Ishikawa T, Grabowska I, Tiebe M, Teleman AA, Jagielski AK, Veiga-da-Cunha M, Drozak J. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife 2018; 7:37921. [PMID: 30526847 PMCID: PMC6289574 DOI: 10.7554/elife.37921] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including β-actin as an essential example. The evolutionary conserved methylation of β-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated β-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at β-actin H73 in vivo, whereas β-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.
Collapse
Affiliation(s)
- Sebastian Kwiatkowski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka K Seliga
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marianna Terreri
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Adam K Jagielski
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Veiga-da-Cunha
- Metabolic Research Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
24
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
25
|
Wang Q, Wang K, Ye M. Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 2017; 142:3536-3548. [DOI: 10.1039/c7an00954b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein methylation is an important post-translational modification (PTM) that plays crucial roles in the regulation of diverse biological processes.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| |
Collapse
|
26
|
Wang K, Dong M, Mao J, Wang Y, Jin Y, Ye M, Zou H. Antibody-Free Approach for the Global Analysis of Protein Methylation. Anal Chem 2016; 88:11319-11327. [DOI: 10.1021/acs.analchem.6b02872] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Keyun Wang
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Dong
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Jin
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS
Key Lab of Separation Sciences for Analytical Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|